
University of Modena and Reggio Emilia

Simulation of
Highly/Heuristically
Optimized/Organized

Tolerance/Tradeoffs (HOT)
Networks with NetLogo

Distributed Software Systems

Supervisor: Prof. Franco Zambonelli Author: Tomasini Marcello

Accademic Year 2011/2012

Contents

List of Figures iv

List of Tables v

Code Listings vi

1 Introduction 1
1.1 Scope . 2
1.2 Document Structure . 2

2 Groundwork 3
2.1 Power Law and “Scale Free” Models 3
2.2 NetLogo Simulation Environment 5

3 HOT Networks 8
3.1 Characteristics of HOT Systems . 8
3.2 Internet: a Model of HOT Network 10

3.2.1 Is Internet HOT? . 10
3.2.2 Constraints and Functional Objectives 11
3.2.3 A Generative Model . 11

3.3 S Metric . 13

4 Implementation 14
4.1 Generative Algorithm . 14
4.2 S-metric Computation . 16

5 Test and Results 18
5.1 HOT vs Preferential Attachment 18
5.2 Towards a Structural-Generative Model 20

ii

CONTENTS

6 Conclusions and Open Issues 30
6.1 Results . 30
6.2 Open Issues and Future Development 31

A Run Simulations 32

Bibliography 33

University of Modena and Reggio Emilia iii

List of Figures

2.1 Power Law Degree Sequence generated by “Preferential Attach-
ment”. Only dk > 1 are shown. 4

2.2 Scale Free Network generated by “Preferential Attachment”. 5
2.3 Example of natural phenomena simulation: Ants Foraging. 6

5.1 Graph with n = 1000: HOT (α = 4) vs PA. 23
5.2 Degrees Distribution of PA graph with n = 25000. 24
5.3 Degrees Distribution of HOT graph with n = 25000 and α = 20. . . 24
5.4 Degrees Distribution of HOT graph with n = 25000 and α = 50. . . 24
5.5 Degrees Distribution of HOT graph with n = 25000 and α = 100. . 24
5.6 HOT Graph with n = 1000 α = 4. The nodes in purple have more

than 16 links. 25
5.7 HOT Graph with n = 1000 and α = 20 (left) or α = 50 (right).

The nodes in purple have more than 16 links. 26
5.8 Distribution of s(g) values in PA. 27
5.9 Distribution of s(g) values in HOT, α = 4, 20, 50. 27
5.10 HOT Graph with n = 1500, α = 20, 10 nodes with nhop = 0. . . . 28
5.11 HOT Graph with n = 1500, α = 20, 10 “core” nodes and 30 “edge”

nodes. Core nodes are shown in green. 29

A.1 GUI of NetLogo Model . 32

iv

List of Tables

5.1 Preferential Attachment (PA) vs. HOT: statistical characterization
of s(g) on varying of α. 19

5.2 Relative Log Likelihood on varying of α. 20

v

Code Listings

4.1 Initial Nodes . 14
4.2 Creating New Nodes . 15
4.3 Computation of log-likelihood s . 17
4.4 Computation of S-metric . 17
5.1 Build a Mesh-like starting Network 21
5.2 Create Core and Edge Nodes . 22

vi

Chapter 1

Introduction

One of the biggest scientific and technologic challenge is develop a complete and
rigorous understanding of the behavior of complex and interconnected systems.
Alternative approaches to modeling the network often make extremely different
assumptions and derive opposite conclusions about fundamental properties of one
and the same system.
One of the most successful model in the study of complex networks are scale-free
(SF) graphs, originally introduced by Barabási and Albert [1], which have been
proposed as an universal and generic model of topology having a power-law distri-
bution in node connectivity. Ubiquity and pervasively of this kind of distribution
in natural and artificial systems make SF graphs a representative model of diverse
complex systems going from social science to molecular biology till Internet.
Highly/Heuristically Optimized/Organized Tolerance/Tradeoffs (HOT) [2, 3] is the
other major class of models able to predict power-law distributions. In HOT mod-
els power-law distribution results from optimization of design objectives (e.g. high
performance) in presence of system uncertainty and constraints which brings to
systems robust towards predicted perturbation but really sensitivity to everything
not predicted. This kind of Robust Yet Fragile (RYF) behavior is a characteristic
of complex systems in biology and engineering.

A popular case study of complex networks is internet having the main problem
in how design choice and evolution have made it RYF. A line of research depict
Internet as a SF network with a central hub-like structure which makes it both
robust to random node losses and fragile to attacks to hub nodes. However, a more
realistic model is HOT because it origins the same power-law distribution (so the
hubs) but it can explain where the properties of complex organized and optimized
systems come from.

1

CHAPTER 1. INTRODUCTION

1.1 Scope

In the following it will be explained how to implement a HOT network through
the use of NetLogo environment [6].
In the project it will be developed an algorithm based on Fabrikant HOT model
[2], underling Doyle results on the same kind of networks [4].
For a detailed and rigorous mathematical approach see [5].

1.2 Document Structure

The document is divided in 5 chapters, a short description is provided:

Chapter 2, Fundamentals: show theoretic aspects of the project and charac-
teristics of developing environment with a lot of citations for in depth knowl-
edge.

Chapter 3, HOT Networks: ideas, solutions and limits of the model.

Chapter 4, Implementation: detailed description of developed software.

Chapter 5, Test & Results: series of simulations to test correct behavior of the
model and what are the main results.

Appendix A, Run Simulations: how to run simulations.

University of Modena and Reggio Emilia 2

Chapter 2

Groundwork

The first part of the chapter gives the needed background to clearly understand
the meaning and differences of SF and HOT networks. In particular some basic
math definitions and results are proposed. Since the most common representation
of networks are graphs, it will be used the relative definitions and it will be consid-
ered the minimum cultural background to understand the subsequent exposition.
Second part introduce development environment.

2.1 Power Law and “Scale Free” Models

Power Law distribution or “Pareto’s distribution” has been observed in the past
century on income distribution [7], cities’ population[8, 9], words’ frequency [10]
and in a lot of other domains, included WWW (World Wide Web)[11].

What does it mean that a network follow a Power Law distribution among
node connectivity?
Given a connected simple graph G (i.e. no self-loops or parallel edges) which
represent the network and has n vertices, di denotes the degree of vertex i, 1 ≤ i ≤
n, that is the number of links to other vertices of the graph. The degree sequence
D = {d1, d2, . . . , dn} is how graph edges are spreaded on the vertices and it can
be assumed without loss of generality always to be ordered: d1 ≥ d2 ≥ . . . ≥ dn.
Then, a graph G has a scaling degree sequence D (or D is scaling) if the probability
P of a vertex to have dk edges is:

P (dk) = αd−γk

That is, if ∀ 1 ≤ k ≤ n, D satisfies a power-law rank-size relationship of the form
kdγk ≈ α, where α > 0 and γ > 0 are costants [12]. This imply: logP (dk) =
logα − γ log dk or equivalent log k = logα − γ log dk; doubly logarithmic plots of
P (dk) versus dk or dk versus rank k yield approximately straight lines of slope −γ

3

CHAPTER 2. GROUNDWORK

(fig. 2.1), while exponential rank-size relationships result in approximately straight
lines on semi-logarithmic plots.

Figure 2.1: Power Law Degree Sequence generated by “Preferential Attachment”.
Only dk > 1 are shown.

It is immediate to note that power-law distribution decay as a polynomial, so it
has a “long tail”, that is the area under the density function in interval [k,+∞[
diverge for k →∞.
Power Law distribution imply:

• infinite variance (if γ ≤ 2)

• probability of elements far from the average not negligible

• big numbers “count”

Every system having a Power Law distribution follow the 80 − 20 Rule. In the
specific case of networks it says that 20% of nodes have 80% of links.

There have been several attempts to explain how the Power Law emerges in
complex systems using “ generative” models [13]; most of them fall in “scale-free
growth” or “preferential attachment”[1] category, that is the growth of individuals
in a population follows a stochastic process independent of the size of the individ-
ual, so that biggest individuals attract more growth (e.g. the rich get richer, nodes
with more links attract other nodes to form even more links).
SF networks exhibit the presence of nodes that:

• act as hub, i.e., as a point where most of nodes is connected

• act as connectors, i.e., nodes that contribute largely to the connection of the
portions of the network

• minor nodes that act as hubs or connectors to local portions of the network

University of Modena and Reggio Emilia 4

CHAPTER 2. GROUNDWORK

Most nodes have a limited number of links instead. This structure means that,
whatever the scale at which it is observed, the network appears similar to itself
(fig. 2.2), that is auto-similar. Not only that, the network maintains its properties

Figure 2.2: Scale Free Network generated by “Preferential Attachment”.

regardless of the scale and, in particular, if you delete the details of a network, such
as to skip nodes with a limited number of links, maintains its power-law structure,
as well as if one considers only a portion of it will have the general structure of
the whole network.

2.2 NetLogo Simulation Environment

NetLogo [6] is a programmable modeling environment for simulating natural and
social phenomena based on a Logo dialect. NetLogo runs on the Java virtual
machine, so it works on all major platforms (Mac, Windows, Linux, et al).

University of Modena and Reggio Emilia 5

CHAPTER 2. GROUNDWORK

Figure 2.3: Example of natural phenomena simulation: Ants Foraging.

NetLogo is particularly well suited for modeling complex systems developing over
time the nature of which is decentralized and interconnected, including network
phenomena. Modelers can give instructions to hundreds or thousands of “agents”
all operating independently. This makes it possible to explore the connection
between the micro-level behavior of individuals and the macro-level patterns that
emerge from their interaction (fig. 2.3). It also comes with the Models Library, a
large collection of pre-written simulations that can be used and modified. [14, 15].

The NetLogo world is made up of agents [16]. Agents are beings that can
follow instructions. In NetLogo, there are four types of agents: turtles, patches,
links, and the observer. Turtles are agents that move around in the world. The
world is two dimensional and is divided up into a grid of patches. Each patch is
a square piece of “ground” over which turtles can move. Links are agents that
connect two turtles. The observer doesn’t have a location – you can imagine it as
looking out over the world of turtles and patches. The observer doesn’t observe
passively – it gives instructions to the other agents. When NetLogo starts up,
there are no turtles. The observer can make new turtles. Patches can make new
turtles too (patches can’t move, but otherwise they’re just as “alive” as turtles).
Patches have coordinates. The patch at coordinates (0,0) is called the origin and

University of Modena and Reggio Emilia 6

CHAPTER 2. GROUNDWORK

the coordinates of the other patches are the horizontal and vertical distances from
this one. We call the patch’s coordinates pxcor and pycor. Just like in the
standard mathematical coordinate plane, pxcor increases as you move to the right
and pycor increases as you move up. The total number of patches is determined
by the settings min-pxcor, max-pxcor, min-pycor, and max-pycor. Turtles have
coordinates too: xcor and ycor. A patch’s coordinates are always integers, but a
turtle’s coordinates can have decimals. This means that a turtle can be positioned
at any point within its patch; it doesn’t have to be in the center of the patch.
Links do not have coordinates. Every link has two ends, and each end is a turtle.
If either turtle dies, the link dies too. A link is represented visually as a line
connecting the two turtles.

In NetLogo, commands and reporters tell agents what to do. A command
is an action for an agent to carry out, resulting in some effect. A reporter is
instructions for computing a value, which the agent then “reports” to whoever
asked it. Commands and reporters built into NetLogo are called primitives. The
NetLogo Dictionary has a complete list of built-in commands and reporters [17].
Commands and reporters you define yourself are called procedures. Each procedure
has a name, preceded by the keyword to or to-report, depending on whether it
is a command procedure or a reporter procedure. Once you define a procedure,
you can use it elsewhere in your program.

Agent variables are places to store values in an agent. An agent variable can
be a global variable, a turtle variable, a patch variable, or a link variable. If a
variable is a global variable, there is only one value for the variable, and every
agent can access it. You can think of global variables as belonging to the observer.
Turtle, patch, and link variables are different. Each turtle has its own value for
every turtle variable. Users can also define their own variables. They can make
a global variable by adding a switch, slider, chooser, or input box to the model,
or by using the globals keyword at the beginning of the code. They can also
define new turtle, patch and link variables using the turtles-own, patches-own
and links-own keywords. These variables can then be used freely in the model.
Use the set command to set them. (Any variable don’t setted has a starting value
of zero). A local variable is defined and used only in the context of a particular
procedure or part of a procedure. To create a local variable, use the let command.

In many NetLogo models, time passes in discrete steps, called ticks. NetLogo
includes a built-in tick counter to keep track of how many ticks have passed. To
retrieve the current value of the tick counter, use the ticks reporter. The tick

command advances the tick counter by 1 and it will usually also update the view.

University of Modena and Reggio Emilia 7

Chapter 3

HOT Networks

A mechanism to generate power-law distributions, which is inspired by how bio-
logical organisms are organized and how systems with a high degree of engineering
are structured is Highly/Heuristically Optimized/Organized Tolerance/Tradeoffs
(HOT). The focus falls on systems that are optimized through natural selection
or construction, to provide a solid performance despite a stochastic environment.
The power-law distribution in these systems arises because of tradeoffs between
yield, cost of resources and risk tolerance. These tradeoffs lead to highly opti-
mized design, which evolve in a way that rewards strategies subject to specific
forms of external stimuli, but occasionally allow “large” events (i.e., with a low
probability to happen, but with relevant effects). This is in contrast with SOC
(Self Organized Criticality) and EOC (Edge Of Chaos), where external forces are
used only to start the events, but the mechanism that causes the complexity is
essentially independent; while in SF networks it is called “emerging complexity”,
HOT networks have “organized complexity”.

3.1 Characteristics of HOT Systems

HOT is an attempt to use simple models to capture the essence of the role of design
and/or evolution in the creation of highly structured configurations exhibiting
power laws, self-dissimilarity, scale-richness, etc.
Highly/Heuristically Optimized/Organized alludes to the fact that the objective
is reached with a configuration highly structured, non-generic and “rare”, which
provides high performance, even if it is not the mathematically optimal solution,
but only a good approximation.
Tolerance/Tradeoffs emphasizes that the robustness in complex systems, that is
the ability to maintain some of the features you want in spite of the uncertainties in
the behavior of the components and of the environment, is a quantity limited and

8

CHAPTER 3. HOT NETWORKS

constrained, which must be properly managed. Many of the important properties
to which a system aspires can be viewed as a specific type of robustness. Reliability
includes robustness to component failure. Efficiency is strength to the shortage of
resources. Scalability is robustness to change in size and complexity of the system
as a whole. Modularity is strength to components reorganization. Evolvability is
robustness of lineages to changes over long time scales.

The connection between advanced technologies and biology is not accidental,
since the complexity of engineering systems is approaching that of biological sys-
tems. Most of engineering and biological systems are not designed in accordance
with a global optimization, but evolve through the exploration of local variations
with occasional structural changes. The biological evolution makes use of a geno-
type, which can be distinguished, at least theoretically, from the phenotype. In
engineering this distinction is cleaner, because the design specifications exist com-
pletely independently from the physical instance. In both cases, genotype can
evolve due to some form of “natural selection” on the yield.
To understand the highly organized systems it is useful to note that the structure
is a consequence of specific constraints on their functionality and/or on their be-
havior and this is largely independent from the process by which the organization
grows. The organization constraints are:

• component level, in terms of what they can do and their uncertainty (e.g.
level of reliability)

• system level, there are constraints on the system as a whole that are not a
consequence of those on the components, including functional requirements
(i.e., what the system should do), the environment and the operational re-
quirements (e.g. conditions in which the system must operate) and robust-
ness to certain perturbations from outside or inside the system

• protocol level, typically in the form of rules for the configuration and/or the
interaction of the components in the system

• “emerging” constraints, resulting from interactions between non-trivial con-
straints at system level and components level. The emergence is also associ-
ated with unintended consequences, both positive and negative (e.g. fragility
to specific perturbations)

The organization can be viewed as a specialized structure that allows the system
to satisfy all constraints. The structure of HOT complex systems is: highly mod-
ular, often consisting of cheap and imperfect components, it has late binding to
functionalities that allows evolution of diverse skills and behaviors, it can quickly
and adaptively change through the use of distributed control and feedback.

University of Modena and Reggio Emilia 9

CHAPTER 3. HOT NETWORKS

Most of engineered systems starts with certain design choices, each one having its
compromises, which led HOT systems have certain characteristics:

• high efficiency, performance and resilience to perturbations considered in the
design

• hypersensitivity to design flaws and unexpected perturbations

• structured and specialized configuration

• power-law distribution

These features are a result of optimization of the design goals under uncertainty
and constraints. The self-similar structures (e.g. SF networks) rarely fulfill the
objectives of specialized design, with the exception of distribution networks, which
are inherently tree-like and often fractals, while the subsystems’s hierarchies in
complex systems of engineering and biology have a self-dissimilar structure.

3.2 Internet: a Model of HOT Network

Presents a network “toy” model, reflecting the HOT approach in shaping the
router level of Internet, in contrast with the corresponding SF, because it does not
require assumptions, implicit or explicit, derived directly from sets and random
processes . The compromises on the Internet can be explained without insisting
on a underlying statistical model; sources of randomness are naturally included
where uncertainty needs to be managed and taken into account (e.g. location of
the users). It is important to note that this model does not claim to be realistic,
but exemplifies the principles by which a net having a robust and performant
design, which depend on objectives and constraints, can be generated.

3.2.1 Is Internet HOT?

An important feature of the highly organized complexity, although largely hidden,
of Internet is to make the system as a whole robust to perturbations for which is
designed [18], but also potentially vulnerable to other perturbations [19]. All com-
ponents must be bound by protocols, but because of an extensive feedback control,
the system can tolerate a huge variability, while respecting the constraints, and
still provide a robust and reliable functionality to the applications, which are the
components at most high level and therefore less constrained. Since the lack of a
component is allowed, the system must be robust by design to faults or attacks
that cause the removal of it. However, this robustness and adaptivity coexists with
an equally high fragility to attacks targeting mechanisms that provide services to

University of Modena and Reggio Emilia 10

CHAPTER 3. HOT NETWORKS

the higher levels of the stack [20]. The understanding of the robustness of Inter-
net requires a perspective that incorporates protocols, layering and adjustment
of feedback, this view suggests that the most essential RYF characteristics arises
from aspects that are only indirectly connected with the connectivity of the graph.
So it can be said that the RYF nature of the Internet is the result of its highly
developed and organized structure, that is HOT.

3.2.2 Constraints and Functional Objectives

A HOT model of Internet router topology require two general elements: constraints
and functional objectives.
First, the technological and economic constraints on components such as routers
and links and their interconnections restrict what topologies are feasible or possi-
ble. Economically speaking the cost of installation and operability of links increases
with the length of the connection and can be the dominant component of the total
budget, especially in the backbone. On the one hand routers impose constraints on
bandwidth, on the other the cost of the links places strong incentives to minimize
the number and length of the connections.
Secondly, the backbones and the connectivity of the routers are subsystems in
the decentralized and layered infrastructure of Internet. The consequence is that
these subsystems can be truly understood only in the light of functionality that
they provide to higher levels of the protocol stack and the rest of the network.

The basic idea is that economic considerations and technological factors con-
strain network topology of the ISP. While SF models are universal in the sense of
“general”, HOT models are universal in the sense that they make a topology in
terms of robustness and optimization, but with goals and constraints of a specific
application domain.

3.2.3 A Generative Model

It has been observed [21] that the degrees of the graph of Internet (both of the
routers that of Autonomous Systems) obey to power-law. This observation has
led to a review of how to generate Internet graph model [22].

In HOT models, power laws are the result of a optimized and reliable design
in the presence of constraints and uncertainty. A possible model for Internet
growth, as proposed by Fabrikant [2], is to optimize two objectives simultaneously:
“last mile” connection cost, defined as the Euclidean distance between two nodes
that must be connected and transmission cost, measured in number of routers
that packets must traverse (hops), that is, nodes try to connect “centrally” in
the network, to minimize transmission delays. This simple and primitive model
generates a sequence of node degrees that follows a law power-law.

University of Modena and Reggio Emilia 11

CHAPTER 3. HOT NETWORKS

The model constructs a simple connected acyclic graph (i.e., a tree) starting
from a node (root), which is the core of the network, while the other nodes arrive
uniformly distributed in space; node i attaches itself to the node j that minimizes
the weighted sum of the two objectives:

minj<i αdij + hj (3.1)

where dij is the normalized Euclidean distance and hj is some measure of the“centrality”
of node j with the following meaning:

(a) the average number of hops from other nodes

(b) the maximum number of hops from another node

(c) the number of hops from a fixed center of the tree

α is a parameter, that can be seen as a function of the final number of nodes n,
which measures the relative importance of the two objectives. The behavior of the
model depends crucially on the value of α (theorem 1 [2]):

- if α < c, where c is a constant that depends on the shape of the region, then
Euclidean distances are not important, and the resulting network is easily
seen to be a star, the ultimate in degree concentration, and, depending on
how you look at it, the exact opposite, or absurd extreme, of a power law

- if α ≥
√
n, where n is the final number of points, then Euclidean distance

becomes too important, and the resulting graph is a dynamic version of the
Euclidean minimum spanning tree, in which high degrees do occur, but with
exponentially vanishing probability

- if c < α <
√
n then, almost certainly, the degrees obey a power law

It should be noted that this network model exhibits a behavior of the form “the
rich get richer” typical of SF models: the nodes that come first have easily a high
degree and a low cost in terms of hops and thus are more eligible to be choosen
by nodes that come after. However this is not the result of a primitive assumption
(and therefore difficult to defend), but rather a consequence of local optimization
to meet certain constraints. It is possible to extend the model to more general
graphs, attacking the new nodes to some of the most beneficial nodes, where
the number of new edges is appropriately distributed to produce graphs with the
correct average degree > 1. This results in a particularly interesting model, since
satisfies a number of properties of the Internet as well as the degrees distribution
of vertices [23].

University of Modena and Reggio Emilia 12

CHAPTER 3. HOT NETWORKS

3.3 S Metric

For a graph g having degree sequence D = {d1, d2, . . . , dn} it is possible to define
the purely graph-theoretic quantity ([5], capitolo 4):

s(g) =
∑

(i,j)∈E(g)

didj (3.2)

where E(g) is the set of edges in the graph. It is easy to check that high s(g)
requires high-degree vertices to connect to other high-degree vertices.
Normalizing against smax = max{s(g) : g ∈ G(D)}, where G(D) denotes the set
of all simple connected graphs having degree sequence D, it can be defined the
measure 0 ≤ S(g) ≤ 1 of the graph g as:

S(g) = s(g)/smax (3.3)

The graph smax has by definition S(g) = 1.0. It can be thought of both as the
most likely graph and also (uniquely) as the most “perfectly” scale-free graph with
degree sequence D. Although s(g) and S(g) can be computed for any graph and do
not depend on any particular construction mechanism, they have a special meaning
in the context of ensembles of graphs. Specifically, S(g) has a direct interpretation
as the relative log-likelihood of a graph resulting from the GRG construction [24]
and thus all of the SF model generation mechanisms generate essentially only
high S graphs. The S-metric also potentially unifies other aspects of SF graphs,
as it is closely related to betweeness, degree correlation, and graph assortativity,
and captures several notions of self-similarity related to graph trimming, coarse-
graining, and random rewiring [5]. The focus on ensemble-based methods means
that the analysis in SF models has implicitly ignored those graphs that are unlikely
to result from such constructions, in particular graphs with small S. Of course the
enormity of the number of different high S graphs means that any particular one
graph, even the relatively most likely, is unlikely in absolute terms to be selected.

If the toy HOT network is considered (section 3.2.3), the expected result is
a high value of S, since it exhibits SF behavior. While s(g) calculation is quite
simple, that it is not true for S which require a complex algorithm ([5], Appendix
A). However, considering the type of graph (a tree) of this HOT model, it can be
greatly simplified. Intuitively, consider a degrees sequence D = {d1, d2, . . . , dn}
that can be assumed ordered d1 ≥ d2 ≥ . . . ≥ dn, where d1 is root degree; then
the first d1 degrees are first level children, for every second level children there
will be di third level children, etc. This procedure leads to a tree in which the
degree is maximum in the proximity of the root and descending to the leaves,
which generates a graph as much as possible concentrate where high grades are
more connected to others high degrees so then the value of s(g) is maximized ([5],
Appendix A.3).

University of Modena and Reggio Emilia 13

Chapter 4

Implementation

The implementation of the HOT network model in NetLogo (version 5.0.2) uses
the set-oriented approach to agents of the tool and some mathematical proper-
ties to simplify the algorithms necessary for the generation of the network and
computation of the S-metric.

4.1 Generative Algorithm

As pointed out in section 3.2.3 the algorithm try to minimize the cost of two
objectives: the Euclidean distance and the number of hops from a central node,
which is the root of the tree. Due to the particular structure of the network, if
we assume for hj calculation (c), it is sufficient to consider the level at which a
new node is placed in the tree to find the number of hops from the root; it is then
defined the turtles variable nhop, without resort to algorithms for the calculation
of the minimum path, needed in more general graphs.

The algorithm starts with the creation of two nodes (4.1): the first, that is the
root, has nhop = 0, while the second is placed in a random position within the
space, then the two nodes are connected. The second node has nhop = 1 and is
therefore the first child, but you can think about starting a network that consists
of several nodes at level 0, without substantially modifying the behavior of the
model.

Listing 4.1: Root with nhop = 0 and a randomly placed node

1 crt 1
[

set color green
4 set nhop 0

]
crt 1

7 [

14

CHAPTER 4. IMPLEMENTATION

setxy random−xcor random−ycor
set color red

10 create−link−with turtle 0 [set color green]
set nhop 1

]

The next step is repetition of the iterative process of generating new nodes (4.2),
which is to produce two random coordinates, and then check which node satisfies
the requirements of 3.1; this node is then connected with a child having number
of hops incremented by 1 respect to its. The calculation of the Euclidean distance
is normalized, since Fabrikant in [2] refers to the Euclidean distance in the unit
square so it is necessary that x, y ∈ [0, 1]. Coordinates normalization is done
through a technique called Min-Max Normalization, which transform a value x in
xnorm so that xnorm ∈ [a, b]:

xnorm =
x− xmin

xmax − xmin
(b− a) + a

Given two points A ≡ (x0, y0) and B ≡ (x1, y1), replacing in the Euclidean distance√
(x1 − x0)2 + (y1 − y0)2 normalized coordinates for interval [0, 1] led to:

√(
x1 − xmin
xmax − xmin

− x0 − xmin
xmax − xmin

)2

+
(
y1 − ymin
ymax − ymin

− y0 − ymin
ymax − ymin

)2

Finally, simplifying fractions with a common denominator:√(
x1 − x0

xmax − xmin

)2

+
(

y1 − y0
ymax − ymin

)2

In this case (x1, y1) are the randomly generated coordinates, while (x0, y0) are
coordinates of the node from which you want to measure the distance. The weight
alpha is implemented by using a global variable associated with a slider in the user
interface of the simulation in order to allow a direct control over its value; given the
constraints of the model its value is bounded in the interval [4.100], enough to cover
graphs of more than 10,000 nodes. To make the model independent from the size
of the space (i.e., the number of patches) the model uses variables max/min-pxcor
and max/min-pycor.

Listing 4.2: New nodes must satisfy HOT objectives

to go
ask links [set color gray]

3

l et x random−xcor
let y random−ycor

University of Modena and Reggio Emilia 15

CHAPTER 4. IMPLEMENTATION

6 l et partner nobody

set partner min−one−of turtles
9 [

a l f a ∗
sqrt

12 (
((x − xcor) / (max−pxcor − min−pxcor)) ˆ 2 +
((y − ycor) / (max−pycor − min−pycor)) ˆ 2

15)
+ nhop

]
18 crt 1

[
setxy x y

21 set color red
i f partner != nobody
[

24 create−link−with partner [set color green]
set nhop 1 + [nhop] of partner

]
27]

tick
30 end

4.2 S-metric Computation

The Reporter relative-log-likelihood is a procedure which returns S(g) =
s/smax for each tick of the simulation, that is, the value of S is recalculated each
time a node is added.
Computation of S(g) happens in two steps:

1. calculation of s (4.3): it is requested to the set of links to calculate the
quantity didj, that is the weight in 3.2 and then sum it to s. This means
that each link must read the degree of its vertices and then calculate the
required amount to sum to the variable s; when every link has done it, s will
contain the value of s

2. calculation of smax (4.4): it calculates the degree sequence D of nodes of the
graph and sort it in descending order; then it proceed by iterating through
the list just created. For each step didj is summed to smax, where di is
“father” node and ? is the child node (current item in the list). Since every
father has di − 1 children (root excluded which has exactly d1 children), di

University of Modena and Reggio Emilia 16

CHAPTER 4. IMPLEMENTATION

is updated after di − 1 iteration with his son having the highest degree and
that can accept at least another children, that is, di+1. Degrees ordering
guarantees (Rearrangement Inequality [25]) maximization of the sum smax

and so at the end it will have the value smax

It must be emphasized that this process is valid only if the degree sequence D
satisfies (in this case by construction) the relation:∑

i

di = 2(n− 1)

where n is the number of nodes in the graph. Then all simple connected graphs
having degree sequence D correspond to trees so this procedure ensures that you
get the graph smax.

Listing 4.3: Algorithm to calculate s(g)

l et s 0
ask links

3 [
set s s + [count link−neighbors] of end1 ∗

[count link−neighbors] of end2
6]

report s

Listing 4.4: Algorithm to calculate smax for tree graphs

to−report r e l a t i v e−log−l i k e l i h o o d
2 l et smax 0

l et counter 0
l et di 0

5 l et ch i l d 0

l et degree−sequence sort−by > [count link−neighbors] of turtles
8 set di item 0 degree−sequence

set degree−sequence remove−item 0 degree−sequence
foreach degree−sequence

11 [
set smax smax + di ∗ ?
set counter counter + 1

14 i f di = counter
[

set counter 1
17 set di item ch i l d degree−sequence

set ch i l d ch i l d + 1
]

20]
report log−l i k e l i h o o d / smax

end

University of Modena and Reggio Emilia 17

Chapter 5

Test and Results

This chapter shows results obtained from a series of simulations performed with the
model created. First part consist in the analysis of the properties and topology
of HOT networks, while varying of the parameter α and then comparing them
with the SF network model based on Preferential Attachment (PA). Second part
presents a possible extension of the model.

5.1 HOT vs Preferential Attachment

Fabrikant’s model does not differ substantially from that Preferential Attachment
as regards the properties of the network, in fact, the central node turns out to be,
in almost all cases, the highest degree node and the nodes attached to it appear
to be those immediately successive in the degrees sequence. Moreover, scale-free
appearance is evident and perhaps even more pronounced than in networks gen-
erated by PA (fig. 5.1). In both cases, models have a power-law distribution, but
that of the HOT model is “sharper” which is a sign of the fact that the num-
ber of hubs is smaller; the distribution tends to round up when α grows, as this
parameter controls the “concentration” of the network. HOT model exhibits an
evident exponential cutoff when α approaches the value

√
n, sign that the tree

tends to take on the features of Euclidean minimum spanning tree. Finally it can
be seen as the slope of the “straight” on log − log diagrams is less than that of
Barabási model, which predict an exponent γ = 3 (fig. 5.2, 5.3, 5.4, 5.5). From
these early observations it is plausible to expect very high values of S, even in
comparison to Barabási’s model. However, while the calculation of smax for HOT
network is possible, Preferential Attachment involve the use of the full algorithm,
hardly implementable in NetLogo, so the solution is to compare s. Note that s is
directly comparable if and only if the graphs have the same degrees sequence D.
An alternative approach is to generate a large number of configurations, and then

18

CHAPTER 5. TEST AND RESULTS

analyze in what range varies s(g).
Results generated by 1000 configurations of 3000 nodes each (Table 5.1) sug-

gest some interesting observations. The PA Model generates graphs with a value
of s(g) on the “average”, but with a discrete variability, in fact the range of values
covered by s is quite large and the standard deviation is therefore high compared
to the mean value (Fig. 5.8), this indicates that in the process of preferential
attachment they are possible, though unlikely, highly concentrated or distributed
configurations, due to its stochastic nature.

PA HOT α = 4 HOT α = 20 HOT α = 50
AVERAGE 133491 2280752 185789 71596
STDEV 28940 67210 7997 2001
MIN 78697 2043928 158312 63704
MAX 317173 2492921 207439 78604

Table 5.1: Preferential Attachment (PA) vs. HOT: statistical characterization of
s(g) on varying of α.

The behavior of HOT model is instead strongly influenced by the value of α with
regard to the order of magnitude of s(g). For little values, you get a graph very
concentrated where the root node is significantly “larger” (i.e., with more links) of
the others (Fig. 5.6). Furthermore, s is found to have a limited dispersion, then
the model has a low variability, that tends to generate similar values of s or, seen
from another perspective, we can say that by construction, due to the constraints
to which the model must undergo, it generates a value of s in a narrow range. In
particular, for α = 4 the model generates a graph with s ≈ smax, in agreement with
what have been shown by Fabrikant. With the increase of α the network tends to
become much more “distributed” (Fig. 5.7), so much to lose almost hubs, while
the value of s decreases one or two orders in magnitude (Fig. 5.9). However, the
range of values of s(g) remains small, in fact the relationship between the mean
value and standard deviation is nearly constant, according to the expectations,
since constraints were not changed, but just their relative weight.
What have been shown for s is reflected in the value assumed by S(g) (Table 5.2).
For α = 4 the model gets to generate a configuration having s = smax, again in
agreement with what was said by Fabrikant, and always maintains very high values
of the metric S. In the case of α = 20 or α = 50 it seems to saturate at an average
value of S ' 0, 815 with upper bound Smax ' 0.90 and lower bound Smin ' 0.70,
regardless of the value of α. Although it is not really clear why, it is logical to
assume that the model itself, tied to a tree topology, is responsible for the fact
that s can not fall below a certain value, to put it another way, links between the
nodes of the graph are bound to form a tree and then even nodes degrees.

University of Modena and Reggio Emilia 19

CHAPTER 5. TEST AND RESULTS

S = s/smax α = 4 α = 20 α = 50
AVERAGE 0.987554152 0.8122539989 0.8170608161
STDEV 0.009035764 0.0241575629 0.0130547917
MIN 0.945879733 0.7217450373 0.7780226344
MAX 1.0 0.8943435835 0.8574272853

Table 5.2: Relative Log Likelihood on varying of α.

If we compare these values of S with those obtained by Doyle in [4], we note
that the HOT model presented here, as indeed expected, is part of the SF models
for “performance” according to the metric P (g), which consists in the maximum
throughput of the network under a “gravity model” for the end user traffic de-
mand. In this sense, this model does not realistically represent Internet, where the
performance is rather a crucial aspect. The dissimilarities with Doyle’s model do
not stop here:

• in Fabrikant’s model all nodes are peers, while Internet exhibits layers and
hierarchies both from the point of view of connectivity and from the nodes
themselves

• a node can have an arbitrary number of links, while in Internet since the
cost of maintaining links increases with their number, as you move up in the
hierarchy you employ technology to aggregate traffic on the same physical
link (e.g. Wavelength Division Multiplexing)

• hub nodes are in the center of the network, while in Doyle’s model at the
outskirts

• resulting network is scale-free instead of scale-rich

You can not assume, however, that it is a wrong model, since all of these features
may possibly be achieved by adding additional constraints and properties that
consider technological aspects of telecommunications networks. It can be said
that the Fabrikant’s model, in its simplicity and generality, offers a universal tool
for HOT modeling.

5.2 Towards a Structural-Generative Model

The structuralist approach of Doyle’s model has the limitation of being bound to
the topology choice for that application field and requires specific adaptations; also
assumptions are made, such as the choice of a core of only four nodes connected
by a fully connected mesh, that they are hardly justifiable within a more extensive

University of Modena and Reggio Emilia 20

CHAPTER 5. TEST AND RESULTS

growth of the core of the network, so it can’t be considered actually a general
model. Another limitation is the inability to generate power-law distribution by
itself, but it is based on building from a given degree sequence D. This makes the
model completely unable to give prediction indeed it is limited to a mere post-hoc
analysis, so it is useless to solve a problem of heuristically optimal topology outside
of its scope.

In an attempt to create a more realistic generative model it is possible to
emulate part of the topology shown by Doyle changing the setup method (5.1) in
order to create an arbitrary number of initial nodes, placed in a random position
in the space and each one connected to two other nodes. The result is a network
with the same power-law in node connectivity (fig. 5.10), but calculation of S(g) is
no longer valid. If you try to see how varied the value of s in the set of 1000 graphs
of 3000 nodes each with α = 20, we find that s ' 200000, therefore comparable to
the original model, since the core nodes are those with highest degree; however,
we expect more resilience to attacks and failures due to redundant links, then adds
one of the features of Doyle’s HOT model.

Listing 5.1: Create some interconnected nodes with nhop = 0

to setup
2 clear−a l l

set−default−shape turtles ” c i r c l e ”

5 repeat 10
[

crt 1
8 [

setxy random−xcor random−ycor
set nhop 0

11]
]
ask turtles [create−links−with other n−of 2 turtles]

14

reset−ticks
end

This result leads to a further observation: in Doyle’s HOT network “core” nodes
are basically disconnected from “user” nodes, thanks to the interposition of “edge”
nodes (e.g. Border Router). You can then create a network whose initial nodes
are “core” with nhop = 0, as showed before, and some “edge” nodes with nhop =

1, randomly placed in the space and each one connected to a core node; new nodes
will be connected only to nodes having nhop ≥ 1 (5.2). Again resulting network
is power-law (fig. 5.11) but this time it has s ' 140000 which is quite less than the
one of basic model. Another feature that this model gain is self-dissimilarity or
scale-richness, because characteristics of connectivity between core and edge/user

University of Modena and Reggio Emilia 21

CHAPTER 5. TEST AND RESULTS

nodes is different so network appearance is not independent from the scale of ob-
servation. Note that the assumptions made about the connectivity and the number
of core and edge nodes are completely arbitrary and devoid of theoretical foun-
dations, despite this, the model accomplishes desired goals, indicating a certain
generality and flexibility of this structure. It is therefore clear that in order to fully
exploit the predictive potential of this generative model, it is necessary to iden-
tify the relationships between these quantities and demonstrate rigorously as they
lead to a power-law distribution and minimize the Relative Log Likelihood. In the
absence of such results, the only statement that can be said is that HOT networks
characteristics are exhibited entirety only from hierarchical networks with at least
three distinct decoupled levels, because they provide the opportunity to create
scale-rich networks.

Listing 5.2: Creation of “core” and “edge” nodes

to setup
2 clear−a l l

set−default−shape turtles ” c i r c l e ”
repeat 10

5 [
crt 1
[

8 setxy random−xcor random−ycor
set color green
set nhop 0

11]
]
ask turtles [create−links−with other n−of 2 turtles]

14 repeat 30
[

crt 1
17 [

setxy random−xcor random−ycor
set color red

20 create−links−with other n−of 1 turtles with [nhop = 0] [set
color green]

set nhop 1
]

23]
reset−ticks

end

University of Modena and Reggio Emilia 22

CHAPTER 5. TEST AND RESULTS

Figure 5.1: Graph with n = 1000: HOT (α = 4) vs PA.

University of Modena and Reggio Emilia 23

CHAPTER 5. TEST AND RESULTS

Figure 5.2: Degrees Distribution of PA graph with n = 25000.

Figure 5.3: Degrees Distribution of HOT graph with n = 25000 and α = 20.

Figure 5.4: Degrees Distribution of HOT graph with n = 25000 and α = 50.

Figure 5.5: Degrees Distribution of HOT graph with n = 25000 and α = 100.

University of Modena and Reggio Emilia 24

CHAPTER 5. TEST AND RESULTS

Figure 5.6: HOT Graph with n = 1000 α = 4. The nodes in purple have more
than 16 links.

University of Modena and Reggio Emilia 25

CHAPTER 5. TEST AND RESULTS

Figure 5.7: HOT Graph with n = 1000 and α = 20 (left) or α = 50 (right). The
nodes in purple have more than 16 links.

University of Modena and Reggio Emilia 26

CHAPTER 5. TEST AND RESULTS

Figure 5.8: Distribution of s(g) values in PA.

Figure 5.9: Distribution of s(g) values in HOT, α = 4, 20, 50.

University of Modena and Reggio Emilia 27

CHAPTER 5. TEST AND RESULTS

Figure 5.10: HOT Graph with n = 1500, α = 20, 10 nodes with nhop = 0.

University of Modena and Reggio Emilia 28

CHAPTER 5. TEST AND RESULTS

Figure 5.11: HOT Graph with n = 1500, α = 20, 10 “core” nodes and 30 “edge”
nodes. Core nodes are shown in green.

University of Modena and Reggio Emilia 29

Chapter 6

Conclusions and Open Issues

This chapter present the main and the most important results achieved by the
project carried out, comparing them with the initial expectations and offering
observations and considerations in this regard. In addition, future developments
of the project.

6.1 Results

In conclusion it can be stated that the implemented system represents in satisfac-
tory manner the HOT networks, as it is able to illustrate the principles behind
them and produce the expected results in a totally general manner. It has been
observed that the power-law distribution emerges from compromises between per-
formance and constraints that need to be optimized simultaneously; the model
also exhibits, such as the preferential-attachment of Barabási, a scale-free struc-
ture and a behavior such as “the rich get richer”, yet this is not due to a primitive
assumption, but the results of the local optimization. It is also noted that com-
pared to the model of Doyle has the advantage of having a predictive power and
appears to be universal, but at the cost of being limited and unrealistic since it
can only represent some of the characteristics of HOT networks. In testing some
of the limitations of the model have been addressed and has been proposed a pos-
sible evolution that combines the advantages of generative models with those of
structured models, making it potentially more effective and powerful than both,
because it is able to satisfy a greater number of properties of the Internet graph,
beyond the simple power-law distribution, while maintaining the prediction ability.

30

CHAPTER 6. CONCLUSIONS AND OPEN ISSUES

6.2 Open Issues and Future Development

At present the implementation, although fully functional, it is not applicable to
general graphs, but it is bounded to trees. Moreover no distinction between core,
edge and user nodes is done, that is, it does not represent the HOT hierarchy of
sub-networks. In line with the proposed extension it is possible to highlight some
future developments:

• study of the relationships between core, edge and user nodes to allow the
implementation of an algorithm, formally valid, in the structural-generative
model

• implementation of S(g) computation for general graphs

• implementation of the calculation of other quantities characterizing the prop-
erties of the graph

The realization of the first point, that it is also the most important, could po-
tentially be disruptive, because the hierarchical structures and the aggregation of
flows by levels are present in a large number of cases of real life, think of as Inter-
net, the corporate structure and social networks, as well as the food pyramid or
the cellular structure and anatomy of the organs of living beings.

University of Modena and Reggio Emilia 31

Appendix A

Run Simulations

To run a simulation simply click on setup and then go. The switch for the graphics
and check to update the model view can be turned off to speed up the simula-
tion. In order to perform more simulations consecutively and save the results to
a csv file you can select BehaviourSpace from tools menu where you can access a
preconfigured experiment.

Figure A.1: It is possible to run simulations through a simple interface.

32

Bibliography

[1] A.-L. Barabàsi and R. Albert, Emergence of scaling in random networks,
Science 286, 509-512 (1999).

[2] Alex Fabrikant, Elias Koutsoupias, and Christos H. Papadimitriou, Heuristi-
cally Optimized Trade-offs: A New Paradigm for Power Laws in the Internet,
Proceedings of ICALP 2002.

[3] J. M. Carlson and J. C. Doyle, Highly Optimized Tolerance: a mechanism for
power laws in designed systems, Physics Review E 1999.

[4] J.C. Doyle, D. Alderson, L. Li, S. Low, M. Roughan, S. Shalunov, R. Tanaka,
and W. Willinger, The Robust Yet Fragile Nature of the Internet, Proc. Natl.
Acad. Sci. USA 102(41). 2005.

[5] L. Li, D. Alderson, J.C. Doyle, and W. Willinger, Towards a Theory of Scale-
Free Graphs: Definition, Properties, and Implications, Internet Math (2005).

[6] NetLogo: a multi-agent programmable modeling environment;
http://ccl.northwestern.edu/netlogo/.

[7] V. Pareto, Cours dEconomie Politique, Dronz, Geneva Switzerland, 1896.

[8] G. Zipf, Human behavior and the principle of least effort, Addison-Wesley,
Cambridge MA, 1949.

[9] X. Gabaix, Zipfs law for cities: an explanation, Quarterly Journal of Eco-
nomics, 114:739767, 1999.

[10] B. Mandlebrot, An informational theory of the statistical structure of lan-
guages, in W. Jackson, editor, Communication theory, pages 486502. Better-
worth, 1953.

[11] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, Extracting large
scale knowledge bases from the Web, in Proceedings of the 25th VLDB Con-
ference, 1999.

33

http://ccl.northwestern.edu/netlogo/

BIBLIOGRAPHY

[12] Mandelbrot, B.B., Fractals and Scaling in Finance, Springer-Verlag, New
York, 1997.

[13] M. Mitzenmacher, A Brief History of Generative Models for Power Law and
Lognormal Distributions, Internet Mathematics, vol 1, No. 2, pp. 226-251,
2004.

[14] NetLogo Model Library:
http://ccl.northwestern.edu/netlogo/models/index.cgi.

[15] NetLogo Community’s Models:
http://ccl.northwestern.edu/netlogo/models/community/index.cgi.

[16] NetLogo Programming Guide:
http://ccl.northwestern.edu/netlogo/docs/programming.html.

[17] NetLogo Dictionary:
http://ccl.northwestern.edu/netlogo/docs/dictionary.html.

[18] Clark, D.D., Proc. ACM SIGCOMM88, in ACM Comp. Comm. Rev., 18(4):
106114.

[19] W. Willinger, J.C. Doyle, Robustness and the Internet: Design and Evolution,
in “Robust design: A Repertoire of Biological, Ecological, and Engineering
Case Studies”, E. Jen, Editor, Oxford University Press, 2004

[20] D. Bank, R. Richmond, Where the dangers are, The Wall Street Journal, July
18, 2005; page R1.

[21] C. Faloutsos, M. Faloutsos, P. Faloutsos, On power-law relationships of the
internet topology, in Proc. SIGCOMM, 1999.

[22] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, W. Willinger, Net-
work topologies, power laws, and hierarchy, Technical Report 01-746, Com-
puter Science Department, University of Southern Calofornia, 2001.

[23] Hongsuda Tangmunarunkit, Ramesh Govindan, Sugih Jamin, Scott Shenker,
Walter Willinger, Network Topology Generators: Degree-Based vs Structural,
Sigcomm, 2002

[24] F. Chung, L. Lu, Internet Math., 91113, (2003).

[25] K.Wu and A. Liu, The Rearrangement Inequality :
https://umdrive.memphis.edu/ccrousse/public/PUTNAM/Rear.pdf.

University of Modena and Reggio Emilia 34

http://ccl.northwestern.edu/netlogo/models/index.cgi
http://ccl.northwestern.edu/netlogo/models/community/index.cgi
http://ccl.northwestern.edu/netlogo/docs/programming.html
http://ccl.northwestern.edu/netlogo/docs/dictionary.html
https://umdrive.memphis.edu/ccrousse/public/PUTNAM/Rear.pdf

	List of Figures
	List of Tables
	Code Listings
	Introduction
	Scope
	Document Structure

	Groundwork
	Power Law and ``Scale Free'' Models
	NetLogo Simulation Environment

	HOT Networks
	Characteristics of HOT Systems
	Internet: a Model of HOT Network
	Is Internet HOT?
	Constraints and Functional Objectives
	A Generative Model

	S Metric

	Implementation
	Generative Algorithm
	S-metric Computation

	Test and Results
	HOT vs Preferential Attachment
	Towards a Structural-Generative Model

	Conclusions and Open Issues
	Results
	Open Issues and Future Development

	Run Simulations
	Bibliography

