
Orrery Software Pg. 1 NTF Code for CmLab V1.17

Note To File
Author: Garvin H Boyle
Date: 160505

;;---|

;; SECTION A – AUTHOR IDENTIFICATION AND CODE ABSTRACT

;;---|

;;

;; File Name: CmLab_V1.xx.nlogo

;; By Orrery Software

;; Dated: 2016-03-30

;; Author contact:

;; Garvin H Boyle

;; orrery@rogers.com

;; orrery-software.webs.com

;; As the author, I welcome questions, discussion of issues and suggestions

;; for improvements.

;;---|

;; This CmLab app is a laboratory in which students can study aspects

;; of the proposed law of conservation of money.

;;---|

;; SECTION B – INITIAL DECLARATIONS OF GLOBALS AND BREEDS

;;---|

;;

;;---|

;; This program was developed on NetLogo Version 5.0.5

;;

;;---|

;; code-determined global variables

globals

[

 ;; The version should be coded in this global variable to be included in

 ;; output files.

 gs-Version

 ;; Note: Some global variables are declared inside of switches, sliders and

 ;; choosers when the interface is constructed and are not declared here.

 ;; For the sake of clarity and completeness, they are noted here.

 ;; There are several uses of global variables:

 ;; - Toggles (switches), and choosers which enable or disable features;

 ;; - Numbers (in variables or sliders) which act as parameters;

 ;; - Numbers (in variables) which collect data.

 ;;

 ;; Those marked as 'native Boolean' have values of true or false.

 ;; Those marked as 'numeric Boolean' have values of 1 or 0.

 ;;---------------------

 ;; MODELING ENVIRONMENT

 ;;---------------------

 ;; Assumed “Model Settings” on startup

 ;; horizontal wrap: on

 ;; vertical wrap: on

 ;; location of origin: centre

 ;; patch size: 9.63 pixels

 ;;---|

 ;; Implicit global variables due to model settings – patch locations

 ;; min-pxcor -15

 ;; max-pxcor 15

 ;; min-pycor -15

 ;; max-pycor 15

 ;;----------------------------

 ;; SCENARIO SELECTION CONTROLS

 ;;----------------------------

 ;; gs-scenario ;; Chooser, string converts to a scenario number

 g-scenario-number ;; scenario no., 0 or 1; interpretation of gs-scenario

 ;; The possible scenarios.

 ge-scenario-with-prsns ;; scenario 0

 ge-scenario-with-corps ;; scenario 1

 ;; To halt a scenario at a pre-determined tick.

 ;; g-halt-at-tick ;; Has it's own input box

 ;; Initialize the Pseudo Random Number Generator (PRNG).

 ;; g-use-this-seed ;; Slider, (1 <= g-use-this-seed <= 100)

 ;;---

 ;; ECONOMIC MODEL PARAMETERS AND CONTROLS

 ;;---

 ;; SWITCHES

 ;; These can be turned on and off during operations.

 ;; They are declared in the switches, and noted here.

 ;; -btfs- stands for bank-to-prsns flows, and these control the way

 ;; that interest collected by banks can flow back into the real

 ;; economy.

 ;; gb-btpfs-bankruptcies ;; Always on, set in do-pre-tick.

 ;; gb-btpfs-daily-purchases ;; Banks buy but do not sell.

 ;; gb-btpfs-monthly-taxes ;; All C1 assets taxed and redistributed

 ;; INTEREST RATES (Sliders) [min, inc, max, val]

 ;; Sliders can be altered during operations.

 ;; g-iorr ;; Interest On Required Reserves [0 .1 100 2]

 ;; g-ioer ;; Interest On Excess Reserves [0 .1 100 1]

 ;; g-iosd ;; Interest On Savings Deposits [0 .1 100 1]

 ;; g-iobl ;; Interest On Bank Loans [0 .1 100 2]

 ;; TODO: Put g-docs into a % slider when Corps activated.

 ;; g-docs ;; Dividends on Corporate Stocks [0 .1 100 2]

 ;; OTHER SLIDERS:

 ;; The first three can be changed at any time, but are effective only

 ;; during setup.

 ;; g-no-of-banks-max ;; [1 1 20 10]

 ;; g-no-of-prsns-per-bank ;; [1 1 200 10]

 ;; g-crb-assets-per-prsn ;; currency at start [100 100 10000 1000]

 g-no-of-corps-per-bank ;; at start [1 1 20 4]

 ;; These are effective during operations.

 ;; g-net-worth-tax-rate ;; Calculate taxes [0 0.1 0.5 10]

Orrery Software Pg. 2 NTF Code for CmLab V1.17

 ;; g-reserve-requirement-ratio ;; [1 0.1 100 20]

 ;; REALLY ADVANCED CONTROLS - PANEL 04

 ;; gb-bank-insurance ;; When true, banks share loss of bankruptcy.

 ;; g-bankruptcy-factor ;; Used to determine bankruptcy.

 ;; Derived variables:

 g-no-of-banks ;; Calculated value

 ;; g-no-of-banks-max ;; A slider

 g-no-of-prsns ;; Calculated value

 g-no-of-prsns-max ;; Calculated value

 g-no-of-corps ;; Calculated value

 g-no-of-corps-max ;; Calculated value

 ;; Various internal global constants derived from g-crb-assets-per-prsn.

 g-p-daily-cost-of-living ;; Used to determine daily purchases.

 g-p-daily-L0-allocation ;; Used to determine daily cash purchases.

 g-p-daily-L1-allocation ;; Used to determine daily purchases by check.

 g-p-standard-loan ;; Used to set up loans.

 g-p-standard-loan-payment ;; Used to pay principal on loans.

 g-minimum-vault-cash ;; Used to manage reserves

 ;;-------------------------------------

 ;; END OF MODEL PARAMETERS AND CONTROLS

 ;;-------------------------------------

 ;;-------------------------------------

 ;; DATA COLLECTION AND DISPLAY CONTROLS

 ;;-------------------------------------

 ;; The following global variables are not model controls or paramaters,

 ;; but, rather, are variables used to collect data about the model

 ;; for display in the user interface, in some fashion (monitors or plots),

 ;; or used to manage all of the debug routines and output.

 ;; DATA COLLECTION

 ;; In the following I use "debts" to mean "liabilities".

 ;; Money supplies

 g-msi-ttl-assets ;; Money supply I, Physical money supply.

 g-msii-ttl-assets ;; Money supply II, Logical money supply.

 g-msiii-ttl-assets ;; Money supply III, Shadow money supply.

 g-msi-ttl-debts ;; Money supply I, Physical money supply.

 g-msii-ttl-debts ;; Money supply II, Logical money supply.

 g-msiii-ttl-debts ;; Money supply III, Shadow money supply.

 g-msi-net ;; Money supply I, Net money

 g-msii-net ;; Money supply II, Net money

 g-msiii-net ;; Money supply III, Net money

 ;; Money Categories - by money supply.

 ;; MS-I - The money base - Physical money supply.

 g-msi-prsn-P0-cash ;; cash in circulation - assets

 g-msi-corp-P0-cash ;; cash in circulation - assets

 g-msi-bank-vc ;; bank vault cash - assets

 g-msi-bank-rr-assets ;; bank required reserves - assets

 g-msi-bank-er-assets ;; bank excess reserves - assets

 g-msi-bank-rr-debts ;; bank required reserves - assets

 g-msi-bank-er-debts ;; bank excess reserves - assets

 g-msi-crb-L0-assets ;; money base logical endowment

 g-msi-crb-P0-assets ;; money base physical endowment

 g-msi-crb-L0-debts ;; money base logical endowment

 g-msi-crb-P0-debts ;; money base physical endowment

 g-msi-crb-rr ;; CRB required reserves - debts

 g-msi-crb-er ;; CRB excess reserves - debts

 ;; MS-II - The logical money supply.

 g-msii-prsn-L0-cash ;; cash in circulation, overlaps with MS-I.

 g-msii-corp-L0-cash ;; cash in circulation, overlaps with MS-I.

 g-msii-crb-C1-assets ;; private corp level debts

 ;; xx g-msii-crb-c2-assets ;; private corp level assets

 g-msii-gcra-L1-assets ;; govt checking assets

 g-msii-gcra-L1-loan-debts ;; govt loan debts

 ;; xx g-msii-gcra-L2-assets ;; govt savings assets

 ;; ss g-msii-gcra-L3-debts ;; govt bond debts

 g-msii-bank-L1-assets ;; bank checking assets

 g-msii-bank-L1-loan-assets ;; bank loan assets

 g-msii-bank-L1-debts ;; bank checking debts

 g-msii-bank-L2-assets ;; bank savings assets

 g-msii-bank-L2-debts ;; bank savings debts

 ;; ss g-msii-bank-L3-assets ;; bank bond assets

 g-msii-bank-C1-assets ;; private L1 checking assets

 ;; g-msii-bank-c2-assets ;; private L2 savings assets

 g-msii-prsn-L1-assets ;; prsn checking assets

 g-msii-prsn-L1-loan-debts ;; prsn loan debts

 g-msii-prsn-L2-assets ;; prsn savings assets

 ;; ss g-msii-prsn-L3-assets ;; prsn bond assets

 ;; ss g-msii-prsn-L4-assets ;; prsn bond assets

 g-msii-corp-L1-assets ;; corp checking assets

 g-msii-corp-L1-loan-debts ;; corp loan debts

 g-msii-corp-L2-assets ;; corp savings assets

 ;; ss g-msii-corp-L3-assets ;; corp bond assets

 ;; ss g-msii-corp-L3-debts ;; corp bond debts

 ;; ss g-msii-corp-L4-assets ;; corp bond assets

 ;; ss g-msii-corp-L4-debts ;; corp bond debts

 ;; MS-III - The shadow money supply.

 g-msiii-crb-S1-rrip-debts ;; interest payable on rr - debts

 g-msiii-crb-S1-erip-debts ;; interest payable on er - debts

 g-msiii-gcra-S1-L1ip-debts ;; govt interest payable on loan - debts

 ;; ss g-msiii-gcra-S1-L3ip-debts ;; govt interest payable on bonds - debts

 g-msiii-bank-S1-L1ir-assets ;; bank interest receivable on loans - assets

 g-msiii-bank-S1-L2ip-debts ;; bank interest payable on savings - debts

 g-msiii-bank-S1-rrir-assets ;; bank interest receivable on rr - assets

 g-msiii-bank-S1-erir-assets ;; bank interest receivable on er - assets

 g-msiii-prsn-S1-L1ip-debts ;; prsn interest payable on L1 loans - debts

 g-msiii-prsn-S1-L1tp-debts ;; prsn 30day total payables - debts

 g-msiii-prsn-S1-L1tr-assets ;; prsn 30day total receivables - assets

 g-msiii-prsn-S1-L2ir-assets ;; prsn interest receivable on savings - assets

 ;; ss g-msiii-prsn-S1-L3ir-assets ;; prsn interest receivable on bonds - assets

 ;; ss g-msiii-prsn-S1-L4dr-assets ;; prsn dividend receivable on stocks - assets

 g-msiii-corp-S1-L1tp-debts ;; corp 30day total payables - debts

 g-msiii-corp-S1-L1tr-assets ;; corp 30day total receivables - assets

 g-msiii-corp-S1-L2ir-assets ;; corp interest receivable on savings - assets

 ;; ss g-msiii-corp-S1-L3ip-assets ;; corp interest payable on bonds - debts

 ;; ss g-msiii-corp-S1-L4dp-assets ;; corp dividend payable on stocks - debts

 ;; Public funds in trust vs Private funds

 g-crb-P0-assets ;; In public trust

 g-crb-publ-assets ;; In public trust

 g-crb-priv-assets ;; Profit/Loss related

Orrery Software Pg. 3 NTF Code for CmLab V1.17

 g-crb-publ-debts ;; In public trust

 g-crb-priv-debts ;; Profit/Loss related

 g-crb-publ-net-worth ;; In public trust

 g-crb-priv-net-worth ;; Profit/Loss related

 g-gcra-P0-assets ;; In public trust

 g-gcra-publ-assets ;; In public trust

 g-gcra-priv-assets ;; Profit/Loss related

 g-gcra-publ-debts ;; In public trust

 g-gcra-priv-debts ;; Profit/Loss related

 g-gcra-publ-net-worth ;; In public trust

 g-gcra-priv-net-worth ;; Profit/Loss related

 g-bank-P0-assets ;; In public trust

 g-bank-publ-assets ;; In public trust

 g-bank-priv-assets ;; Profit/Loss related

 g-bank-publ-debts ;; In public trust

 g-bank-priv-debts ;; Profit/Loss related

 g-bank-publ-net-worth ;; In public trust

 g-bank-priv-net-worth ;; Profit/Loss related

 g-prsn-P0-assets ;; In public trust

 g-prsn-publ-assets ;; In public trust

 g-prsn-priv-assets ;; Profit/Loss related

 g-prsn-publ-debts ;; In public trust

 g-prsn-priv-debts ;; Profit/Loss related

 g-prsn-publ-net-worth ;; In public trust

 g-prsn-priv-net-worth ;; Profit/Loss related

 g-corp-P0-assets ;; In public trust

 g-corp-publ-assets ;; In public trust

 g-corp-priv-assets ;; Profit/Loss related

 g-corp-publ-debts ;; In public trust

 g-corp-priv-debts ;; Profit/Loss related

 g-corp-publ-net-worth ;; In public trust

 g-corp-priv-net-worth ;; Profit/Loss related

 ;; DATA DISPLAY - Histogram axes

 g-agents-nw-xaxis-min ;; Minimum value on prsn net worth histogram.

 g-agents-nw-xaxis-max ;; Maximum value on prsn net worth histogram.

 g-prsns-nw-xaxis-min ;; Minimum value on prsn net worth histogram.

 g-prsns-nw-xaxis-max ;; Maximum value on prsn net worth histogram.

 g-banks-nw-xaxis-min ;; Minimum value on prsn net worth histogram.

 g-banks-nw-xaxis-max ;; Maximum value on prsn net worth histogram.

 g-banks-P0-xaxis-min ;; Minimum value on P0-all-assets.

 g-banks-P0-xaxis-max ;; Maximum value on P0-all-assets.

 g-banks-P0-all-assets-min ;; Minimum value on P0-all-assets.

 g-banks-P0-all-assets-mean ;; Mean value on P0-all-assets.

 g-banks-P0-all-assets-max ;; Max value on P0-all-assets.

 ;; DATA DISPLAY - Line Graphs

 g-max-net-worth-priv-prsns ;; What it says.

 g-mean-net-worth-priv-prsns ;; What it says.

 g-min-net-worth-priv-prsns ;; What it says.

 g-max-net-worth-priv-banks ;; What it says.

 g-mean-net-worth-priv-banks ;; What it says.

 g-min-net-worth-priv-banks ;; What it says.

 ;; DATA DISPLAY - Event Counts

 g-counts-loans

 g-counts-p-deaths

 g-counts-p-births

 g-counts-b-deaths

 g-counts-b-births

 ;;---------------

 ;; DEBUG CONTROLS

 ;;---------------

 gb-debug-on ;; Numeric Boolean, opens debug log file, 0 or 1.

 gs-debug-status ;; for monitor, '1 (On)' or '0 (Off)',

 ;; gs-debug-step-chooser ;; Chooser, used with gb-debug-flow-on

 gb-debug-flow-on ;; Numeric Boolean, in association with chooser,

 gs-log-file-name ;; name of the debug log file

 ;; opens flow to log file

 ;; gb-debug-show-steps ;; Switch, Native Boolean, show in command centre

]

;;---|

;; Attributes of patches

patches-own

[

 ;; BUILT-IN ATTRIBUTES

 ;; pxcor ;; min-pxcor <= pxcor < max-pxcor

 ;; pycor ;; min-pxcor <= pxcor < max-pxcor

 ;; pcolor ;; color of this patch (0 <= color < 140)

 ;; plabel ;; label of this patch

 ;; plabel-color ;; color of this patch's label (0 <= label-color < 140)

 ;; CmLab-DETERMINED ATTRIBUTES

 ;; Nil.

]

;;---|

;; Attributes of links

;;---|

;; nil

;; I don't understand links and did not use any.

;;---|

;; THEORY: ATTRIBUTES WITH MONEY SUPPLY DESIGNATORS

;; P0, L0, L1, L2, L3, L4, S1, C1.

;; REPLACING M0, M1, M2, M3, M4.

;;---|

;; WARNING - I am NOT using the Mx designations as they are used in the

;; the real world - for two reasons.

;; 1. In the real world M4 includes M3, M3 includes M2, etc. until

;; the end where M1 includes M0. For me, each category of money

;; is independent of the other. It's easier to track. The real

;; world meaning can be recovered simply by adding the included

;; data, at your choice. So I use L0, L1, L2, ... and P0.

;; 2. No two countries seem to have the same definitions for each

;; of the categories of money, so I do not try to accurately

;; simulate or replicate that money supply structure of any one

;; country, but, rather, I abstract a simplified model that is

;; relatively close to all of them.

;;

;; In addition, I use C1 and S1 as special temporary designators.

;;

;; Which agents can hold which types of assets and debts is a bit of

;; a tricky question. I have resolved it this way.

;;

;; L0 assets - only prsns and corps can use cash. All others make payments by

Orrery Software Pg. 4 NTF Code for CmLab V1.17

;; check. L0 assets are in the wallets of prsns and corps.

;; P0-assets - this is physical part of currency, stored in wallets and vaults.

;; P0 savings accounts are the only investment option for commercial

;; banks, but are called P0-RR and P0-ER deposits, with the CRB.

;; Prsns and Corps hold P0-assets in their wallets.

;; L0-debts - don't really exist. They become L1 debts.

;; L1-assets - checking accounts are the work horse of this economy. All agents

;; have checking accounts. They accept L1 payments into their

;; L1 checking account and make L1 payments out of it. In the case

;; of the CRB or commercial banks, it is called C1-assets, to

;; distinguish those accounts held in public trust from those that

;; function as their private funds. The CRB's C1-assets are a

;; part of the GCRA L1-assets and get merged there regularly.

;; L1-loan-assets - Commercial banks are the only ones that can provide loans.

;; The loans stick with the borrower and the bank until they are paid

;; off. The loans are also the primary means for expanding the

;; MS-II money supply, using a pair of double-entry records.

;; When a loan is "signed" in two copies it creates a liability

;; for the borrower and an asset for the lender. Then the money

;; is created by entering an L1 liability for the bank, and an L1

;; asset for the borrower. The two double-entries, or four entries

;; in total, represent the loan. No net worth is altered by such

;; an event since the entries counter-balance each other.

;; Any payment that alters the networth of participants involves

;; two entries that do not counter-balance. When a payment is

;; made on a loan, it requires two double-entries (four entries)

;; that counter-balance again to record the payment. Again, no

;; change in networth of either party happens, but the MS-II money

;; supply constracts again.

;; L1-debts - For commercial banks, this is the hind end of L1-assets and

;; C1-assets. Non-bank agents (GCRA, CRB, prsns, corps) have no

;; need of these. The sum of all explicit bank L1-debts is the

;; standard money supply (MS-II).

;; L1-loan-debts - This is the second entry of the four that are required

;; to record a loan. This and the L1-loan-assets must always be

;; incremented or decremented by matching records, indicating

;; the expansion or reduction of the MS-II money supply. Chartered

;; banks do not have loan debts. Their clients do. I.e. loan

;; debts are for prsns, corps, and the GCRA.

;;

;; Other L1-type assets - all receivables are S1-type assets.

;; Other L1-type debts - all payables are S1-type debts.

;; S1-type money is convertible to L1-type money when paid.

;;

;; L2-assets - L2 savings accounts are the primary investment option for agents

;; other than banks. GCRA, prsns and corps may hold L2-assets.

;; L2-debts - only banks hold L2-debts.

;;

;; TODO: Beyond L2 nothing has been implemented.

;; In the real world M3 and M4 are more and more broad designations. In this

;; program I have changed that. L3 are bonds. L4 are stocks.

;;

;; L3-assets - these are the assets of bond buyers/holders. That might include

;; prsns and corps.

;; L3-debts - these are the debts of bond sellers. That includes

;; The GCRA, banks and corps.

;;

;; L4-assets - these are the assets of stock buyers/holders. That might include

;; prsns and corps.

;; L4-debts - these are the debts of stock sellers. That includes

;; only the corps.

;;

;; All interest on savings deposits (with CRB or banks), on bonds, on loans, or

;; all dividends, are S1-type assets and debts, convertible to

;; L1-type money when paid.

;;

;; C1-assets and C2-assets - both the CRB and chartered banks have a dual role.

;; In the "back room" role they guard the public trust by ensuring

;; that money is properly conserved at the level of client-to-client

;; transactions. In the "front room" role they are organizations

;; that charge fees for financial services. The net worth of the

;; back room must always be zero. The net worth of the front room

;; is where corporate profits and losses are recorded. The back

;; room staff may have many "clients" consisting of prsns and corps,

;; but they have one special client, which is their own front room

;; organization.

;; Each client must maintain its own checking and savings bank books

;; (in the variables L1-assets and L2-assets. The front room

;; client must also keep such records separate from back room assets,

;; which would also be in variables of the same name. So the front

;; room assets I have designated as C1-assets and C2-assets.

;;

;; S1-assets and S1-debts - those persistent debts that exist unpaid for a

;; duration longer than the moment required to create them are

;; part of the shadow money supply and are designated as S1-type.

;; In some sense, I mean the shadow money supply to be that part of

;; the money supply that is invisible to the governing monetary

;; architecture (i.e. the CRB and its chartered banks), and I still

;; think that is the best definition for a real-world system. But

;; for this model I have implemented the shadow money supply as

;; all such persistent debts, excluding only the persistent debts

;; associated with L1-loans from chartered banks. Double-entry

;; book-keeping still applies: for every S1-debt created a counter-

;; balancing S1-asset is also created.

;; TODO: when stocks and bonds are implemented as part of the activation of

;; corps, they will be in the shadow money supply, and I may change

;; the implementation to be more consistent with the "visibility"

;; criterion.

;;---|

;; Turtles and breeds

;;---|

breed [GCRAs GCRA]

breed [CRBs CRB]

breed [banks bank]

breed [prsns prsn]

breed [corps corp]

;;---|

;; Attributes of GCRAs (Government Consolidated Revenue Accounts)

GCRAs-own

[

 ;; BUILT-IN ATTRIBUTES

 ;; who ;; fixed id number

 ;; breed ;; to which breed this turtle belongs [GCRA]

 ;; heading ;; 0 <= heading < 360, 0 = north

 ;; xcor ;; min-pxcor <= xcor < max-pxcor

 ;; ycor ;; min-pxcor <= xcor < max-pxcor

 ;; size ;; size relative to a patch, default is 1

 ;; shape ;; a shape chosen from the shape library

 ;; color ;; color of this turtle (0 <= color < 140)

 ;; pen-mode ;; "up" or "down"

 ;; pen-size ;; in pixels

Orrery Software Pg. 5 NTF Code for CmLab V1.17

 ;; hidden? ;; true or false

 ;; label ;; label of this turtle

 ;; label-color ;; color of this turtle's label (0 <= label-color < 140)

 ;; USER-DETERMINED ATTRIBUTES

 ;; Associated with GCRA dynamics.

 default-colour ;; as it says

 bank-who ;; bank that holds the loan

 L1-assets ;; assets of the government

 L1-loan-debts ;; debts of the government (bank loans)

 S1-L1ip-debts ;; interest payable on L1 loan

 ;; xx L2-assets ;; savings of the government

 ;; ss L3-debts ;; debts of the government - bonds

 ;; ss S1-L3ip-debts ;; payable on bonds

 ttl-P0-assets ;; aggregate of all physical assets

 ttl-publ-assets ;; aggregate of all public assets

 ttl-publ-debts ;; aggregate of all public debts

 ttl-priv-assets ;; aggregate of all private assets

 ttl-priv-debts ;; aggregate of all private debts

 net-worth-publ ;; total public assets minus debts

 net-worth-priv ;; total private assets minus debts

 ;; Money supply aggregates

 msi-assets ;; Physical money supply

 msi-debts ;; Physical money supply

 msii-assets ;; Logical money supply

 msii-debts ;; Logical money supply

 msiii-assets ;; Shadow money supply

 msiii-debts ;; Shadow money supply

]

;;---|

;; Attributes of CRBs (Central Reserve Banks)

CRBs-own

[

 ;; BUILT-IN ATTRIBUTES

 ;; who ;; fixed id number

 ;; breed ;; to which breed this turtle belongs [CRB]

 ;; heading ;; 0 <= heading < 360, 0 = north

 ;; xcor ;; min-pxcor <= xcor < max-pxcor

 ;; ycor ;; min-pxcor <= xcor < max-pxcor

 ;; size ;; size relative to a patch, default is 1

 ;; shape ;; a shape chosen from the shape library

 ;; color ;; color of this turtle (0 <= color < 140)

 ;; pen-mode ;; "up" or "down"

 ;; pen-size ;; in pixels

 ;; hidden? ;; true or false

 ;; label ;; label of this turtle

 ;; label-color ;; color of this turtle's label (0 <= label-color < 140)

 ;; USER-DETERMINED ATTRIBUTES

 ;; Associated with CRB dynamics.

 default-colour ;; as it says

 P0-assets ;; physical assets of the CRB

 L0-assets ;; logical assets of the CRB

 P0-debts ;; physcial debts of the CRB

 L0-debts ;; logical debts of the CRB

 P0-rr-assets ;; required reserves of all banks

 P0-er-assets ;; excess reserves of all banks

 ;; Associated with corporate bank dynamics.

 bank-who ;; chartered bank that holds C1 account.

 S1-rrip-debts ;; interest payable on required reserves - debts

 S1-erip-debts ;; interest payable on excess reserves - debts

 C1-assets ;; corporate bank equivalent of L1-assets

 ;; xx c2-assets ;; corporate bank equivalent of L2-assets

 ttl-P0-assets ;; aggregate of all physical assets

 ttl-publ-assets ;; aggregate of all public assets

 ttl-publ-debts ;; aggregate of all public debts

 ttl-priv-assets ;; aggregate of all private assets

 ttl-priv-debts ;; aggregate of all private debts

 net-worth-publ ;; total public assets minus debts

 net-worth-priv ;; total private assets minus debts

 ;; Money supply aggregates

 msi-assets ;; Physical money supply

 msi-debts ;; Physical money supply

 msii-assets ;; Logical money supply

 msii-debts ;; Logical money supply

 msiii-assets ;; Shadow money supply

 msiii-debts ;; Shadow money supply

]

;;---|

;; Attributes of banks (deposit-taking banks)

banks-own

[

 ;; BUILT-IN ATTRIBUTES

 ;; who ;; fixed id number

 ;; breed ;; to which breed this turtle belongs [bank]

 ;; heading ;; 0 <= heading < 360, 0 = north

 ;; xcor ;; min-pxcor <= xcor < max-pxcor

 ;; ycor ;; min-pxcor <= xcor < max-pxcor

 ;; size ;; size relative to a patch, default is 1

 ;; shape ;; a shape chosen from the shape library

 ;; color ;; color of this turtle (0 <= color < 140)

 ;; pen-mode ;; "up" or "down"

 ;; pen-size ;; in pixels

 ;; hidden? ;; true or false

 ;; label ;; label of this turtle

 ;; label-color ;; color of this turtle's label (0 <= label-color < 140)

 ;; USER-DETERMINED ATTRIBUTES

 ;; Associated with book-keeping bank dynamics.

 default-colour ;; as it says

 b-bank-can-make-loans ;; boolean - 0 or 1

 b-bank-is-bankrupt ;; boolean - 0 or 1

 L1-assets ;; assets in checking accounts

 L1-loan-assets ;; assets associated with a loan

 L1-debts ;; debts in checking accounts

 S1-L1ir-assets ;; interest receibable on L1 loans - C1-assets

 L2-assets ;; assets in savings accounts

 L2-debts ;; debts in savings accounts

 S1-L2ip-debts ;; on savings deposits

 ;; ss L3-assets ;; assets in bonds

 ;; ss L3-debts ;; debts in bonds

Orrery Software Pg. 6 NTF Code for CmLab V1.17

 crb-who ;; central reserve bank

 P0-vc-assets ;; $c in the vault - assets

 P0-er-assets ;; excess reserves - assets

 P0-er-debts ;; excess reserves - debts

 P0-rr-assets ;; required reserves - assets

 P0-rr-debts ;; required reserves - debts

 P0-all-assets ;; An aggregate of VC, ER and RR.

 ;; Associated with corporate bank dynamics.

 no-of-prsn-clients ;; How many clients currently

 no-of-corp-clients ;; How many clients currently

 no-of-gcra-clients ;; How many clients currently

 no-of-crb-clients ;; How many clients currently

 S1-rrir-assets ;; interest on required reserves

 S1-erir-assets ;; interest on excess reserves

 C1-assets ;; corporate bank equivalent of L1-assets

 ;; c2-assets ;; corporate bank equivalent of L2-assets

 ttl-P0-assets ;; aggregate of all physical assets

 ttl-publ-assets ;; aggregate of all public assets

 ttl-publ-debts ;; aggregate of all public debts

 ttl-priv-assets ;; aggregate of all private assets

 ttl-priv-debts ;; aggregate of all private debts

 net-worth-publ ;; total public assets minus debts

 net-worth-priv ;; total private assets minus debts

 ;; Money supply aggregates

 msi-assets ;; Physical money supply

 msi-debts ;; Physical money supply

 msii-assets ;; Logical money supply

 msii-debts ;; Logical money supply

 msiii-assets ;; Shadow money supply

 msiii-debts ;; Shadow money supply

]

;;---|

;; Attributes of prsns (non-corporate economic agents)

prsns-own

[

 ;; BUILT-IN ATTRIBUTES

 ;; who ;; fixed id number

 ;; breed ;; to which breed this turtle belongs [prsn]

 ;; heading ;; 0 <= heading < 360, 0 = north

 ;; xcor ;; min-pxcor <= xcor < max-pxcor

 ;; ycor ;; min-pxcor <= xcor < max-pxcor

 ;; size ;; size relative to a patch, default is 1

 ;; shape ;; a shape chosen from the shape library

 ;; color ;; color of this turtle (0 <= color < 140)

 ;; pen-mode ;; "up" or "down"

 ;; pen-size ;; in pixels

 ;; hidden? ;; true or false

 ;; label ;; label of this turtle

 ;; label-color ;; color of this turtle's label (0 <= label-color < 140)

 ;; USER-DETERMINED ATTRIBUTES

 ;; Associated with prsn dynamics.

 default-colour ;; as it says

 b-prsn-is-bankrupt ;; boolean - 0 or 1

 L0-assets ;; assets of the prsn - logical

 P0-assets ;; assets of the prsn - physical

 bank-who ;; bank that holds the loan

 L1-assets ;; assets in checking accounts

 L1-loan-debts ;; debts associated with loans

 S1-L1ip-debts ;; payable on bank loans - debts

 payables-30day ;; debts to be paid in 30 days

 S1-30day-total-debts ;; sum of 30-day payables

 S1-30day-total-assets ;; sum of 30-day receivables

 L2-assets ;; assets in savings accounts

 S1-L2ir-assets ;; interest on savings accounts

 ;; ss L3-corpwho ;; Holds a bond with this corp

 ;; ss L3-assets ;; assets in bonds

 ;; ss S1-L3ir-assets ;; receivable on bond

 ;; ss L4-corpwho ;; Holds a stock with this corp

 ;; ss L4-assets ;; assets in stocks

 ;; ss L4-dividend-receivable ;; receivable on stocks

 ttl-P0-assets ;; aggregate of all physical assets

 ttl-publ-assets ;; aggregate of all public assets

 ttl-publ-debts ;; aggregate of all public debts

 ttl-priv-assets ;; aggregate of all private assets

 ttl-priv-debts ;; aggregate of all private debts

 net-worth-publ ;; total public assets minus debts

 net-worth-priv ;; total private assets minus debts

 ;; Money supply aggregates

 msi-assets ;; Physical money supply

 msi-debts ;; Physical money supply

 msii-assets ;; Logical money supply

 msii-debts ;; Logical money supply

 msiii-assets ;; Shadow money supply

 msiii-debts ;; Shadow money supply

]

;;---|

;; Attributes of corps (corporate economic agents)

corps-own

[

 ;; BUILT-IN ATTRIBUTES

 ;; who ;; fixed id number

 ;; breed ;; to which breed this turtle belongs [corp]

 ;; heading ;; 0 <= heading < 360, 0 = north

 ;; xcor ;; min-pxcor <= xcor < max-pxcor

 ;; ycor ;; min-pxcor <= xcor < max-pxcor

 ;; size ;; size relative to a patch, default is 1

 ;; shape ;; a shape chosen from the shape library

 ;; color ;; color of this turtle (0 <= color < 140)

 ;; pen-mode ;; "up" or "down"

 ;; pen-size ;; in pixels

 ;; hidden? ;; true or false

 ;; label ;; label of this turtle

 ;; label-color ;; color of this turtle's label (0 <= label-color < 140)

 ;; USER-DETERMINED ATTRIBUTES

 ;; Associated with corp dynamics.

 default-colour ;; as it says

 b-corp-is-bankrupt ;; boolean - 0 or 1

 L0-assets ;; assets of the corp - logical

 P0-assets ;; assets of the corp - physical

Orrery Software Pg. 7 NTF Code for CmLab V1.17

 bank-who ;; Does banking with this bank

 L1-assets ;; assets in checking accounts

 L1-loan-debts ;; debts associated with loans

 S1-L1ip-debts ;; payable on bank loans

 payables-30day ;; debts payable in 30 days

 S1-30day-total-debts ;; sum of 30 day payables

 S1-30day-total-assets ;; sum of 30 day receivables

 L2-assets ;; assets in savings accounts

 S1-L2ir-assets ;; interest on savings accounts

 ;; ss no-of-bond-clients ;; prsns owning bonds

 ;; ss L3-assets ;; assets in bonds

 ;; ss L3-debts ;; debts in bonds

 ;; ss S1-L3ip-debts ;; payable on bond

 ;; ss no-of-stock-clients ;; prsns owning stocks

 ;; ss L4-assets ;; assets in stocks

 ;; ss L4-debts ;; debts in stocks

 ;; ss S1-L4dp-debts ;; payable-on-stocks

 ttl-P0-assets ;; aggregate of all physical assets

 ttl-publ-assets ;; aggregate of all public assets

 ttl-publ-debts ;; aggregate of all public debts

 ttl-priv-assets ;; aggregate of all private assets

 ttl-priv-debts ;; aggregate of all private debts

 net-worth-publ ;; total public assets minus debts

 net-worth-priv ;; total private assets minus debts

 ;; Money supply aggregates

 msi-assets ;; Physical money supply

 msi-debts ;; Physical money supply

 msii-assets ;; Logical money supply

 msii-debts ;; Logical money supply

 msiii-assets ;; Shadow money supply

 msiii-debts ;; Shadow money supply

]

;;---|

;; SECTION C – INITIALIZATION OR SETUP PROCEDURE(S)

;;---|

;;---|

;; The 'autostart' startup routine

to startup

 ;; This routine is to be executed by the observer.

 ;; The manual describes this routine as follows:

 ;; This procedure, if it exists, will be called when a model is first loaded in

 ;; the NetLogo application. Startup does not run when a model is run headless

 ;; from the command line, or by parallel BehaviorSpace.

 ;; On loading the model, the debug feature is always off.

 set gb-debug-on 0

 set gs-debug-status "0 (Off)"

 ;; On loading the model, the choosers, switches and sliders are

 ;; always reset to the values that are known to work. Only the chooser

 ;; for the scenario is not reset. The last saved

 ;; selection of scenario is persistant. This allows the 'Reset Defaults'

 ;; button to NOT reset the scenario.

 f-reset-default-parameters

 ;; Run the setup routine to initialize other globals.

 ;; End of startup

end

;;---|

;; Reset the debug values for the interface-declared items.

to f-reset-debug-parameters

 ;; The observer executes this routine.

 ;; I only reset here the ones that differ for a debug run.c

 set g-no-of-banks-max 4

 set g-no-of-prsns-per-bank 2

 set g-reserve-requirement-ratio 40

 set g-bankruptcy-factor 1.5

 ;; Run the setup routine to initialize other globals.

 ;; End of f-reset-debug-parameters

end

;;---|

;; Reset the default values for the interface-declared items.

to f-reset-default-parameters

 ;; The observer executes this routine.

 ;; Switches, sliders and choosers implicitly declare global variables. The

 ;; values in these variables are parameters for the model, and many

 ;; combinations of those parameters are not sustainable. However, the

 ;; values in those user interface devices are stored with the model and

 ;; are persistant across a save/load action. The default values must

 ;; be reset on load, or available to a user as a parameter set. The

 ;; purpose of this routine is to store at least one viable set of

 ;; parameter values.

 ;; To be clear, variables declared in the interface should be initialized

 ;; here and not in the setup procedure. They will be reset on startup

 ;; (i.e. on load) but not on "Setup". A separate "Reset" button is on the

 ;; interface to enable the user to reset these at will. Any interface-

 ;; declared variable (as opposed to those declared in the "globals"

 ;; block) not included here will be persistent through a save/load

 ;; action.

 ;;---

 ;; CHOOSERS, SWITCHES AND SLIDERS

 ;;---

 ;; Initialize the chooser.

 set gs-scenario "Prsns Only"

 ;; Initialize the Pseudo Random Number Generator (PRNG).

 set g-use-this-seed 7

 ;; Interest sliders

 set g-iorr 2

 set g-ioer 1

 set g-iosd 1

 set g-iobl 2

 ;; set g-docs 2

 ;; Other startup and operations sliders

 set g-crb-assets-per-prsn 3000

Orrery Software Pg. 8 NTF Code for CmLab V1.17

 set g-no-of-banks-max 20

 set g-no-of-prsns-per-bank 20

 set g-no-of-corps-per-bank 1

 set g-net-worth-tax-rate 0.5

 set g-reserve-requirement-ratio 20

 set g-bankruptcy-factor 2

 ;; Switches

 set gb-plot-data true

 set gb-btpfs-bankruptcies true

 set gb-btpfs-daily-purchases false

 set gb-btpfs-monthly-taxes false

 set gb-bank-insurance true

end

;;---|

;; The setup button(s)

to setup

 ;; This routine is to be executed by the observer.

 ;; NOTE: The contents of switches, sliders, and choosers seem to be

 ;; immune to these 'clear' commands.

 clear-ticks

 clear-turtles

 clear-patches

 clear-drawing

 clear-all-plots

 clear-output

 ;; clear-globals ;; Suppressed to make gb-debug-on value persistent.

 ;; NOTE: Instead of 'clear-globals', you must ensure all globals are

 ;; initialized properly in 'setup'.

 ;; import-drawing "01-B OrrSW.jpg"

 ;; The version should be coded in this global variable to be included in

 ;; output files.

 set gs-Version "CmLab_V1.17"

 ;; Debug features may be off or on depending on history.

 ;; - Perhaps 'setup' was called by 'to Startup'.

 ;; - Perhaps 'setup' was called during a 'BehaviorSpace' run.

 ;; - Perhaps 'setup' was called by a user-pushed 'setup' button.

 ;; Setup needs to handle some quasi-persistant values correctly regardless of

 ;; the history. For gb-debug-on, in particular, I want it to be

 ;; persistant so I can have debug output from the 'setup' routine routed

 ;; to the debug log file, or to the command centre.

 ;; 'startup' automatically sets gb-debug-on to 0 when the application is first

 ;; loaded. I want to be able to (A) toggle debug on, then, (B) press

 ;; 'setup' and watch the debug output of the 'setup' command. The gb-debug-on

 ;; must be persistant through the above 'clear' commands. The debug log

 ;; file name and status, however, should not be persistent and must be

 ;; reset when setup runs, if appropriate.

 ifelse (gb-debug-on = 1)

 [

 ;; Debug is on due to user setting, so file name and status should be

 ;; reset. I do this by turn the feature off then on.

 ;; First toggle it off, closing any remnant log file, if needed.

 f-toggle-debug

 ;; Then toggle it back on, opening a new time-stamped log file.

 f-toggle-debug

]

 ;; else

 [

 ;; Debug is off, possibly due to startup execution, possibly due to user

 ;; choice.

 ;; Ensure associated variables have compatible settings.

 set gb-debug-on 0 ;; Redundant but ensures consistency.

 set gs-debug-status "0 (Off)" ;; Redundant but ensures consistency.

 set gb-debug-flow-on 0 ;; Step-specific flow is off.

 file-close-all ;; Close the debug log file.

 set gs-log-file-name "dummyname"

]

 ;; Now, do the standard check that is done at the start of each debuggable

 ;; routine. This must follow the clear commands, which reset everything

 ;; except globals, switches, sliders and choosers.

 if(gb-debug-on = 1)

 [

 ifelse((gs-debug-step-chooser = "all") or (gs-debug-step-chooser = "setup")

)

 [set gb-debug-flow-on 1 LOG-TO-FILE "" LOG-TO-FILE word "Do-setup: Debug on;

tick = " 0]

 [set gb-debug-flow-on 0]

]

 ;; g-use-this-seed comes from a slider, and is persistant.

 random-seed g-use-this-seed ;; Tells the PRNG to use this seed.

 ;; Override the scenario chooser.

 set gs-scenario "Prsns Only"

 f-set-scenario-number

 ;; SETUP FOR CONSERVEMONEYLAB

 LOG-TO-FILE (" INTEREST RATES (Sliders):")

 LOG-TO-FILE (word " Int. on Required Reserves --- " g-iorr " %")

 LOG-TO-FILE (word " Int. on Excess Reserves ----- " g-ioer " %")

 LOG-TO-FILE (word " Int. on Savings Deposits ---- " g-iosd " %")

 LOG-TO-FILE (word " Int. on Bank Loans ---------- " g-iobl " %")

 ;; LOG-TO-FILE (word " Dividends on Corp Stocks ---- " g-docs " %")

 LOG-TO-FILE (" OTHER GLOBALS")

 LOG-TO-FILE (word " g-crb-assets-per-prsn ------- " g-crb-assets-per-prsn)

 LOG-TO-FILE (word " g-no-of-banks-max ----------- " g-no-of-banks-max)

 LOG-TO-FILE (word " g-no-of-prsns-per-bank ------ " g-no-of-prsns-per-bank)

 ;; TODO: Remove this when slider is replaced.

 set g-no-of-corps-per-bank 1

 LOG-TO-FILE (word " g-no-of-corps-per-bank ------ " g-no-of-corps-per-bank)

 LOG-TO-FILE (word " g-net-worth-tax-rate -------- " g-net-worth-tax-rate " %")

 LOG-TO-FILE (word " g-reserve-requirement-ratio - " g-reserve-requirement-ratio

" %")

 set g-no-of-banks (count banks)

 set g-no-of-prsns-max (g-no-of-banks-max * g-no-of-prsns-per-bank)

 set g-no-of-prsns (count prsns)

 set g-no-of-corps (g-no-of-banks-max * g-no-of-corps-per-bank)

 set g-p-daily-cost-of-living round(g-crb-assets-per-prsn / 30) ;; 30 days per

month

 set g-p-daily-L0-allocation round(g-p-daily-cost-of-living / 4)

 set g-p-daily-L1-allocation (g-p-daily-cost-of-living - g-p-daily-L0-allocation)

 set g-p-standard-loan (g-p-daily-cost-of-living * 64) ;; 60+4; Used to set up

loans.

Orrery Software Pg. 9 NTF Code for CmLab V1.17

 set g-p-standard-loan-payment (g-p-standard-loan / 8) ;; Used to pay principal

on loans.

 ;; TODO: The minimum vault cash must increase when corps are activated.

 ;; Used to manage reserves

 set g-minimum-vault-cash (g-p-daily-L0-allocation * g-no-of-prsns-per-bank)

 LOG-TO-FILE (word " g-no-of-banks-max ----------- " g-no-of-banks-max)

 LOG-TO-FILE (word " g-no-of-banks --------------- " g-no-of-banks)

 LOG-TO-FILE (word " g-no-of-prsns-max ----------- " g-no-of-prsns-max)

 LOG-TO-FILE (word " g-no-of-prsns --------------- " g-no-of-prsns)

 LOG-TO-FILE (word " g-no-of-corps-max ----------- " g-no-of-corps-max)

 LOG-TO-FILE (word " g-no-of-corps --------------- " g-no-of-corps)

 LOG-TO-FILE (word " g-p-daily-cost-of-living ---- " g-p-daily-cost-of-living)

 LOG-TO-FILE (word " g-p-daily-L0-allocation ----- " g-p-daily-L0-allocation)

 LOG-TO-FILE (word " g-p-daily-L1-allocation ----- " g-p-daily-L1-allocation)

 LOG-TO-FILE (word " g-p-standard-loan ----------- " g-p-standard-loan)

 LOG-TO-FILE (word " g-p-standard-loan-payment --- " g-p-standard-loan-payment)

 LOG-TO-FILE (word " g-minimum-vault-cash -------- " g-minimum-vault-cash)

 LOG-TO-FILE (word " g-bankruptcy-factor --------- " g-bankruptcy-factor)

 LOG-TO-FILE (word " gb-plot-data ---------------- " gb-plot-data)

 LOG-TO-FILE (word " gb-bank-insurance ----------- " gb-bank-insurance)

 LOG-TO-FILE (word " gb-btpfs-bankruptcies ------- " gb-btpfs-bankruptcies)

 LOG-TO-FILE (word " gb-btpfs-daily-purchases ---- " gb-btpfs-daily-purchases)

 LOG-TO-FILE (word " gb-btpfs-monthly-taxes ------ " gb-btpfs-monthly-taxes)

 ;; END OF SETUP FOR CONSERVEMONEYLAB

 ;; There are 2 scenarios possible

 set ge-scenario-with-prsns 0 ;; Prsns are active

 set ge-scenario-with-corps 1 ;; Corps are active

 ;; Use the input from the chooser gs-scenario to invoke the selected scenario.

 f-set-scenario-number

 ;; For debugging the setup procedure, log the values of the globals.

 LOG-TO-FILE (word " Scenario number ------------- " g-scenario-number)

 LOG-TO-FILE (word " Scenario name --------------- " gs-scenario)

 LOG-TO-FILE (word " Random seed ----------------- " g-use-this-seed)

 ;; For debugging the debug feature!!!

 LOG-TO-FILE (word "SETUP: Debug Is --------------- " gb-debug-on)

 LOG-TO-FILE (word "SETUP: Debug Status Is -------- " gs-debug-status)

 LOG-TO-FILE (word "SETUP: Step Chooser Is -------- " gs-debug-step-chooser)

 LOG-TO-FILE (word "SETUP: Flow Control Is -------- " gb-debug-flow-on)

 ask patches

 [

 set pcolor brown

]

 set g-agents-nw-xaxis-min 0

 set g-agents-nw-xaxis-max 1000

 set g-prsns-nw-xaxis-min 0

 set g-prsns-nw-xaxis-max 1000

 set g-banks-nw-xaxis-min 0

 set g-banks-nw-xaxis-max 1000

 set g-banks-P0-xaxis-min 0

 set g-banks-P0-xaxis-max 1000

 set g-banks-P0-all-assets-min 0 ;; Minimum value on P0-all-assets.

 set g-banks-P0-all-assets-mean 500 ;; Mean value on P0-all-assets.

 set g-banks-P0-all-assets-max 1000 ;; Max value on P0-all-assets.

 set g-counts-loans 0

 set g-counts-p-deaths 0

 set g-counts-p-births 0

 set g-counts-b-deaths 0

 set g-counts-b-births 0

 reset-ticks ;; restarts tick counter and runs setup commands within plots

 ;; Set the switches to default setup values.

 set gb-plot-data true ;; Enables all plotting calls.

 set gb-bank-insurance true ;; Default insurance is on.

 if(g-scenario-number = ge-scenario-with-prsns)

 [

 set gb-plot-data true ;; Enables all plotting calls.

]

 if(g-scenario-number = ge-scenario-with-corps)

 [

 set gb-plot-data true ;; Enables all plotting calls.

]

 ;; Initalization of CmLab Turtles

 set-default-shape GCRAs "triangle" ;; pulled from shapes library

 set-default-shape CRBs "triangle" ;; pulled from shapes library

 set-default-shape banks "target" ;; pulled from shapes library

 set-default-shape prsns "truck" ;; pulled from shapes library

 set-default-shape corps "house" ;; pulled from shapes library

 f-initialize-basic-scenario

 ;; Do the bank visits to arrange deposits.

 f-everybody-visits-their-bank

 ;; Then update the net worth statements and global aggregates.

 ;; This call requires that 'reset-ticks' be called first.

 f-update-aggregates ;; Totals and averages.

 ;; TODO: suppress or remove after debug.

 f-dump-all-agent-data

 ;; Clears unwanted zeros in plots.

 clear-all-plots

 setup-plots

 ;; Debug controls

 set gb-debug-flow-on 0 ;; Boolean, in association with chooser, turns debug LOG-

TO-FILE on/off

 set g-halt-at-tick -1 ;; input variable to set a tick for stopping

 ;; ASSERT (frb-EMgr-is-valid) ("EMgr validity check: D-Setup") -1

 LOG-TO-FILE " Do-Setup: procedure completed"

 ;; end of to setup

end

;;---|

;; Set the scenario number using the input from the chooser.

to f-set-scenario-number

 ;; This routine is to be executed by the observer.

 set g-scenario-number ge-scenario-with-prsns ;; default

Orrery Software Pg. 10 NTF Code for CmLab V1.17

 ;; if(gs-scenario = "Corps Not Implemented Yet")

 ;; [set g-scenario-number ge-scenario-with-corps]

 set gs-scenario "Prsns Only"

 ;; End f-set-scenario-number

end

;;---|

;; Initialize a GCRA, CRB, banks, corps and prsns.

to f-initialize-basic-scenario

 ;; This routine is to be executed by the observer.

 ;; NOTE: the order of initialization is critical since there are links

 ;; established between them, once appropriate linkable agents are created.

 ;; Initialize a GCRA. (Government Consolidated Revenue Account)

 create-gcras 1

 [

 f-initialize-gcra

 setxy 0 0

]

 ;; Note: bank-who not set yet.

 ;; Initialize a CRB. (Central Reserve Bank)

 create-crbs 1

 [

 f-initialize-crb

 ;; Move to a random point.

 setxy 0 1

]

 ;; Note: bank-who not set yet.

 ;; Initialize the banks.

 create-banks g-no-of-banks-max

 [

 set g-counts-b-births (g-counts-b-births + 1)

 f-initialize-new-bank

 ;; Move to a random point.

 setxy random-xcor random-ycor

]

 set g-no-of-banks (count banks)

 ;; Move P0-assets to VC, ER and RR deposits, as appropriate.

 f-the-crb-reconciles-with-banks-daily

 ;; Assign a bank to the GCRA

 ask gcras [f-bsvcs-gcra-find-bank]

 ;; Assign a bank to the CRB

 ask crbs [f-bsvcs-crb-find-bank]

 ;; Initialize the prsns.

 ;; Must do banks and corps first, then link prsns to both.

 create-prsns g-no-of-prsns-max

 [

 set g-counts-p-births (g-counts-p-births + 1)

 f-initialize-new-prsn

 set heading 90

 ;; Move to a random point.

 setxy random-xcor random-ycor

]

 set g-no-of-prsns (count prsns)

 ;; Initialize the corps.

 ;; Must do banks first, then link corps to banks.

 ;; TODO: Initialization of corps suppressed.

 ;; create-corps g-no-of-corps

 ;; [

 ;; set g-counts-c-births (g-counts-c-births + 1)

 ;; f-initialize-new-corp

 ;; ;; Move to a random point.

 ;; setxy random-xcor random-ycor

 ;;]

 ;; The initial endowment of cash must be distributed.

 ask crbs

 [

 f-cbsvcs-distribute-assets-to-prsns

 ;; TODO: When corps implemented, include here.

]

 ;; End f-initialize-basic-scenario

end

;;---|

;; Initialize a single GCRA.

to f-initialize-gcra

 ;; This routine is to be executed by a GCRA.

 ;; I.e. government consolidated revenue account.

 set heading 0 ;; direction of motion

 set color black

 ;; USER-DETERMINED ATTRIBUTES

 ;; Associated with GCRA dynamics.

 set default-colour black ;; distinctive colour for GCRA

 set bank-who -1 ;; bank that holds the loan

 set L1-assets 0 ;; standard checking account

 set L1-loan-debts 0 ;; debts associated with loan

 set S1-L1ip-debts 0 ;; payable on loans

 ;; TODO: If these are not used, remove them.

 ;; xx set L2-assets 0 ;; standard savings account

 ;; ss set L3-debts 0 ;; bonds

 ;; ss set S1-L3ip-debts 0 ;; payable on bonds

 LOG-TO-FILE (word " Initialize GCRA " who)

 LOG-TO-FILE (word " L1-assets ------------------- " L1-assets)

 LOG-TO-FILE (word " L1-loan-debts --------------- " L1-loan-debts)

 LOG-TO-FILE (word " S1-L1ip-debts --------------- " S1-L1ip-debts)

 ;; xx LOG-TO-FILE (word " L2-assets ------------------- " L2-assets)

 ;; ss LOG-TO-FILE (word " L3-debts -------------------- " L3-debts)

 ;; ss LOG-TO-FILE (word " S1-L3ip-debts -------- " S1-L3ip-debts)

 set ttl-P0-assets 0 ;; aggregate of all physical assets

 set ttl-publ-assets 0 ;; aggregate of all public assets

 set ttl-publ-debts 0 ;; aggregate of all public debts

 set ttl-priv-assets 0 ;; aggregate of all private assets

 set ttl-priv-debts 0 ;; aggregate of all private debts

 set net-worth-publ 0 ;; total public assets minus debts

 set net-worth-priv 0 ;; total private assets minus debts

 ;; Money supply aggregates

 set msi-assets 0 ;; Physical money supply

 set msi-debts 0 ;; Physical money supply

 set msii-assets 0 ;; Logical money supply

Orrery Software Pg. 11 NTF Code for CmLab V1.17

 set msii-debts 0 ;; Logical money supply

 set msiii-assets 0 ;; Shadow money supply

 set msiii-debts 0 ;; Shadow money supply

 ;; Suppressed. Done after all banks initialized.

 ;; f-bsvcs-gcra-find-bank ;; sets bank-who to a valid number

 ;; end f-initialize-gcra

end

;;---|

;; Initialize a single CRB.

to f-initialize-crb

 ;; This routine is to be executed by a CRB.

 ;; I.e. central reserve bank.

 set heading 0 ;; direction of motion

 set color yellow

 ;; USER-DETERMINED ATTRIBUTES

 ;; Associated with CRB dynamics.

 set default-colour yellow ;; distinctive colour for CRB

 ;; TODO: Change when corps activated.

 ;; The functional values of the assets are set in

 ;; the routine f-cbsvcs-distribute-assets-to-prsns

 set P0-assets 0

 set P0-debts 0 ;; initial physcial debts on start

 set L0-assets 0 ;; initial logical assets on start

 set L0-debts 0 ;; initial logical debts on start

 set P0-rr-assets 0 ;; required reserves

 set P0-er-assets 0 ;; excess reserves

 set bank-who -1 ;; chartered bank for C1 account

 set S1-rrip-debts 0 ;; interest payable on required reserves

 set S1-erip-debts 0 ;; interest payable on excess reserves

 set C1-assets 0 ;; corporate bank assets

 ;; xx set c2-assets 0 ;; corporate bank assets

 LOG-TO-FILE (word " Initialize CRB " who)

 LOG-TO-FILE (word " CRB MS-I P0 Assets ----------- " P0-assets)

 LOG-TO-FILE (word " CRB MS-I F0 Assets ----------- " L0-assets)

 LOG-TO-FILE (word " CRB MS-I P0 debts ------------ " P0-debts)

 LOG-TO-FILE (word " CRB MS-I F0 debts ------------ " L0-debts)

 LOG-TO-FILE (word " CRB Required reserves -------- " P0-rr-assets)

 LOG-TO-FILE (word " S1-rrip-debts ---------------- " S1-rrip-debts)

 LOG-TO-FILE (word " CRB Excess reserves ---------- " P0-er-assets)

 LOG-TO-FILE (word " S1-erip-debts ---------------- " S1-erip-debts)

 set ttl-P0-assets 0 ;; aggregate of all physical assets

 set ttl-publ-assets 0 ;; aggregate of all public assets

 set ttl-publ-debts 0 ;; aggregate of all public debts

 set ttl-priv-assets 0 ;; aggregate of all private assets

 set ttl-priv-debts 0 ;; aggregate of all private debts

 set net-worth-publ 0 ;; total public assets minus debts

 set net-worth-priv 0 ;; total private assets minus debts

 ;; Money supply aggregates

 set msi-assets 0 ;; Physical money supply

 set msi-debts 0 ;; Physical money supply

 set msii-assets 0 ;; Logical money supply

 set msii-debts 0 ;; Logical money supply

 set msiii-assets 0 ;; Shadow money supply

 set msiii-debts 0 ;; Shadow money supply

 ;; Suppressed. Done after all banks initialized.

 ;; f-bsvcs-crb-find-bank ;; sets bank-who to a valid number

 ;; end f-initialize-crb

end

;;---|

;; Initialize a single bank.

to f-initialize-new-bank

 ;; This routine is to be executed by a bank.

 ;; BUILT-IN ATTRIBUTES

 set heading 0 ;; direction of motion

 set color red

 LOG-TO-FILE (word " Initialize bank " who)

 ;; USER-DETERMINED ATTRIBUTES

 ;; Associated with bank dynamics.

 set default-colour red ;; distinctive colour for banks

 set b-bank-can-make-loans 1 ;; boolean - 0 or 1

 set b-bank-is-bankrupt 0 ;; boolean - 0 or 1

 set L1-assets 0

 set L1-loan-assets 0

 set L1-debts 0

 set S1-L1ir-assets 0

 set L2-assets 0

 set L2-debts 0

 set S1-L2ip-debts 0

 ;; xx set L3-assets 0

 ;; There is only one CRB, but the breed must be treated as a set.

 set crb-who ([who] of (one-of crbs))

 set P0-vc-assets 0

 set P0-er-assets 0

 set P0-er-debts 0

 set P0-rr-assets 0

 set P0-rr-debts 0

 set P0-all-assets 0

 ;; Associated with corporate bank dynamics.

 set no-of-prsn-clients 0

 set no-of-corp-clients 0

 set no-of-gcra-clients 0

 set no-of-crb-clients 0

 set S1-rrir-assets 0 ;; interest on required reserves

 set S1-erir-assets 0 ;; interest on excess reserves

 set C1-assets 0 ;; corporate bank equivalent of L1-assets

 ;; xx set c2-assets 0 ;; corporate bank equivalent of L2-assets

 set ttl-P0-assets 0 ;; aggregate of all physical assets

 set ttl-publ-assets 0 ;; aggregate of all public assets

 set ttl-publ-debts 0 ;; aggregate of all public debts

 set ttl-priv-assets 0 ;; aggregate of all private assets

 set ttl-priv-debts 0 ;; aggregate of all private debts

 set net-worth-publ 0 ;; total public assets minus debts

Orrery Software Pg. 12 NTF Code for CmLab V1.17

 set net-worth-priv 0 ;; total private assets minus debts

 ;; Money supply aggregates

 set msi-assets 0 ;; Physical money supply

 set msi-debts 0 ;; Physical money supply

 set msii-assets 0 ;; Logical money supply

 set msii-debts 0 ;; Logical money supply

 set msiii-assets 0 ;; Shadow money supply

 set msiii-debts 0 ;; Shadow money supply

 ;; end f-initialize-new-bank

end

;;---|

;; Initialize a single prsn.

to f-initialize-new-prsn

 ;; This routine is to be executed by a prsn.

 ;; BUILT-IN ATTRIBUTES

 set heading 0 ;; direction of motion

 set color green

 LOG-TO-FILE (word " Initialize prsn " who)

 ;; USER-DETERMINED ATTRIBUTES

 ;; Associated with prsn dynamics.

 set default-colour green ;; distinctive colour for prsns

 set b-prsn-is-bankrupt 0 ;; boolean - 0 or 1

 set P0-assets 0

 set L0-assets 0

 set bank-who -1 ;; Does banking with this bank.

 set L1-assets 0

 set L1-loan-debts 0

 set S1-L1ip-debts 0 ;; payable on bank loans

 set payables-30day [] ;; A list of 30-day payables

 set S1-30day-total-debts 0 ;; sum of 30 day payables

 set S1-30day-total-assets 0 ;; sum of 30 day receivables

 set L2-assets 0

 ;; ss set L3-corpwho -1 ;; Holds bond from this corp.

 ;; ss set L3-assets 0

 ;; ss set L4-corpwho -1 ;; Holds stock from this corp.

 ;; ss set L4-assets 0

 set ttl-P0-assets 0 ;; aggregate of all physical assets

 set ttl-publ-assets 0 ;; aggregate of all public assets

 set ttl-publ-debts 0 ;; aggregate of all public debts

 set ttl-priv-assets 0 ;; aggregate of all private assets

 set ttl-priv-debts 0 ;; aggregate of all private debts

 set net-worth-publ 0 ;; total public assets minus debts

 set net-worth-priv 0 ;; total private assets minus debts

 ;; Money supply aggregates

 set msi-assets 0 ;; Physical money supply

 set msi-debts 0 ;; Physical money supply

 set msii-assets 0 ;; Logical money supply

 set msii-debts 0 ;; Logical money supply

 set msiii-assets 0 ;; Shadow money supply

 set msiii-debts 0 ;; Shadow money supply

 f-bsvcs-prsn-find-bank ;; Assign a bank to this prsn.

 ;; end f-initialize-new-prsn

end

;;---|

;; Initialize a single corp.

to f-initialize-new-corp

 ;; This routine is to be executed by a corp.

 ;; BUILT-IN ATTRIBUTES

 set heading 0 ;; direction of motion

 set color black

 LOG-TO-FILE (word " Initialize corp " who)

 ;; USER-DETERMINED ATTRIBUTES

 ;; Associated with corp dynamics.

 set default-colour black ;; distinctive colour for corps

 set b-corp-is-bankrupt 0 ;; boolean - 0 or 1

 set P0-assets 0

 set L0-assets 0

 set bank-who -1 ;; Does banking with this bank.

 set L1-assets 0

 set L1-loan-debts 0

 set S1-L1ip-debts 0 ;; payable on bank loans

 set payables-30day []

 set S1-30day-total-debts 0

 set S1-30day-total-assets 0

 set L2-assets 0

 set S1-L2ir-assets 0 ;; receivable on savings

 ;; ss set no-of-bond-clients 0 ;; prsns holding bonds

 ;; ss set L3-assets 0

 ;; ss set L3-debts 0

 ;; ss set no-of-stock-clients 0 ;; prsns holding stocks

 ;; ss set L4-assets 0

 ;; ss set L4-debts 0

 set ttl-P0-assets 0 ;; aggregate of all physical assets

 set ttl-publ-assets 0 ;; aggregate of all public assets

 set ttl-publ-debts 0 ;; aggregate of all public debts

 set ttl-priv-assets 0 ;; aggregate of all private assets

 set ttl-priv-debts 0 ;; aggregate of all private debts

 set net-worth-publ 0 ;; total public assets minus debts

 set net-worth-priv 0 ;; total private assets minus debts

 ;; Money supply aggregates

 set msi-assets 0 ;; Physical money supply

 set msi-debts 0 ;; Physical money supply

 set msii-assets 0 ;; Logical money supply

 set msii-debts 0 ;; Logical money supply

 set msiii-assets 0 ;; Shadow money supply

 set msiii-debts 0 ;; Shadow money supply

 f-bsvcs-corp-find-bank ;; Assign a bank to this corp.

 ;; end f-initialize-new-corp

end

Orrery Software Pg. 13 NTF Code for CmLab V1.17

;;---|

;; SECTION D – GO OR MAIN-LOOP PROCEDURE(S)

;;---|

;;---|

;; The go button

to go

 ;; This routine is to be executed by the observer.

 ;; Stop codes:

 ;; All stop decisions must be here in the 'go' procedure, as it causes an

 ;; exit from the current procedure only.

 if(g-halt-at-tick = ticks)

 [

 set g-halt-at-tick -1

 stop

]

 ;; Ensure that the gb-btpfs-bankruptcies flag is always on.

 set gb-btpfs-bankruptcies true

 ;; MANUAL CHANGE FOR DEBUG

 ;; If needed, each check for validity can be enabled between steps.

 ;; They have been suppressed (turned into comments) for the sake

 ;; of speed of execution, but can be re-enabled if a bug has

 ;; somehow been re-introduced.

 ;; A single call to the validity check has been left active inside of the

 ;; Do-Post-Tick step. If it flags a problem, re-activate these to

 ;; narrow down where the problem starts.

 ;; Major steps or functions, done once per tick, in order of execution.

 do-pre-tick

 ;; if(frb-agents-are-all-valid = false)

 ;; [LOG-TO-FILE (word "Agents failed validity test: Do-pre-tick.")]

 do-move

 ;; if(frb-agents-are-all-valid = false)

 ;; [LOG-TO-FILE (word "Agents failed validity test: Do-move.")]

 do-buy-sell

 ;; if(frb-agents-are-all-valid = false)

 ;; [LOG-TO-FILE (word "Agents failed validity test: Do-buy-sell.")]

 do-accrue-interest

 ;; if(frb-agents-are-all-valid = false)

 ;; [LOG-TO-FILE (word "Agents failed validity test: Do-accrue-interest.")]

 do-monthly

 ;; if(frb-agents-are-all-valid = false)

 ;; [LOG-TO-FILE (word "Agents failed validity test: Do-monthly.")]

 do-banking

 ;; if(frb-agents-are-all-valid = false)

 ;; [LOG-TO-FILE (word "Agents failed validity test: Do-banking.")]

 do-post-tick

 ;; if(frb-agents-are-all-valid = false)

 ;; [LOG-TO-FILE (word "Agents failed validity test: Do-post-tick.")]

 ;; end of go

end

;;---|

;; D1 - do-pre-tick procedure(s)

;;---|

to do-pre-tick

 ;; This routine is to be executed by the observer.

 if(gb-debug-on = 1)

 [

 ifelse((gs-debug-step-chooser = "all") or (gs-debug-step-chooser = "pre-

tick"))

 [set gb-debug-flow-on 1 LOG-TO-FILE "" LOG-TO-FILE word "Do-pre-tick: Debug

on.; tick was " ticks]

 [set gb-debug-flow-on 0]

]

 ;; Enter all commands that need to be done before a tick begins.

 ;; f-update-aggregates

 ;; Override the scenario chooser.

 set gs-scenario "Prsns Only"

 f-set-scenario-number

 ;; Advance the tick counter by 1 tick.

 ifelse(gb-plot-data = true)

 [

 ;; Advance the ticks by one and update the plots.

 tick

 ;; 'tick' is exactly the same as 'update-plots' except that the tick counter

 ;; is incremented before the plot commands are executed.

]

 ;; else

 [

 ;; Advance ticks by one but do not update the plots.

 tick-advance 1

]

 ;; End else

 ;; Once the data is plotted, the per-tick counts can be cleared.

 ;; TODO: Clear such data collection per-tick aggregates here.

 ;; Reset the scenario number, in case the chooser has been changed.

 f-set-scenario-number

 LOG-TO-FILE (word " Halt at tick - " g-halt-at-tick)

 LOG-TO-FILE (word " Current tick - " ticks)

 LOG-TO-FILE " Do-pre-tick: Routine completed."

;; end of Do-pre-tick

end

;;---|

;; D2 – do-move procedure(s)

;;---|

to do-move

 ;; This routine is to be executed by the observer.

 if(gb-debug-on = 1)

 [

 ifelse((gs-debug-step-chooser = "all") or (gs-debug-step-chooser = "move")

)

Orrery Software Pg. 14 NTF Code for CmLab V1.17

 [set gb-debug-flow-on 1 LOG-TO-FILE "" LOG-TO-FILE word "Do-move: Debug on;

tick = " ticks]

 [set gb-debug-flow-on 0]

]

 ;; Implement 'arrow' behaviour from PSoup application. I.e. a strong

 ;; probability of movement directly forward, and small probability of a

 ;; slight turn. This represents the most effective search pattern for

 ;; an arena that is wrapped on all sides. Of course, it doesn't matter

 ;; since they don't actually feed.

 let heading-list [-1 0 0 0 0 0 0 0 0 0 1]

 ;; The prsns move. 'Arrow' search pattern.

 ask prsns

 [

 let delta-heading (item (random length heading-list) heading-list)

 set heading (heading + delta-heading)

 if(heading > 115) [set heading 115]

 if(heading < 65) [set heading 65]

 forward 1

] ;; End ask prsns

 ;; f-update-aggregates

 LOG-TO-FILE " Do-move: procedure completed"

;; end of Do-move

end

;;---|

;; D3 – do-buy-sell procedure(s)

;;---|

to do-buy-sell

 ;; This routine is to be executed by the observer.

 if(gb-debug-on = 1)

 [

 ifelse((gs-debug-step-chooser = "all") or (gs-debug-step-chooser = "buy-

sell"))

 [set gb-debug-flow-on 1 LOG-TO-FILE "" LOG-TO-FILE word "Do-buy-sell: Debug on;

tick = " ticks]

 [set gb-debug-flow-on 0]

]

 ;; Each tick the prsns are paired as (buyer, seller) for cash transactions.

 f-prsns-buy-sell-using-cash

 ;; Each tick the banks buy using checks on their C1 accounts.

 f-btpfs-banks-buy-using-checks

 ;; Each tick the prsns are re-paired as (buyer, seller) on 30-day terms.

 f-prsns-buy-sell-on-terms

 ;; Each tick each prsn then pays those bills that are 30 days old or more.

 f-process-30-day-payables

 ;; TODO: When corps implemented, this needs to be added for them too.

 f-update-aggregates

 LOG-TO-FILE " Do-buy-sell: procedure completed"

;; end of Do-buy-sell

end

;;---|

;; Prsns buy and sell, using cash.

to f-prsns-buy-sell-using-cash

;; This routine is to be executed by the observer.

 ;; Prsns buy and sell using cash.

 ;; Each tick the prsns are paired as (buyer, seller) for cash transactions.

 LOG-TO-FILE (word "")

 LOG-TO-FILE (word "Do-buy-sell: cash")

 ;; Make a list.

 let mylist []

 ask prsns

 [

 set mylist lput self mylist

]

 let no-of-prsns-left (length mylist)

 ;; LOG-TO-FILE (word " Do-buy-sell: no-of-prsns-left " no-of-prsns-left)

 while [no-of-prsns-left > 1]

 [

 ;; Isolate the first two prsns.

 let buyer (item 0 mylist)

 set mylist (but-first mylist)

 let seller (item 0 mylist)

 set mylist (but-first mylist)

 set no-of-prsns-left (length mylist)

 let buyer-who ([who] of buyer)

 let seller-who ([who] of seller)

 ask buyer

 [

 ;; Buyer transfers cash (P0+L0) to seller.

 ;; This is a similar technique to Yakovenko's capital exchange models.

 ;; Dragulescu and Yakovenko, 2000.

 let amount-to-spend (1 + (random (g-p-daily-L0-allocation - 1)))

 LOG-TO-FILE (word "Buyer: " buyer-who "; Seller: " seller-who)

 LOG-TO-FILE (word " L0-assets of buyer ------------------ " L0-assets)

 LOG-TO-FILE (word " L0-assets of seller ----------------- " ([L0-assets] of

seller))

 LOG-TO-FILE (word " L0 cost of purchase ----------------- " amount-to-spend

)

 f-bsvcs-prsn1-pays-prsn2-by-cash seller-who amount-to-spend

 LOG-TO-FILE (word " L0-assets of buyer ------------------ " L0-assets)

 LOG-TO-FILE (word " L0-assets of seller ----------------- " ([L0-assets] of

seller))

]

]

;; end of f-prsns-buy-sell-using-cash

end

;;---|

;; Prsns buy and sell, on 30-day terms.

to f-prsns-buy-sell-on-terms

;; This routine is to be executed by the observer.

Orrery Software Pg. 15 NTF Code for CmLab V1.17

 ;; THEORY: Prsns buy and sell, paying by check after 30 days.

 ;; Each tick the prsns are randomly paired as (buyer, seller) on 30-day terms.

 LOG-TO-FILE (word " ")

 LOG-TO-FILE (word "Do-buy-sell: 30-day terms")

 ;; Make a list of prsns other than me.

 let mylist []

 ask other prsns ;; excludes me

 [

 ;; Add themself to my list of prsns.

 set mylist lput self mylist

]

 let no-of-prsns-left (length mylist)

 ;; LOG-TO-FILE (word " Do-buy-sell: no-of-prsns-left " no-of-prsns-left)

 while [no-of-prsns-left > 1]

 [

 ;; Isolate the first two prsns.

 let buyer (item 0 mylist)

 set mylist (but-first mylist)

 let seller (item 0 mylist)

 set mylist (but-first mylist)

 set no-of-prsns-left (length mylist)

 let buyer-who ([who] of buyer)

 let seller-who ([who] of seller)

 ask buyer

 [

 ;; THEORY: This is totally happening in the shadow money supply, and

 ;; no bank of any kind is involved. So, there is no "banking services"

 ;; routine (i.e. one with -bsvcs- in the name) to handle this. It is

 ;; coded in detail here.

 ;; Buyer puts purchase on a 30-day tab.

 ;; This puts the purchase into the MS-III money supply.

 let amount-to-spend (1 + (random (g-p-daily-L1-allocation - 1)))

 ;; Buyer spends expecting to pay by check in 30 days.

 ;; Buyer does not/cannot check for future solvency.

 ;; This must be paid 30 ticks from now.

 LOG-TO-FILE (word "Buyer: " buyer-who "; Seller: " seller-who)

 LOG-TO-FILE (word " 30day payables of buyer ------------- " S1-30day-total-

debts)

 LOG-TO-FILE (word " 30day receivables of seller --------- " ([S1-30day-

total-assets] of seller))

 set S1-30day-total-debts (S1-30day-total-debts + amount-to-spend)

 ask seller [set S1-30day-total-assets (S1-30day-total-assets + amount-to-

spend)]

 let payable (list ([who] of seller) (ticks + 30) amount-to-spend)

 set payables-30day lput payable payables-30day

 LOG-TO-FILE (word " This purchase [sllr, tick due, amt] - " payable)

 LOG-TO-FILE (word " 30day payables of buyer ------------- " S1-30day-total-

debts)

 LOG-TO-FILE (word " 30day receivables of seller --------- " ([S1-30day-

total-assets] of seller))

]

]

;; end of f-prsns-buy-sell-on-terms

end

;;---|

;; Corps buy and sell, using cash and on 30-day terms.

to f-corps-buy-sell

;; This routine is to be executed by the observer.

;; TODO: Not implemented yet.

;; end of f-corps-buy-sell

end

;;---|

;; Process 30-day payables.

to f-process-30-day-payables

;; This routine is to be executed by the observer.

 ;; THEORY: This is a connection between the shadow and the logical

 ;; money supplies. The payables and receivables that were not in bank

 ;; records are now paid by checks and a -bsvcs- routine, and they become

 ;; visible to the banks and their back room accountants.

 ;; All prsns may have 30-day payables.

 ask prsns

 [

 ;; If there are no payables, nothing need be done my this prsn.

 ;; TODO: For performance, add boolean to determine if payables are due

 ;; this tick.

 if(S1-30day-total-debts > 0)

 [

 ;; I used lput to put the payables into a list. So I should be able to

 ;; pull them off of the front until those that are payable this tick

 ;; have been looked after.

 let this-payable (item 0 payables-30day)

 let seller-who item 0 this-payable

 let tick-when-due item 1 this-payable

 let this-amount item 2 this-payable

 if(tick-when-due <= ticks)

 [

 LOG-TO-FILE (word " ")

 LOG-TO-FILE (word "PRSN " who " processing 30-day payables")

]

 while [tick-when-due <= ticks]

 [

 let seller (prsn seller-who)

 LOG-TO-FILE (word " This payable ---------------- " this-payable)

 LOG-TO-FILE (word " Seller ---------------------- " seller-who)

 LOG-TO-FILE (word " Tick-when-due --------------- " tick-when-due "; now -

" ticks)

 LOG-TO-FILE (word " Seller's assets were -------- " ([L1-assets] of

seller))

 LOG-TO-FILE (word " Buyer's assets were --------- " L1-assets)

 LOG-TO-FILE (word " Amount due ------------------ " this-amount)

 f-bsvcs-prsn1-pays-prsn2-by-check seller-who this-amount

 LOG-TO-FILE (word " Seller's assets are --------- " ([L1-assets] of

seller))

 LOG-TO-FILE (word " Buyer's assets are ---------- " L1-assets)

 ;; Update the aggregator of the buyer.

 set S1-30day-total-debts (S1-30day-total-debts - this-amount)

Orrery Software Pg. 16 NTF Code for CmLab V1.17

 ;; Update the aggregator of the seller.

 ask seller [set S1-30day-total-assets

 (S1-30day-total-assets - this-amount)]

 ;; The first payable in list is done. Drop from list.

 set payables-30day (but-first payables-30day)

 ;; Check if there are any more.

 ifelse(0 = length payables-30day)

 [

 set tick-when-due (ticks + 1) ;; Create end condition.

]

 ;; Else

 [

 ;; Unpack the next payable.

 set this-payable (item 0 payables-30day)

 set seller-who item 0 this-payable

 set tick-when-due item 1 this-payable

 set this-amount item 2 this-payable

]

]

]

]

;; end of f-process-30-day-payables

end

;;---|

;; D4 – do-accrue-interest procedure(s)

;;---|

to do-accrue-interest

 ;; This routine is to be executed by the observer.

 if(gb-debug-on = 1)

 [

 ifelse((gs-debug-step-chooser = "all") or (gs-debug-step-chooser = "accrue-

interest"))

 [set gb-debug-flow-on 1 LOG-TO-FILE "" LOG-TO-FILE word "Do-accrue-interest:

Debug on; tick = " ticks]

 [set gb-debug-flow-on 0]

]

 ;; TODO: Corps and GCRA do not presently take out L1 loans, or make savings

 ;; deposits, so some of this code is anticipating that change. When those

 ;; things are added, walk through this again.

 ;; There are six kinds of interest that must be accrued, and paid monthly.

 ;; - interest on L1 bank loans - client to bank

 ;; - interest on L2 savings deposits - bank to client

 ;; - interest on required reserves - CRB to bank

 ;; - interest on excess reserves - CRB to bank

 ;; - dividends on stocks - corps to shareholders (not implemented yet)

 ;; - interest on bonds - GCRA and corps to bondholders (not implemented yet)

 f-accrue-interest-on-bank-loans-and-deposits

 f-accrue-interest-on-reserves

 ;; TODO: Implement when corps activated.

 ;; f-accrue-dividends-on-corporate-stocks

 f-update-aggregates

 LOG-TO-FILE " Do-accrue-interest: procedure completed"

;; end of do-accrue-interest

end

;;---|

;; In this routine all per-tick interest and dividends are accrued.

to f-accrue-interest-on-bank-loans-and-deposits

;; This routine is to be executed by the observer.

 ;; For each prsn (and corp, and gov't) figure out how much interest

 ;; must be paid on the current extant amount on a loan. This is calculated

 ;; daily (per tick) and added up, and paid at the end of the month.

 ;; First, check the government's consolidated revenue account (GCRA).

 ;; TODO: enable this when GCRA loans are implemented.

 ;; ask gcras

 ;; [

 ;; if(L1-loan-debts > 0)

 ;; [

 ;; LOG-TO-FILE (word " ")

 ;; LOG-TO-FILE (word "GCRA Bank Loan ")

 ;; LOG-TO-FILE (word " Size of L1 loan --------------- " L1-loan-debts)

 ;; f-bsvcs-client-accrues-daily-interest-on-L1-loan

 ;; LOG-TO-FILE (word " Total interest due ------------ " S1-L1ip-debts)

 ;;]

 ;;]

 ;; Next, check the prsns loans (L1) and savings (L2) accounts.

 ;;

 ask prsns

 [

 ;; Loans appear as L1 debts.

 if(L1-loan-debts > 0)

 [

 LOG-TO-FILE (word " ")

 LOG-TO-FILE (word "PRSN " who " - Bank Loan")

 LOG-TO-FILE (word " Size of L1 loan --------------- " L1-loan-debts)

 f-bsvcs-client-accrues-daily-interest-on-L1-loan

 LOG-TO-FILE (word " Total interest due ------------ " S1-L1ip-debts)

]

 ;; Savings appear as L2 assets.

 if(L2-assets > 0)

 [

 LOG-TO-FILE (word " ")

 LOG-TO-FILE (word "PRSN " who " - Savings Deposit")

 LOG-TO-FILE (word " Size of L2 savings deposit ---- " L2-assets)

 f-bsvcs-client-accrues-daily-interest-on-L2-savings

 LOG-TO-FILE (word " Total interest due ------------ " S1-L2ir-assets)

]

]

 ;; TODO: Interest for corps not yet implemented. Do like prsns.

 ;; Savings acct for GCRA not yet implemented.

;; end of f-accrue-interest-on-bank-loans-and-deposits

end

;;---|

;; In this routine all per-tick interest is accrued.

to f-accrue-interest-on-reserves

;; This routine is to be executed by the observer.

 ;; For each bank figure out how much interest is payable on their CRB

Orrery Software Pg. 17 NTF Code for CmLab V1.17

 ;; deposits. This is calculated daily (per tick) and added up,

 ;; and paid at the end of the month.

 ask banks

 [

 ;; Do required reserves first.

 if(P0-rr-assets > 0)

 [

 LOG-TO-FILE (word " ")

 LOG-TO-FILE (word "BANK " who " - RR Deposit")

 LOG-TO-FILE (word " Size of RR deposit ------------ " P0-rr-assets)

 f-cbsvcs-bank-accrues-daily-interest-on-RR-deposits ;; Contact the bank.

 LOG-TO-FILE (word " Total interest due ------------ " S1-rrir-assets)

]

 ;; Now do excess reserves.

 if(P0-er-assets > 0)

 [

 LOG-TO-FILE (word " ")

 LOG-TO-FILE (word "BANK " who " - ER Deposit")

 LOG-TO-FILE (word " Size of ER deposit ------------ " P0-er-assets)

 f-cbsvcs-bank-accrues-daily-interest-on-ER-deposits ;; Contact the bank.

 LOG-TO-FILE (word " Total interest due ------------ " S1-erir-assets)

]

]

;; end of f-accrue-interest-on-reserves

end

;;---|

;; Accrue per-tick dividends on corporate stocks.

to f-accrue-dividends-on-corporate-stocks

;; This routine is to be executed by the observer.

 ;; TODO: Add a body to this hook.

;; end of f-accrue-dividends-on-corporate-stocks

end

;;---|

;; D5 – do-monthly procedure(s)

;;---|

to do-monthly

 ;; This routine is to be executed by the observer.

 if(gb-debug-on = 1)

 [

 ifelse((gs-debug-step-chooser = "all") or (gs-debug-step-chooser = "monthly"

))

 [set gb-debug-flow-on 1 LOG-TO-FILE "" LOG-TO-FILE word "Do-monthly: Debug on;

tick = " ticks]

 [set gb-debug-flow-on 0]

]

 ;; There are four or five procedures that need to be done once a

 ;; month (every 30 days)

 let check-value (ticks mod 30)

 if(check-value = 0)

 [

 f-cbsvcs-gcra-reconciles-with-crb-monthly

 f-process-interest-payments-monthly

 f-process-payments-on-loans-monthly

 f-government-spends-and-taxes-monthly

 f-btpfs-government-special-monthly-transfer

]

 f-update-aggregates

 LOG-TO-FILE " Do-monthly: procedure completed"

;; end of do-monthly

end

;;---|

;; Process interest payments monthly.

to f-process-interest-payments-monthly

;; This routine is to be executed by the observer.

 ;; Monthly interest payments will be made by check

 ;; from/to the L1 checking accts.

 ;; Prsns can make payments on L1 loans and collect payments on L2 savings.

 ask prsns

 [

 ;; Contact the bank.

 let mybank (bank bank-who)

 ;; NOTE: a payment of interest on a loan does not affect the principal.

 ;; It causes a change of net-worth of both participants. The payables

 ;; and receivables do not appear on the official books of either

 ;; party until the month-end reconciliation happens. The changes to the

 ;; C1-assets and the L1-assets are the effective transfer of

 ;; net-worth monthly. Only due payments above $1 are processed.

 ;; Make interest payments on L1 loans.

 if(S1-L1ip-debts > 1)

 [

 LOG-TO-FILE (word "INTEREST PAYMENT ON LOAN:")

 LOG-TO-FILE (word " Prsn " who " to bank " bank-who ".")

 LOG-TO-FILE (word " Prsn L1 loan ------------------ " L1-loan-debts)

 LOG-TO-FILE (word " Prsn L1 assets before payment - " L1-assets)

 LOG-TO-FILE (word " Bank C1 assets before payment - " ([C1-assets] of

mybank))

 LOG-TO-FILE (word " Current amount payable -------- " (S1-L1ip-debts))

 f-bsvcs-client-pays-monthly-interest-on-L1-loan

 ;; NOTE: Due to the rounding of the interest-paid, a residual

 ;; of interest payable will remain each month. I do this to

 ;; keep net worth integral.

 LOG-TO-FILE (word " Prsn L1 assets after payment -- " L1-assets)

 LOG-TO-FILE (word " Bank C1 assets after payment -- " ([C1-assets] of

mybank))

 LOG-TO-FILE (word " Residual payable -------------- " (S1-L1ip-debts))

]

 ;; Collect interest payments on L2 savings deposits.

 if(S1-L2ir-assets > 1)

 [

 let interest-due floor(S1-L2ir-assets)

 LOG-TO-FILE (word "INTEREST PAYMENT ON SAVINGS ACCOUNT:")

 LOG-TO-FILE (word " Bank " bank-who " to prsn " who)

 LOG-TO-FILE (word " Prsn L1 assets before payment - " L1-assets)

 LOG-TO-FILE (word " Prsn L2 assets ---------------- " L2-assets)

 LOG-TO-FILE (word " Bank C1 assets before payment - " ([C1-assets] of

mybank))

 LOG-TO-FILE (word " Current amount receivable ----- " (S1-L2ir-assets))

 f-bsvcs-client-paid-monthly-interest-on-L2-savings

Orrery Software Pg. 18 NTF Code for CmLab V1.17

 ;; NOTE: Due to rounding above, some residual interest-receivable

 ;; will remain.

 LOG-TO-FILE (word " Prsn L1 assets after payment -- " L1-assets)

 LOG-TO-FILE (word " Bank C1 assets after payment -- " ([C1-assets] of

mybank))

 LOG-TO-FILE (word " Residual receivable ----------- " (S1-L2ir-assets))

]

 ;; Prsns can collect payments on stocks and bonds.

 ;; TODO: Not yet implemented.

] ;; End ask prsns

 ;; Corps can make payments on L1 loans and collect payments on L2 savings.

 ;; TODO: Not yet implemented.

 ;; The government can pay interest on bank loans.

 ask gcras

 [

 ;; Contact the bank.

 let mybank (bank bank-who)

 ;; Make interest payments on L1 loans.

 if(S1-L1ip-debts > 1)

 [

 LOG-TO-FILE (word "INTEREST PAYMENT ON LOAN:")

 LOG-TO-FILE (word " GCRA " who " to bank " bank-who ".")

 LOG-TO-FILE (word " GCRA L1 loan ------------------ " L1-loan-debts)

 LOG-TO-FILE (word " GCRA L1 assets pre-payment ---- " L1-assets)

 LOG-TO-FILE (word " Bank C1 assets pre-payment----- " ([C1-assets] of

mybank))

 LOG-TO-FILE (word " Current payable --------------- " (S1-L1ip-debts))

 f-bsvcs-client-pays-monthly-interest-on-L1-loan

 ;; NOTE: Due to the rounding of the interest-paid, a residual

 ;; of interest payable will remain each month. I do this to

 ;; keep net worth integral.

 LOG-TO-FILE (word " GCRA L1 assets post-payment --- " L1-assets)

 LOG-TO-FILE (word " Bank C1 assets post-payment --- " ([C1-assets] of

mybank))

 LOG-TO-FILE (word " Residual payable -------------- " (S1-L1ip-debts))

]

]

 ;; The CRB can pay interest to banks on reserve deposits.

 ask banks

 [

 ;; Collect interest payments on required reserve deposits.

 if(S1-rrir-assets > 1)

 [

 let the-crb (crb crb-who)

 LOG-TO-FILE (word "INTEREST PAYMENT ON RR:")

 LOG-TO-FILE (word " CRB " crb-who " to bank " who ".")

 LOG-TO-FILE (word " Bank C1 assets ---------------- " C1-assets)

 LOG-TO-FILE (word " Bank L1 debts ----------------- " L1-debts)

 LOG-TO-FILE (word " CRB C1 assets ----------------- " ([C1-assets] of the-

crb))

 LOG-TO-FILE (word " Current receivable ------------ " (S1-rrir-assets))

 f-cbsvcs-bank-paid-monthly-interest-on-rr-deposits

 LOG-TO-FILE (word " CRB C1 assets ----------------- " ([C1-assets] of the-

crb))

 LOG-TO-FILE (word " Bank C1 assets ---------------- " (C1-assets))

 LOG-TO-FILE (word " Residual receivable ----------- " (S1-rrir-assets))

]

 ;; Collect interest payments on excess reserve deposits.

 if(S1-erir-assets > 1)

 [

 let the-crb (crb crb-who)

 LOG-TO-FILE (word "INTEREST PAYMENT ON ER:")

 LOG-TO-FILE (word " CRB " ([who] of the-crb) " to bank " who ".")

 LOG-TO-FILE (word " Bank C1 assets ---------------- " C1-assets)

 LOG-TO-FILE (word " Bank L1 debts ----------------- " L1-debts)

 LOG-TO-FILE (word " CRB C1 assets ----------------- " ([C1-assets] of the-

crb))

 LOG-TO-FILE (word " Current receivable ------------ " (S1-erir-assets))

 f-cbsvcs-bank-paid-monthly-interest-on-er-deposits

 LOG-TO-FILE (word " CRB C1 assets ----------------- " ([C1-assets] of the-

crb))

 LOG-TO-FILE (word " Bank C1 assets ---------------- " (C1-assets))

 LOG-TO-FILE (word " Residual receivable ----------- " (S1-erir-assets))

]

] ;; End ask banks

;; end of f-process-interest-payments-monthly

end

;;---|

;; Process payments on loans.

to f-process-payments-on-loans-monthly

;; This routine is to be executed by the observer.

 ;; Monthly loan payments of principal will be made by check

 ;; from/to the loan accts.

 ;; The GCRA can make a payment on L1 loans.

 ask gcras with [L1-loan-debts > 0]

 [

 LOG-TO-FILE (word "GCRA'S PAYMENT ON L1 BANK LOAN")

 f-bsvcs-agent-makes-a-payment-on-loan

]

 ;; Prsns can make payments on L1 loans.

 ask prsns with [L1-loan-debts > 0]

 [

 LOG-TO-FILE (word "PRSN-" who "'S PAYMENT ON L1 BANK LOAN")

 f-bsvcs-agent-makes-a-payment-on-loan

]

 ;; Corps can make payments on L1 loans.

 ;; TODO: Not implemented yet.

 ;; ask corps with [L1-loan-debts > 0]

 ;; [

 ;; LOG-TO-FILE (word "CORP-" who "'S PAYMENT ON L1 BANK LOAN")

 ;; f-bsvcs-agent-makes-a-payment-on-loan

 ;;]

;; end of f-process-payments-on-loans-monthly

end

;;---|

;; Government taxes and spends.

to f-government-spends-and-taxes-monthly

;; This routine is to be executed by the observer.

 ask gcras

Orrery Software Pg. 19 NTF Code for CmLab V1.17

 [

 ;; Tax first, spend second. Ensures money is in the coffers.

 f-government-collects-taxes

 f-government-spends-money

]

;; end of f-government-spends-and-taxes-monthly

end

;;---|

;; Government spends money.

to f-government-spends-money

;; This routine is to be executed the GCRA.

 ;; THEORY:

 ;; This applies to this routine, and also to f-government-collects-taxes.

 ;;

 ;; How government spending and taxes are implemented are a matter of social

 ;; policy. Of course the government performs services when money is spent,

 ;; but as long as the money goes back into its own economy, efficiency of

 ;; of delivery of those services is somewhat irrelevant to the economy.

 ;; Taxing and spending are a means to re-distribute the money from some agents

 ;; to other agents. If that also happens to build infrastructure, good.

 ;; So, I tax a slider-determined % based on net-worth-priv values. Taxes

 ;; are collected monthly, so, e.g., a 1% tax rate amounts to 12% annual tax.

 ;; Then I spend a fixed amount on each person. This is as if they receive

 ;; a regular wage, independent of their wealth.

 ;; The result is I redistribute money from the most wealthy to the most poor.

 ;; For example, I will tax a large amount from a wealthy person and pay

 ;; back a modest wage, while a poor person will pay little and receive a

 ;; modest wage.

 ;; If you vary the tax rate, and the wage rate, then you should be able to

 ;; effectively resist the effects of entropy production (inequitable

 ;; distribution of wealth).

 ;; To achieve the best effect, I need to set the taxes and expenditures to

 ;; roughly equal. I.e. I need to balance the monthly gov't budget.

 LOG-TO-FILE (word "")

 LOG-TO-FILE (word "GCRA SPENDS MONEY")

 ;; Government spends by paying a wage to prsns.

 ;; The government will spend all of its assets.

 ;; I am assuming that taxes have been collected previously and are waiting

 ;; to be spent.

 ;; Contact the bank of the GCRA.

 let gcra-bank (bank bank-who)

 ;; Determine what the monthly wage will be.

 ;; All monies are spent. The budget is balanced.

 let monthly-wage round(L1-assets / g-no-of-prsns)

 ;; Initialize an aggregate variable.

 let wages-paid 0

 LOG-TO-FILE (word " GCRA L1 assets prior to payments -- " L1-assets)

 LOG-TO-FILE (word " Monthly wage ---------------------- " monthly-wage)

 ;; This functions like a prsn-to-prsn check, and requires six entries.

 ;; Two in client's check books. Four in bank back room records.

 ask prsns

 [

 ;; Contact bank

 let prsn-bank (bank bank-who)

 ;; Put money into prsn's bank account. Entry #1.

 ask prsn-bank [set L1-debts (L1-debts + monthly-wage)]

 ;; Assets follow debts. Entry #2.

 ask prsn-bank [set L1-assets (L1-assets + monthly-wage)]

 ;; Enter the deposit into prsns check-book. Entry #3.

 ;; At this point the net change in prsn-bank is zero.

 LOG-TO-FILE (word " PRSN " who " L1 assets prior to payment - " L1-assets)

 set L1-assets (L1-assets + monthly-wage)

 LOG-TO-FILE (word " PRSN " who " L1 assets after payment ---- " L1-assets)

 ;; Enter the payment into the gov't tally-book.

 set wages-paid (wages-paid + monthly-wage)

]

 ;; Remove the money from GCRA bank account. Entry #4.

 ask gcra-bank [set L1-debts (L1-debts - wages-paid)]

 ;; Assets follow debts. Entry #5.

 ask gcra-bank [set L1-assets (L1-assets - wages-paid)]

 ;; At this point the net change in gcra-bank is zero.

 ;; Note the payments in the gov't check book. Entry #6.

 set L1-assets (L1-assets - wages-paid)

 LOG-TO-FILE (word " Total wages paid ------------------ " wages-paid)

 LOG-TO-FILE (word " GCRA L1 assets after all payments - " L1-assets)

 ;; TODO: When I start taxing banks and corps, I need to add payments

 ;; to banks and corps.

;; end of f-government-spends-money

end

;;---|

;; Government collects a tax of net worth.

to f-government-collects-taxes

;; This routine is to be executed by the GCRA.

 if(g-net-worth-tax-rate > 0)

 [

 ;; THEORY: See the routine f-government-spends-money for a complete

 ;; description of the approach to government taxing and spending.

 ;; The government collects a "net worth" tax and puts it into its

 ;; "Government Consolidated Revenue Account", i.e. its GCRA.

 ;; It does not tax GCRA or crb accounts.

 ;; Private CRB "C" accounts are considered a sub-account of GCRA.

 ;; TODO: Add taxes for corps and private bank worth.

 ;; Identify the bank of the GCRA.

 ;; The GCRA is not a bank. It keeps its accounts in a commercial bank.

 let gcra-bank (bank bank-who)

 let taxes-due 0 ;; Initialize a working variable.

 let all-taxes-paid 0 ;; initialize an aggregate to collect all taxes paid.

 ;; This functions like a prsn-to-prsn check, and requires six entries.

 ;; Two in client's check books. Four in bank back room records.

 ask prsns

 [

 LOG-TO-FILE (word "PRSN " who " PAYS TAXES")

 f-compute-prsn-net-worth

 LOG-TO-FILE (word " Prsn net worth -------------------- " net-worth-priv)

 set taxes-due round(net-worth-priv * g-net-worth-tax-rate / 100)

Orrery Software Pg. 20 NTF Code for CmLab V1.17

 ;; Taxes are paid by bank-to-bank check.

 ;; Contact the prsn's bank.

 let prsn-bank (bank bank-who)

 LOG-TO-FILE (word " Prsn L1 assets before payment ----- " L1-assets)

 ;; Remove taxes from prsns bankbook. Entry #1.

 set L1-assets (L1-assets - taxes-due)

 ;; Remove the taxes from the prsns checking account. Entry #2.

 ask prsn-bank [set L1-debts (L1-debts - taxes-due)]

 ;; Assets follow debts. Entry #3.

 ask prsn-bank [set L1-assets (L1-assets - taxes-due)]

 ;; Record the amount as paid, for later entry to GCRA bankbook.

 ;; At this point the net change in prsn-bank is zero.

 set all-taxes-paid (all-taxes-paid + taxes-due)

 LOG-TO-FILE (word " Taxes paid ------------------------ " taxes-due)

 LOG-TO-FILE (word " Prsn L1 assets after payment ------ " L1-assets)

]

 LOG-TO-FILE (word " GCRA L1 assets before collection -- " L1-assets)

 LOG-TO-FILE (word " Total of all taxes collected ------ " all-taxes-paid)

 ;; Government adjusts its own bankbook. Entry #4.

 set L1-assets (L1-assets + all-taxes-paid)

 ;; Add the money to the gov't checking account. Entry #5.

 ask gcra-bank [set L1-debts (L1-debts + all-taxes-paid)]

 ;; Assets follow debts. Entry #6.

 ask gcra-bank [set L1-assets (L1-assets + all-taxes-paid)]

 ;; At this point the net change in gcra-bank is zero.

 LOG-TO-FILE (word " GCRA L1 assets after collection --- " L1-assets)

 ;; TODO: Add taxes on corporations.

 ;; TODO: Add taxes on private net worth of banks.

]

;; end of f-government-collects-taxes

end

;;---|

;; Everybody visits their bank.

to f-everybody-visits-their-bank

;; This routine is to be executed by the observer.

;; It is executed on setup, and monthly.

 LOG-TO-FILE (word " EVERYBODY VISITS BANK")

 ;; The prsns and corps must visit their banks.

 f-prsns-visit-banks-daily

 ;; TODO: Add corps here.

 ;; f-corps-visit-banks-daily

;; end of f-everybody-visits-their-bank

end

;;---|

;; Each prsn has accounts with one bank.

to f-prsns-visit-banks-daily

;; This routine is to be executed by the observer.

 ask prsns

 [

 ;; The following routine is used for daily visits, but also for setup,

 ;; and to "initialize" new prsns.

 f-prsn-visits-a-bank

]

;; end of f-prsns-visit-banks-daily

end

;;---|

;; A prns deposits cash into an L1 (checking) account and moves it about.

to f-prsn-visits-a-bank

 ;; This routine is to be executed by a prsn.

 ;; This routine is used for daily visits, but also for setup,

 ;; and to initialize new prsns.

 ;; THEORY: The money must be shifted from the broadest categories towards the

 ;; most narrow categories to be useful when needed. Each shift requires

 ;; an assessment of needs and supply all of the way up the chain.

 ;; That is tricky and tedious, and prone to coding error.

 ;; The easiest way to handle it is to work through the categories of money

 ;; from L0, L1, L2 to loan, and at each step, (PART A) deposit all of

 ;; it to the next broader category of money, and then (PART B) determine

 ;; what is needed and move that much back. Ultimately any shortage must

 ;; come from a bank loan if possible, and any overage goes to savings.

 ;; This approach depends on the use of negatives to handle subtractions

 ;; implicitly, and so makes for much simpler code.

 ;; Contact the bank.

 let my-bank (bank bank-who)

 LOG-TO-FILE (word "PRSN " who " VISITS BANK " bank-who ".")

 let affected-assets (L0-assets + L1-assets + L2-assets)

 LOG-TO-FILE (word " My P0-assets were ------------- " P0-assets)

 LOG-TO-FILE (word " My L0-assets were ------------- " L0-assets)

 LOG-TO-FILE (word " My L1-assets were ------------- " L1-assets)

 LOG-TO-FILE (word " My L2-assets were ------------- " L2-assets)

 LOG-TO-FILE (word " Total affected assets --------- " affected-assets)

 ;; ----------------------------------

 ;; Establish appropriate P0/L0 holdings.

 ;; ----------------------------------

 ;; (PART A) Deposit all cash.

 ASSERT (P0-assets = L0-assets) "Bad cash" who

 f-bsvcs-prsn-deposits-cash L0-assets

 LOG-TO-FILE (word " My P0-assets are -------------- " P0-assets)

 LOG-TO-FILE (word " My L0-assets are -------------- " L0-assets)

 ;; (PART B) Remove required amount of cash.

 f-bsvcs-prsn-withdraws-cash g-p-daily-L0-allocation

 LOG-TO-FILE (word " My P0-assets are -------------- " P0-assets)

 LOG-TO-FILE (word " My L0-assets are -------------- " L0-assets)

 ;; ----------------------------------

 ;; Establish appropriate L1 holdings.

 ;; ----------------------------------

 ;; (PART A) Deposit all checking into savings.

 LOG-TO-FILE (word " My L1-assets are -------------- " L1-assets)

 f-bsvcs-prsn-moves-L1-to-L2 L1-assets

 LOG-TO-FILE (word " My L1-assets are -------------- " L1-assets)

 ;; (PART B) Put required amount of money back into L1.

 f-bsvcs-prsn-moves-L2-to-L1 g-p-daily-L1-allocation

 LOG-TO-FILE (word " My L1-assets are -------------- " L1-assets)

 ;; ----------------------------------

Orrery Software Pg. 21 NTF Code for CmLab V1.17

 ;; Establish appropriate L2 holdings.

 ;; ----------------------------------

 ;; THEORY: This will be different. Savings cannot be negative.

 ;; A prsn must maintain sufficient money in checking to get

 ;; throught a typical day (as determined by the standard

 ;; allocations), and this is done from the savings. When

 ;; savings fall below zero, it must be topped up by a bank

 ;; loan of a standard size. If the bank has insufficient

 ;; cash reserves, then it can no longer offer loans, and

 ;; the prsn becomes insolvent (bankrupt).

 LOG-TO-FILE (word " Pre-loan - My L2-assets are --- " L2-assets)

 ;; This routine will determine:

 ;; - if a loan is needed to top up the L2 assets.

 ;; - if the bank has excess reserves.

 ;; - size of the loan.

 ;; - whether the bank can continue to make loans.

 ;; - if this agent is solvent or insolvent.

 f-bsvcs-prsn-negotiates-an-L1-loan

 LOG-TO-FILE (word " Post-loan - My L0-assets are -- " L0-assets)

 LOG-TO-FILE (word " Post-loan - My L1-assets are -- " L1-assets)

 LOG-TO-FILE (word " Post-loan - My L2-assets are -- " L2-assets)

 ;; Note, the amount of the loan is placed in the agent's

 ;; L1 checking account, and is moved to savings the next

 ;; time the agent visits a bank, using this procedure.

 set affected-assets (L0-assets + L1-assets + L2-assets)

 LOG-TO-FILE (word " Total affected assets --------- " affected-assets)

 ;; End of f-prsn-visits-a-bank

end

;;---|

;; The CRB supervises the management of reserve deposits.

to f-the-crb-reconciles-with-banks-daily

;; This routine is to be executed by the observer.

 LOG-TO-FILE (word "")

 LOG-TO-FILE (word "CRB RECONCILES RESERVE DEPOSITS")

 let crb-bank (one-of crbs) ;; More efficient this way.

 ask banks

 [

 LOG-TO-FILE (word "BANK " who)

 LOG-TO-FILE (word " L1-loan-assets ---------------- " L1-loan-assets)

 LOG-TO-FILE (word " Old settings:")

 LOG-TO-FILE (word " P0-vc-assets ------------------ " P0-vc-assets)

 LOG-TO-FILE (word " P0-rr-assets ------------------ " P0-rr-assets)

 LOG-TO-FILE (word " P0-er-assets ------------------ " P0-er-assets)

 let ttl-reserves (P0-vc-assets + P0-rr-assets + P0-er-assets)

 LOG-TO-FILE (word " Total reserves ---------------- " ttl-reserves)

 ;; This bank controls limited reserves of cash

 ;; I am going to withdraw all CRB deposits and re-deposit the correct amounts.

 ;; This is instead of shifing cash from place to place, which gets tricky.

 ;; This handles any negatives that may have occured

 ;; in the course of business.

 f-cbsvcs-bank-moves-er-to-vc P0-er-assets

 f-cbsvcs-bank-moves-rr-to-vc P0-rr-assets

 ;; Deposit the required reserves first.

 ;; The given required reserve ratio is a percentage.

 ;; We need a numeric factor. Convert percentage to numeric factor.

 let rr-factor (g-reserve-requirement-ratio / 100)

 let needed-rr-deposits floor(L1-loan-assets * rr-factor)

 if(needed-rr-deposits > ttl-reserves)

 [

 set needed-rr-deposits ttl-reserves

]

 f-cbsvcs-bank-moves-vc-to-rr needed-rr-deposits

 let remaining-reserves (ttl-reserves - needed-rr-deposits)

 ;; Now I save some in the vault.

 let my-vc g-minimum-vault-cash

 if(my-vc > remaining-reserves)

 [

 set my-vc remaining-reserves

]

 set remaining-reserves (remaining-reserves - my-vc)

 ;; The rest is excess reserves.

 f-cbsvcs-bank-moves-vc-to-er remaining-reserves

 LOG-TO-FILE (word " New settings:")

 LOG-TO-FILE (word " P0-vc-assets ------------------ " P0-vc-assets)

 LOG-TO-FILE (word " P0-rr-assets ------------------ " P0-rr-assets)

 LOG-TO-FILE (word " P0-er-assets ------------------ " P0-er-assets)

 Set ttl-reserves (P0-vc-assets + P0-rr-assets + P0-er-assets)

 LOG-TO-FILE (word " Total reserves ---------------- " ttl-reserves)

 ifelse(P0-er-assets > 0)

 [

 set b-bank-can-make-loans 1

 LOG-TO-FILE (word " Bank loan dept status - OPEN")

]

 ;; Else

 [

 set b-bank-can-make-loans 0

 LOG-TO-FILE (word " Bank loan dept status - CLOSED")

]

]

;; end of f-the-crb-reconciles-with-banks-daily

end

;;---|

;; D6 Process all end-of-day banking activities.

;;---|

to do-banking

 ;; This routine is to be executed by the observer.

 if(gb-debug-on = 1)

 [

 ifelse((gs-debug-step-chooser = "all") or (gs-debug-step-chooser = "banking"

))

 [set gb-debug-flow-on 1 LOG-TO-FILE "" LOG-TO-FILE word "Do-banking: Debug on;

tick = " ticks]

 [set gb-debug-flow-on 0]

]

 f-everybody-visits-their-bank

 ;; The visit to the bank can set prsn or bank bankruptcy flags.

 ;; TODO: also banks and corps, when implemented. Banks may open savings

 ;; accounts, as may corps?

Orrery Software Pg. 22 NTF Code for CmLab V1.17

 ;; Banks will now have odd reserves, and will need to reconcile them.

 ;; The government records need to be reconciled with bank records.

 ;; The CRB reconciles reserve deposits with each bank daily.

 f-the-crb-reconciles-with-banks-daily

 ;; Banks may have been exhausted of their last abilities to earn C1-assets.

 ;; This sets a bankruptcy flag for banks.

 f-bsvcs-bank-checked-for-bankruptcy

 ;; Process bankruptcies of prsns.

 let prsn-bankruptcies (prsns with [b-prsn-is-bankrupt = 1])

 ask prsn-bankruptcies

 [

 f-bsvcs-process-prsn-bankruptcy

]

 ;; Process bankruptcies of banks.

 let bank-bankruptcies (banks with [b-bank-is-bankrupt = 1])

 ask bank-bankruptcies

 [

 f-bsvcs-process-bank-bankruptcy

]

 ;; TODO: Also corps, when implemented.

;; end of do-banking

end

;;---|

;; D7 - do-post-tick procedure(s)

;;---|

to do-post-tick

 ;; This routine is to be executed by the observer.

 if(gb-debug-on = 1)

 [

 ifelse((gs-debug-step-chooser = "all") or (gs-debug-step-chooser = "post-

tick"))

 [set gb-debug-flow-on 1 LOG-TO-FILE "" LOG-TO-FILE word "Do-Post-tick: Debug

on; tick = " ticks]

 [set gb-debug-flow-on 0]

]

 ;; This code ensures that the number of banks active in the economy

 ;; matches the numbers implied by the sliders.

 ;; Missing banks are created. Overages are allowed to fall by

 ;; attrition, through bankruptcies.

 set g-no-of-prsns-max (g-no-of-prsns-per-bank * g-no-of-banks-max)

 let no-of-banks (count banks)

 while[no-of-banks < g-no-of-banks-max]

 [

 ;; Create a new bank, and it as an average bank.

 f-bank-is-funded-as-average

 set no-of-banks (count banks)

]

 ;; This code ensures that the number of prsns active in the economy

 ;; matches the numbers implied by the sliders.

 ;; Missing prsns are created. Overages are allowed to fall by

 ;; attrition, through bankruptcies.

 ;; Recompute the expected number of prsns, given that the slider may

 ;; have been changed.

 set g-no-of-prsns-max (g-no-of-prsns-per-bank * g-no-of-banks-max)

 set g-no-of-prsns (count prsns)

 while[g-no-of-prsns < g-no-of-prsns-max]

 [

 ;; Create a new prsn, and fund him/her as an average prsn.

 f-prsn-is-funded-as-average

 set g-no-of-prsns (count prsns)

]

 ;; MANUAL CHANGE FOR DEBUG.

 ;; This is a call to a debug routine which could be suppressed if all is okay.

 ;; This is one of a group of such calls, most of which are between steps in

 ;; the 'Go' routine. They are suppressed there, but can be enabled again.

 ;; I have decided to leave this one active, for now.

 ;; It checks all agents, every tick.

 if(frb-agents-are-all-valid = false)

 [LOG-TO-FILE (word "Agents failed validity test.")]

 ;; Update the aggregates for display in the monitors.

 f-update-aggregates

 display

 LOG-TO-FILE " Do-post-tick: procedure completed."

end

;;---|

;; A new prsn is created and funded as an average prsn.

to f-prsn-is-funded-as-average

;; This routine is to be executed by the observer.

 ;; TODO: After debugging, suppress this.

 ;; f-force-debug-output-on

 ;; TODO: Remove this if annoying.

 ;; beep

 ;; I am interested in the steady-state distribution of wealth, so I don't

 ;; want to bias the distribution by adding a new prsn that is either too

 ;; wealthy or too poor. Neither do I want to change the MS-1 money supply

 ;; (I.e. the physical money base). So, I have this three-step process

 ;; to construct a new prsn.

 ;; Step 1 - the population is canvassed to determine total wealth.

 ;; Step 2 - the population is taxed to gather sufficient L1-assets.

 ;; Step 3 - the prsn is fashioned as a prsn of average wealth.

 ;;

 ;; The impact of this approach should be that L1-assets are transferred

 ;; to the prsn, causing the relative distribution to remain the same,

 ;; but translating/shifting the distribution. I could do step 2 in two

 ;; ways:

 ;; - I could pro-rate the contribution from each prsn. This would have

 ;; the effect of making the distribution more compact. Those with

 ;; the greatest debt or wealth would experience the greatest movement

 ;; towards zero wealth, while those with little wealth would not be

 ;; affected much.

 ;; OR

 ;; - I could collect a standard fixed sum from each prsn. This would

 ;; have the effect of translating the entire population towards

 ;; zero wealth. All would benefit or suffer equally, depending on

 ;; whether the average wealth was negative or positive respectively.

 ;;

 ;; I have implemented the pro-rated version of Step 2.

Orrery Software Pg. 23 NTF Code for CmLab V1.17

 ;; TODO: After debugging, remove this.

 ;; Toggle debug on.

 ;; let old-debug gb-debug-on

 ;; set gb-debug-on 0

 ;; f-toggle-debug

 ;; set gb-debug-show-steps true

 LOG-TO-FILE (word "Creating a new prsn.")

 ;; STEP 1 - Find the total net worth of all prsns.

 ask prsns [f-compute-prsn-net-worth]

 let total-net-worth (sum [net-worth-priv] of prsns)

 let mean-net-worth (mean [net-worth-priv] of prsns)

 let current-no-of-prsns (count prsns)

 ;; Adjust for intended additional prsn.

 let target-net-worth

 (mean-net-worth * current-no-of-prsns / (1 + current-no-of-prsns))

 LOG-TO-FILE (word " Current no of prsns ----------- " current-no-of-prsns)

 LOG-TO-FILE (word " Total net worth of prsns ------ " total-net-worth)

 LOG-TO-FILE (word " Target net worth of new prsn -- " target-net-worth)

 let total-collected 0

 let donation-factor 0

 let amount-due 0

 create-prsns 1

 [

 set g-counts-p-births (g-counts-p-births + 1)

 f-initialize-new-prsn

 set heading 90

 ;; Move to a random point.

 setxy random-xcor random-ycor

 ;; Although initialization simply adds a bank-who variable to prsn,

 ;; it effectively opened a checking and savings account. The

 ;; money will be moved into its checking account.

 ask other prsns

 [

 ;; Canvass each prsn and collect the appropriate assets (debts?)

 ;; The signs on the numbers are important here. Either part of the

 ;; following ratio may be negative. The effect is that poor prsns

 ;; with negative net worth will be given a little, while rich prsns

 ;; with positive net worth will have some taken.

 set donation-factor (net-worth-priv / total-net-worth)

 set amount-due round(target-net-worth * donation-factor)

 ;; A rounded figure to keep things tidy.

 LOG-TO-FILE (word " Net-worth-priv ---------------- " net-worth-priv)

 LOG-TO-FILE (word " Donation-factor --------------- " donation-factor)

 LOG-TO-FILE (word " Amount-due -------------------- " amount-due)

 ;; Contact other prsn's bank.

 let his-bank (bank bank-who)

 ;; Mark payment in his check book. Entry #1.

 set L1-assets (L1-assets - amount-due)

 ;; Inform his bank that a check was written. Entries #2 and #3.

 ask his-bank

 [

 set L1-assets (L1-assets - amount-due)

 set L1-debts (L1-debts - amount-due)

]

 ;; The net worth of the bank does not change. The net worth of

 ;; the doner of the cash does change.

 ;; Keep a running record of the donations.

 set total-collected (total-collected + amount-due)

 ;; Some of the amounts collected may have been negative.

 ;; That is OK.

] ;; end ask other prsns

 ;; The collection is now done. The new prsn deposits it into a

 ;; checking account at his/her bank.

 LOG-TO-FILE (word " Total-collected --------------- " total-collected)

 ;; Enter it into the personal check book. Entry #4.

 set L1-assets (L1-assets + total-collected)

 ;; Contact the bank

 let my-bank (bank bank-who)

 ;; Deposit the aggregate check into the checking account.

 ;; Entries #5 and #6.

 ask my-bank

 [

 set L1-assets (L1-assets + total-collected)

 set L1-debts (L1-debts + total-collected)

]

 ;; This prsn now has a large pile of money, or a large debt,

 ;; recorded in their checking account. They need to either

 ;; move some to savings and currency, or take out a bank loan

 ;; to cover the debt and get them back ready for action in the

 ;; economy. Either way, they should have average net worth.

 f-prsn-visits-a-bank

 ;; They now have cash, and money in checking and savings accounts,

 ;; and possibly a bank loan that provides those funds.

]

 set g-no-of-prsns (count prsns)

 ;; TODO: Remove this after debug.

 ;; f-force-debug-output-off

;; end of f-prsn-is-funded-as-average

end

;;---|

;; A new bank is created and funded as an average bank.

to f-bank-is-funded-as-average

;; This routine is to be executed by the observer.

 ;; TODO: After debugging, suppress this.

 ;; f-force-debug-output-on

 ;; TODO: Remove this if annoying.

 ;; beep

 ;; I am interested in the steady-state distribution of wealth, so I don't

 ;; want to bias the distribution by adding a new bank that is either too

 ;; wealthy or too poor. Neither do I want to change the MS-1 money supply

 ;; (I.e. the physical money base). So, I have this nine-step process

 ;; to construct a new bank:

 ;; Step 1 - Assemble sufficient L1-assets;

 ;; Step 2 - Assemble sufficient P0-assets;

 ;; Step 3 - Assemble sufficient clients.

 ;;

 ;; Each of the above steps has three sub-steps:

 ;; Step A - the population is canvassed to determine total assets.

 ;; Step B - the population is taxed to gather sufficient assets.

 ;; Step C - the bank is fashioned as a bank of average assets.

 ;;

Orrery Software Pg. 24 NTF Code for CmLab V1.17

 ;; The impact of this approach should be that P0 and L1-assets are transferred

 ;; to the bank, causing the relative distribution to remain the same,

 ;; but translating/shifting the distribution. I could do step 2 in two

 ;; ways:

 ;; - I could pro-rate the contribution from each bank. This would have

 ;; the effect of making the distribution more compact. Those with

 ;; the greatest debt or wealth would experience the greatest movement

 ;; towards zero wealth, while those with little wealth would not be

 ;; affected much.

 ;; OR

 ;; - I could collect a standard fixed sum from each bank. This would

 ;; have the effect of translating the entire population towards

 ;; zero wealth. All would benefit or suffer equally, depending on

 ;; whether the average wealth was negative or positive respectively.

 ;;

 ;; I have implemented the pro-rated version of Step 2.

 ;; TODO: QQQ After debugging, remove this.

 ;; Toggle debug on.

 let old-debug gb-debug-on

 set gb-debug-on 0

 f-toggle-debug

 set gb-debug-show-steps true

 LOG-TO-FILE (word "Creating a new bank.")

 ;; STEP 1 - Assemble C1 assets.

 ;; Step 1A - Canvass population for wealth.

 ask banks [f-compute-bank-net-worth]

 let total-net-worth (sum [net-worth-priv] of banks)

 let mean-net-worth (mean [net-worth-priv] of banks)

 set g-no-of-banks (count banks)

 ;; Adjust for intended additional bank.

 let target-net-worth

 (mean-net-worth * g-no-of-banks / (1 + g-no-of-banks))

 LOG-TO-FILE (word " Current no of banks ----------- " g-no-of-banks)

 LOG-TO-FILE (word " Total net worth of banks ------ " total-net-worth)

 LOG-TO-FILE (word " Target net worth of new bank -- " target-net-worth)

 ;; Step 1B - Collect the C1-assets.

 let total-C1-collected 0

 let C1-donation-factor 0

 let amount-C1-due 0

 let new-bank one-of banks ;; A dummy assignment.

 create-banks 1

 [

 set g-counts-b-births (g-counts-b-births + 1)

 set new-bank (self) ;; Create a handle for the new bank.

 LOG-TO-FILE (word " Bank <<<" ([who] of new-bank) ">>> created.")

 f-initialize-new-bank

 set heading 90

 ;; Move to a random point.

 setxy random-xcor random-ycor

 ask other banks

 [

 ;; STEP 1B - Canvass each bank and collect the appropriate C1-assets.

 ;; The signs on the numbers are important here. Either part of the

 ;; following ratio may be negative. The effect is that poor prsns

 ;; with negative net worth will be given a little, while rich prsns

 ;; with positive net worth will have some taken.

 set C1-donation-factor (net-worth-priv / total-net-worth)

 set amount-C1-due round(target-net-worth * C1-donation-factor)

 ;; Rounded figures to keep things tidy.

 LOG-TO-FILE (word " Net-worth-priv ---------------- " net-worth-priv)

 LOG-TO-FILE (word " C1-donation-factor ------------ " C1-donation-factor)

 LOG-TO-FILE (word " Amount-C1-donated ------------- " amount-C1-due)

 ;; Mark payment in this doner bank's check book. Entry #1.

 set C1-assets (C1-assets - amount-C1-due)

 ;; Inform back room that a check was written. Entries #2 and #3.

 set L1-assets (L1-assets - amount-C1-due)

 set L1-debts (L1-debts - amount-C1-due)

 ;; Step 1C - Install the C1-assets in the new bank.

 ;; Inform recipient bank that a check was written. Entries #4, #5 and #6.

 ask new-bank

 [

 set C1-assets (C1-assets + amount-C1-due)

 set L1-assets (L1-assets + amount-C1-due)

 set L1-debts (L1-debts + amount-C1-due)

]

 ;; The net worth of the back room of banks does not change. The

 ;; net worth of the front rooms does change.

 ;; Keep a running record of the donations.

 set total-C1-collected (total-C1-collected + amount-C1-due)

 ;; Some of the amounts collected may have been negative.

 ;; That is OK.

] ;; end ask other banks

 ;; The collection is now done.

 LOG-TO-FILE (word " Total-C1-donated -------------- " total-C1-collected)

 ;; This bank now has a large pile of money, or a large debt,

 ;; recorded in their checking account.

] ;; end of create-banks 1

 ;; The observer takes over again.

 set g-no-of-banks (count banks)

 ;; STEP 2 - Collect a fair share of physical money (P0).

 ;; Step 2A - Canvass the banks to determine total P0-assets.

 ;; This has to be a little different, because between Steps 1A and 2A

 ;; the new bank has been created.

 ask banks [f-compute-bank-net-worth]

 let total-P0 0 ;; a dummy declaration.

 let mean-P0 0 ;; a dummy declaration.

 let no-of-other-banks 0 ;; a dummy declaration.

 ask new-bank

 [

 ;; This excludes the data for the new-bank, which should be zero

 ;; in any case.

 set total-P0 (sum [P0-all-assets] of other banks)

 set mean-P0 (mean [P0-all-assets] of other banks)

 set no-of-other-banks (count other banks)

 ;; Adjust for intended additional bank.

]

 let target-P0

 floor(mean-P0 * no-of-other-banks / (1 + no-of-other-banks))

 LOG-TO-FILE (word " Current no of banks ----------- " g-no-of-banks)

Orrery Software Pg. 25 NTF Code for CmLab V1.17

 LOG-TO-FILE (word " Total P0-assets of banks ------ " total-P0)

 LOG-TO-FILE (word " Target P0-assets of new bank -- " target-P0)

 ;; Step 2B - Collect physical P0-assets.

 let total-P0-collected 0

 let P0-donation-factor 0

 let amount-P0-due 0

 ask new-bank

 [

 ;; This trick excludes the new-bank from making a donation.

 ask other banks

 [

 ;; Canvass each bank and collect the appropriate physical assets (P0).

 ;; The signs on the numbers are all positive here. The effect is that

 ;; poor banks with few physical assets will lose a little, while rich

 ;; banks with large physical assets will lose a lot.

 set P0-donation-factor (P0-all-assets / total-P0)

 set amount-P0-due round(target-P0 * P0-donation-factor)

 ;; Rounded figures to keep things tidy.

 LOG-TO-FILE (word " P0 all assets ----------------- " P0-all-assets)

 LOG-TO-FILE (word " P0-donation-factor ------------ " P0-donation-factor)

 LOG-TO-FILE (word " Amount-P0-donated ------------- " amount-P0-due)

 ;; Remove from doner bank. Entry #1.

 set P0-vc-assets (P0-vc-assets - amount-P0-due)

 ;; Step 2C - Add the assets to the new bank.

 ;; Add to recipient bank's bank vault. Entry #2.

 ask new-bank

 [

 set P0-vc-assets (P0-vc-assets + amount-P0-due)

]

 ;; Keep a running record of the donations.

 set total-P0-collected (total-P0-collected + amount-P0-due)

] ;; end ask other banks

] ;; end ask new-bank

 ;; The collection is now done.

 LOG-TO-FILE (word " Total-P0-donated -------------- " total-P0-collected)

 ;; end of Step 2 - Collect physical assets (P0).

 ;; The observer takes over again.

 ;; Step 3 - Now we have to gather some clients from other banks.

 ;; Step 3A - Determine how many clients there are.

 set g-no-of-prsns (count prsns) ;; Probably redundant

 let target-no-of-clients (g-no-of-prsns / g-no-of-banks)

 let clients-gathered 0

 ;; Steps 3B and 3C - These will be done together.

 let client-factor 0 ;; a dummy declaration.

 let clients-due 0 ;; a dummy declaration.

 ask new-bank

 [

 ask other banks

 [

 set client-factor (no-of-prsn-clients / g-no-of-prsns)

 ;; Rounded to keep things tidy.

 set clients-due round(target-no-of-clients * client-factor)

 ;; For each bank I have to randomly select a subset of clients

 ;; and transfer them to the new bank.

 let other-bank self ;; Give the bank in control an explicit handle.

 let other-bank-who ([who] of self)

 let prsn-client-set (prsns with [bank-who = other-bank-who])

 ;; Select a random subset of size clients-due.

 set prsn-client-set (n-of clients-due prsn-client-set)

 ask prsn-client-set

 [

 ;; Ask each prsn to transfer its accounts to the new bank.

 ;; The prsn is a client of other-bank.

 ;; Each transfer requires four entries. The client's bank book does

 ;; not need to be changed, but it is the reference that determines

 ;; the amount of assets to be moved.

 LOG-TO-FILE (word " Prsn " who " transferred.")

 let amount-to-move L1-assets ;; From bank book.

 ask other-bank

 [

 set L1-assets (L1-assets - amount-to-move)

 set L1-debts (L1-debts - amount-to-move)

]

 ask new-bank

 [

 set L1-assets (L1-assets + amount-to-move)

 set L1-debts (L1-debts + amount-to-move)

] ;; end of ask new-bank

] ;; end of ask prsn-client-set

 LOG-TO-FILE (word " No of clients transferred ------ "

 (count prsn-client-set))

 set clients-gathered (clients-gathered + clients-due)

] ;; end of ask other banks

] ;; end of ask new-bank

 LOG-TO-FILE (word " Total clients transferred ------ " clients-gathered)

 f-the-crb-reconciles-with-banks-daily

 ;; They now have cash, and assets, and clients.

 set g-no-of-banks (count banks)

 ;; TODO: Remove this after debug.

 ;; f-force-debug-output-off

;; end of f-bank-is-funded-as-average

end

;;---|

;; COMPUTATION OF NET WORTH OF ALL AGENTS

;;---|

;;---|

;; Compute the net worth of each of the agents.

to f-compute-each-net-worth

;; This routine is to be executed the observer.

 LOG-TO-FILE (word "Each net worth will be computed. ")

 ask gcras [f-compute-gcra-net-worth]

 ask crbs [f-compute-crb-net-worth]

 ask banks [f-compute-bank-net-worth]

 ask prsns [f-compute-prsn-net-worth]

 ask corps [f-compute-corp-net-worth]

;; end of f-compute-each-net-worth

Orrery Software Pg. 26 NTF Code for CmLab V1.17

end

;;---|

;; Compute the net worth of the GCRA (Government Consolidated Revenue Accounts).

to f-compute-gcra-net-worth

;; This routine is to be executed the GCRA.

 set ttl-P0-assets 0 ;; aggregate of all physical assets

 set ttl-publ-assets 0

 set ttl-publ-assets (ttl-publ-assets + L1-assets)

 ;; ss set ttl-publ-assets (ttl-publ-assets + L2-assets)

 set ttl-publ-debts 0

 set ttl-publ-debts (ttl-publ-debts + L1-loan-debts)

 ;; ss set ttl-publ-debts (ttl-publ-debts + L3-debts)

 set net-worth-publ (ttl-publ-assets - ttl-publ-debts)

 set ttl-priv-assets 0

 set ttl-priv-debts 0

 set net-worth-priv 0

 ;; Money supply aggregates

 set msi-assets 0 ;; Physical money supply

 set msi-debts 0 ;; Physical money supply

 set msii-assets ttl-publ-assets ;; Logical money supply

 set msii-debts ttl-publ-debts ;; Logical money supply

 set msiii-assets 0 ;; Shadow money supply

 set msiii-debts (S1-L1ip-debts) ;; Shadow money supply

 ;; TODO: When this is non-suppressed, next line is needed instead.

 ;; ss set msiii-debts (S1-L1ip-debts + S1-L3ip-debts) ;; Shadow money supply

;; end of f-compute-gcra-net-worth

end

;;---|

;; Compute the net worth of the CRB (Central Reserve Bank).

to f-compute-crb-net-worth

;; This routine is to be executed the crb.

 set ttl-P0-assets 0

 set ttl-P0-assets (ttl-P0-assets + P0-assets)

 set ttl-P0-assets (ttl-P0-assets + P0-rr-assets)

 set ttl-P0-assets (ttl-P0-assets + P0-er-assets)

 set ttl-publ-assets L0-assets

 set ttl-publ-debts L0-debts

 set net-worth-publ (ttl-publ-assets - ttl-publ-debts)

 set ttl-priv-assets 0

 set ttl-priv-assets (ttl-priv-assets + C1-assets)

 ;; xx set ttl-priv-assets (ttl-priv-assets + c2-assets)

 set ttl-priv-debts 0

 set ttl-priv-debts (ttl-priv-debts + S1-rrip-debts)

 set ttl-priv-debts (ttl-priv-debts + S1-erip-debts)

 set net-worth-priv (ttl-priv-assets - ttl-priv-debts)

 let shadow-money (S1-rrip-debts + S1-erip-debts)

 ;; Money supply aggregates

 set msi-assets ttl-P0-assets ;; Physical money supply

 set msi-debts P0-debts ;; Physical money supply

 set msii-assets ttl-priv-assets ;; Logical money supply

 set msii-debts 0 ;; Logical money supply

 set msiii-assets 0 ;; Shadow money supply

 set msiii-debts shadow-money ;; Shadow money supply

;; end of f-compute-crb-net-worth

end

;;---|

;; Compute the net worth of a bank.

to f-compute-bank-net-worth

;; This routine is to be executed a bank.

 set ttl-P0-assets 0

 set ttl-P0-assets (ttl-P0-assets + P0-vc-assets)

 ;; This is totalled differently from ttl-P0-assets because this includes

 ;; some that are offset by P0-xx-debts. I.e. some of these assets are

 ;; not in the posession of the bank, and should not be counted here

 ;; as that would cause double counting. But the variable P0-all-assets

 ;; is intended to include all assets under the control of this bank, and

 ;; not merely those in its posession. So I include those in the CRB

 ;; as part of the P0-all-assets variable, based on this bank's records

 ;; of its CRB deposits.

 set P0-all-assets 0

 set P0-all-assets (P0-all-assets + P0-vc-assets)

 set P0-all-assets (P0-all-assets + P0-er-assets)

 set P0-all-assets (P0-all-assets + P0-rr-assets)

 set ttl-publ-assets 0

 set ttl-publ-assets (ttl-publ-assets + L1-assets)

 set ttl-publ-assets (ttl-publ-assets + L1-loan-assets)

 set ttl-publ-debts 0

 set ttl-publ-debts (ttl-publ-debts + L1-debts)

 set ttl-publ-debts (ttl-publ-debts + L2-debts)

 ;; ss set ttl-publ-debts (ttl-publ-debts + L3-debts)

 set net-worth-publ (ttl-publ-assets - ttl-publ-debts)

 set ttl-priv-assets 0

 set ttl-priv-assets (ttl-priv-assets + C1-assets)

 set ttl-priv-assets (ttl-priv-assets + S1-L1ir-assets)

 ;; xx set ttl-priv-assets (ttl-priv-assets + c2-assets)

 set ttl-priv-assets (ttl-priv-assets + S1-rrir-assets)

 set ttl-priv-assets (ttl-priv-assets + S1-erir-assets)

 ;; TODO: Run a bank like a corp.

 ;; Debts equal assets, excluding receivables, because it is it's

 ;; own bank.

 set ttl-priv-debts 0

 set ttl-priv-debts (ttl-priv-debts + S1-L2ip-debts)

 ;; xx set ttl-priv-debts (ttl-priv-debts + c2-assets)

 set net-worth-priv (ttl-priv-assets - ttl-priv-debts)

 ;; Money supply aggregates

 set msi-assets 0 ;; Physical money supply

 set msi-assets (msi-assets + P0-vc-assets)

Orrery Software Pg. 27 NTF Code for CmLab V1.17

 set msi-assets (msi-assets + P0-er-assets)

 set msi-assets (msi-assets + P0-rr-assets)

 set msi-debts 0 ;; Physical money supply

 set msi-debts (msi-debts + P0-rr-debts)

 set msi-debts (msi-debts + P0-er-debts)

 set msii-assets 0 ;; Logical money supply

 set msii-assets (msii-assets + L1-assets)

 set msii-assets (msii-assets + L1-loan-assets)

 set msii-assets (msii-assets + C1-assets)

 ;; xx set msii-assets (msii-assets + c2-assets)

 set msii-debts 0 ;; Logical money supply

 set msii-debts (msii-debts + L1-debts)

 set msii-debts (msii-debts + L2-debts)

 set msiii-assets 0 ;; Shadow money supply

 set msiii-assets (msiii-assets + S1-L1ir-assets)

 set msiii-assets (msiii-assets + S1-rrir-assets)

 set msiii-assets (msiii-assets + S1-erir-assets)

 set msiii-debts 0 ;; Shadow money supply

 set msiii-debts (msiii-debts + S1-L2ip-debts)

;; end of f-compute-bank-net-worth

end

;;---|

;; Compute the net worth of a prsn.

to f-compute-prsn-net-worth

;; This routine is to be executed a prsn.

 set ttl-P0-assets P0-assets

 set ttl-publ-assets 0

 set ttl-publ-debts 0

 set net-worth-publ 0

 set ttl-P0-assets P0-assets

 set ttl-priv-assets 0

 set ttl-priv-assets (ttl-priv-assets + L0-assets)

 set ttl-priv-assets (ttl-priv-assets + L1-assets)

 set ttl-priv-assets (ttl-priv-assets + S1-30day-total-assets)

 set ttl-priv-assets (ttl-priv-assets + L2-assets)

 set ttl-priv-assets (ttl-priv-assets + S1-L2ir-assets)

 ;; ss set ttl-priv-assets (ttl-priv-assets + L3-assets)

 ;; ss set ttl-priv-assets (ttl-priv-assets + S1-L3ir-assets)

 ;; ss set ttl-priv-assets (ttl-priv-assets + L4-assets)

 ;; ss set ttl-priv-assets (ttl-priv-assets + L4-dividend-receivable)

 set ttl-priv-debts 0

 set ttl-priv-debts (ttl-priv-debts + L1-loan-debts)

 set ttl-priv-debts (ttl-priv-debts + S1-L1ip-debts)

 set ttl-priv-debts (ttl-priv-debts + S1-30day-total-debts)

 set net-worth-priv (ttl-priv-assets - ttl-priv-debts)

 ;; Money supply aggregates

 set msi-assets 0 ;; Physical money supply

 set msi-assets (msi-assets + P0-assets)

 set msi-debts 0 ;; Physical money supply

 set msii-assets 0 ;; Logical money supply

 set msii-assets (msii-assets + L0-assets)

 set msii-assets (msii-assets + L1-assets)

 set msii-assets (msii-assets + L2-assets)

 ;; ss set msii-assets (msii-assets + L3-assets)

 ;; ss set msii-assets (msii-assets + L4-assets)

 set msii-debts 0 ;; Logical money supply

 set msii-debts (msii-debts + L1-loan-debts)

 set msiii-assets 0 ;; Shadow money supply

 set msiii-assets (msiii-assets + S1-30day-total-assets)

 set msiii-assets (msiii-assets + S1-L2ir-assets)

 ;; ss set msiii-assets (msiii-assets + S1-L3ir-assets)

 ;; ss set msiii-assets (msiii-assets + L4-dividend-receivable)

 set msiii-debts 0 ;; Shadow money supply

 set msiii-debts (msiii-debts + S1-30day-total-debts)

 ;; Somewhat arbitrarily I have decided that L1 loan debts will be

 ;; considered shadow money. This is so the only MS-II expansion

 ;; will come from the principal of the loans themselves.

 set msiii-debts (msiii-debts + S1-L1ip-debts)

;; end of f-compute-prsn-net-worth

end

;;---|

;; Compute the net worth of a corp.

to f-compute-corp-net-worth

;; This routine is to be executed a corp.

 set ttl-publ-assets 0

 set ttl-publ-debts 0

 set net-worth-publ 0

 set ttl-P0-assets P0-assets

 set ttl-priv-assets 0

 set ttl-priv-assets (ttl-priv-assets + L0-assets)

 set ttl-priv-assets (ttl-priv-assets + L1-assets)

 set ttl-priv-assets (ttl-priv-assets + S1-30day-total-assets)

 set ttl-priv-assets (ttl-priv-assets + L2-assets)

 set ttl-priv-assets (ttl-priv-assets + S1-L2ir-assets)

 ;; ss set ttl-priv-assets (ttl-priv-assets + L3-assets)

 ;; ss set ttl-priv-assets (ttl-priv-assets + L4-assets)

 set ttl-priv-debts 0

 set ttl-priv-debts (ttl-priv-debts + L1-loan-debts)

 set ttl-priv-debts (ttl-priv-debts + S1-L1ip-debts)

 set ttl-priv-debts (ttl-priv-debts + S1-30day-total-debts)

 ;; ss set ttl-priv-debts (ttl-priv-debts + L3-debts)

 ;; ss set ttl-priv-debts (ttl-priv-debts + S1-L3ip-debts)

 ;; ss set ttl-priv-debts (ttl-priv-debts + L4-debts)

 ;; ss set ttl-priv-debts (ttl-priv-debts + S1-L4dp-debts)

 set net-worth-priv (ttl-priv-assets - ttl-priv-debts)

 ;; Money supply aggregates

Orrery Software Pg. 28 NTF Code for CmLab V1.17

 set msi-assets 0 ;; Physical money supply

 set msi-assets (msi-assets + P0-assets)

 set msi-debts 0 ;; Physical money supply

 set msii-assets 0 ;; Logical money supply

 set msii-assets (msii-assets + P0-assets)

 set msii-assets (msii-assets + L1-assets)

 set msii-assets (msii-assets + L2-assets)

 ;; ss set msii-assets (msii-assets + L3-assets)

 ;; ss set msii-assets (msii-assets + L4-assets)

 set msii-debts 0 ;; Logical money supply

 set msii-debts (msii-debts + L1-loan-debts)

 ;; ss set msii-debts (msii-debts + L3-debts)

 ;; ss set msii-debts (msii-debts + L4-debts)

 set msiii-assets 0 ;; Shadow money supply

 set msiii-assets (msiii-assets + S1-30day-total-assets)

 set msiii-assets (msiii-assets + S1-L2ir-assets)

 set msiii-debts 0 ;; Shadow money supply

 set msiii-assets (msiii-debts + S1-30day-total-debts)

 ;; ss set msiii-assets (msiii-assets + S1-L3ip-debts)

 ;; ss set msiii-assets (msiii-assets + S1-L4dp-debts)

;; end of f-compute-corp-net-worth

end

;;---|

;; BANKING SERVICES

;;---|

;; THEORY: In this section of the code all of the patterns for types of banking

;; services have been pulled together in a single place. This is to enable

;; consistency in the means of implmenting each type of service, with

;; the hope that it will make coding, debugging, and maintenance easier, at

;; a possible cost of performance.

;; Note that it is intentional that none of these routine do range error

;; checking on the variables affected. So, for example, a prsn with no money

;; in a savings account may still move money from there to a checking account.

;; The creation of negatives and their ultimate removal again all gets

;; resolved in the daily visit to the bank by each agent. Loans are usually

;; available to cover net negatives, and, when they are not, bankruptcy

;; routines sort it all out.

;; The real purpose of these routines is to defend the public trust that

;; money is properly conserved unless explicitly indicated otherwise.

;; Rather that implementing the complicated issue of linking bank accounts

;; directly to clients, the clients keep track of the details of their own

;; accounts, and the banks only keep track of aggregate amounts. This

;; simplifies the coding dramatically, and so reduces the chances of coding

;; error, but it puts the onus on the clients to have their books in order.

;; These banking routines look after that.

;;---|

;; A prsn has cash (P0, L0) and deposits into its bank.

to f-bsvcs-prsn-deposits-cash [amount-to-deposit]

;; This routine is to be executed a prsn.

 ;; TODO: this routine may work for corps as well.

 ;; Contact the bank.

 let my-bank (bank bank-who)

 ;; Remove cash from prsn's wallet.

 set L0-assets (L0-assets - amount-to-deposit)

 set P0-assets (P0-assets - amount-to-deposit)

 ;; Put the cash into the bank's books (L0) and vault (P0).

 ask my-bank

 [

 set L1-assets (L1-assets + amount-to-deposit)

 set P0-vc-assets (P0-vc-assets + amount-to-deposit)

]

 ;; Now, adjust the bank's aggregate checking account to reflect

 ;; the increase in the checkable deposits.

 ask my-bank [set L1-debts (L1-debts + amount-to-deposit)]

 ;; Finally, adjust the prsn's bankbook to indicate the amount of checkable

 ;; money available to this prsn, and also to lay a claim on a portion

 ;; of the aggregate of checkable money in the bank.

 set L1-assets (L1-assets + amount-to-deposit)

 LOG-TO-FILE (word " BSvcs: Amount of P0 deposited - " amount-to-deposit)

;; end of f-bsvcs-prsn-deposits-cash

end

;;---|

;; A prsn has checkable funds in the bank and withdraws cash (P0, L0).

to f-bsvcs-prsn-withdraws-cash [amount-to-withdraw]

;; This routine is to be executed a prsn.

 ;; TODO: this routine may work for corps as well.

 ;; Contact the bank.

 let my-bank (bank bank-who)

 ;; This is the reversal of a deposit.

 ;; Put cash into prsn's wallet.

 set L0-assets (L0-assets + amount-to-withdraw)

 set P0-assets (P0-assets + amount-to-withdraw)

 ;; Get the cash from the bank's books (L0) and vault (P0).

 ask my-bank

 [

 set L1-assets (L1-assets - amount-to-withdraw)

 set P0-vc-assets (P0-vc-assets - amount-to-withdraw)

]

 ;; Now, adjust the bank's aggregate checking account to reflect

 ;; the decrease in the checkable deposits.

 ask my-bank [set L1-debts (L1-debts - amount-to-withdraw)]

 ;; Finally, adjust the prsn's bankbook to indicate the amount of checkable

 ;; money no longer available to this prsn, and also to release the

 ;; claim on a portion of the aggregate of checkable money in the bank.

 set L1-assets (L1-assets - amount-to-withdraw)

 LOG-TO-FILE (word " BSvcs: Amount of P0 withdrawn - " amount-to-withdraw)

;; end of f-bsvcs-prsn-withdraws-cash

end

;;---|

;; A prsn moves money from a checking acct (L1) to a savings acct (L2).

Orrery Software Pg. 29 NTF Code for CmLab V1.17

to f-bsvcs-prsn-moves-L1-to-L2 [amount-to-move]

;; This routine is to be executed a prsn.

 ;; TODO: this routine may work for corps as well.

 ;; Contact the bank.

 let my-bank (bank bank-who)

 ask my-bank

 [

 ;; The bank decreases the aggregator for checkable funds.

 set L1-debts (L1-debts - amount-to-move)

 ;; The bank increases the aggregator for savings funds.

 set L2-debts (L2-debts + amount-to-move)

]

 ;; The prsn decreases its claim on checkable funds, in its check book.

 set L1-assets (L1-assets - amount-to-move)

 ;; The prsn increases its claim on savings, in its savings book.

 set L2-assets (L2-assets + amount-to-move)

 LOG-TO-FILE (word " BSvcs: Moved from L1 to L2 ---- " amount-to-move)

;; end of f-bsvcs-prsn-moves-L1-to-L2

end

;;---|

;; A prsn moves money from a savings acct (L2) to a checking acct (L1).

to f-bsvcs-prsn-moves-L2-to-L1 [amount-to-move]

;; This routine is to be executed a prsn.

 ;; TODO: this routine may work for corps as well.

 ;; Contact the bank.

 let my-bank (bank bank-who)

 ;; This is the reversal of a move of L1 to L2.

 ask my-bank

 [

 ;; The bank increases the aggregator for checkable funds.

 set L1-debts (L1-debts + amount-to-move)

 ;; The bank decreases the aggregator for savings funds.

 set L2-debts (L2-debts - amount-to-move)

]

 ;; The prsn increases its claim on checkable funds, in its check book.

 set L1-assets (L1-assets + amount-to-move)

 ;; The prsn decreases its claim on savings, in its savings book.

 set L2-assets (L2-assets - amount-to-move)

 LOG-TO-FILE (word " BSvcs: Moved from L2 to L1 ---- " amount-to-move)

;; end of f-bsvcs-prsn-moves-L2-to-L1

end

;;---|

;; A bank is checked to determine if it is bankrupt.

to f-bsvcs-bank-checked-for-bankruptcy

 ;; This routine is to be executed by the observer.

 ;; Determine whether the bank is, itself, bankrupt.

 ask banks

 [

 ;; THEORY: If the bank has no means of earning money, it must trust to

 ;; luck to have its clients deposit more vault cash, which could

 ;; then be deposited in the CRB to earn interest for its C1-assets.

 ;; But there will be a steady drain on its C1-assets as its clients

 ;; go bankrupt for lack of L1-loans. So this bank is doomed.

 ;; Ensure the net worth data is up-to-date.

 f-compute-bank-net-worth

 ;; Assume bankrupt as the default, then switch it back if there is

 ;; some potential to earn interest.

 set b-bank-is-bankrupt 1 ;; The default assumption.

 if(P0-all-assets > g-minimum-vault-cash)

 [set b-bank-is-bankrupt 0] ;; Can earn money on ER and RR.

 if(L1-loan-assets > 0)

 [set b-bank-is-bankrupt 0] ;; Can earn money on L1 loans.

]

;; end of f-bsvcs-bank-checked-for-bankruptcy

end

;;---|

;; A prsn negotiates to take out a bank loan.

to f-bsvcs-prsn-negotiates-an-L1-loan

 ;; This routine is to be executed by a prsn.

 ;; Contact the bank.

 let my-bank (bank bank-who)

 ;; Loans are given only if savings account is negative.

 ;; This means the agent had insufficient funds to address daily needs for

 ;; L0 and L1 types of funds. I.e. all assets have been moved to checking

 ;; or cash for daily use.

 ifelse(L2-assets < 0)

 [

 ;; This agent needs to take out a loan.

 LOG-TO-FILE (word " Prsn " who " requires a bank loan.")

 ;; Is the bank elligible to provide more loans?

 let bank-loan-flag ([b-bank-can-make-loans] of my-bank)

 ;; The bank may not have any remaining excess reserves to support a loan.

 ifelse(bank-loan-flag = 0)

 [

 ;; Case of bank cannot make loans.

 ;; Mark the prsn as bankrupt.

 set b-prsn-is-bankrupt 1

 LOG-TO-FILE (word " Bank " bank-who " cannot provide loan.")

 LOG-TO-FILE (word " Prsn " who " is now bankrupt.")

]

 ;; else

 [

 ;; Case of the prsn needs a loan and the bank can offer one.

 ;; Is the prsn elligible to receive a loan.

 ifelse(L1-loan-debts < (g-bankruptcy-factor * g-p-standard-loan))

 [

 ;; The loan is approved!

 set g-counts-loans (g-counts-loans + 1)

 ;; NOTE: a loan requires four entries - two offsetting double-entries

 ;; such that the net worth of neither participant changes.

Orrery Software Pg. 30 NTF Code for CmLab V1.17

 ;;

 ;; The amount of the loan will be sufficient for two months

 ;; of daily living.

 LOG-TO-FILE (word " Prsn L2-assets ---------- " L2-assets)

 LOG-TO-FILE (word " Prsn L1-assets ---------- " L1-assets)

 LOG-TO-FILE (word " Prsn L1-loan-debts ------ " L1-loan-debts)

 let amount-of-loan g-p-standard-loan

 ask my-bank

 [

 LOG-TO-FILE (word " Bank L1-assets ---------- " L1-assets)

 LOG-TO-FILE (word " Bank L1-loan-assets ----- " L1-loan-assets)

 LOG-TO-FILE (word " Bank L1-debts ----------- " L1-debts)

 ;; Register the loan as a bank asset. Entry #1 of 4.

 set L1-loan-assets (L1-loan-assets + amount-of-loan)

 LOG-TO-FILE (word " Amount of loan ---------- " amount-of-loan)

 ;; Put money into the prsn's loan-related checking account.

 ;; Entry #2 of 4.

 set L1-debts (L1-debts + amount-of-loan)

 LOG-TO-FILE (word " Bank L1-assets ---------- " L1-assets)

 LOG-TO-FILE (word " Bank L1-loan-assets ----- " L1-loan-assets)

 LOG-TO-FILE (word " Bank L1-debts ----------- " L1-debts)

]

 ;; Prsn records the loan in his checkbook. Entry #3 of 4.

 set L1-assets (L1-assets + amount-of-loan) ;; Good as is.

 ;; Prsn files the loan agreement. Entry #4 of 4.

 set L1-loan-debts (L1-loan-debts + amount-of-loan)

 LOG-TO-FILE (word " Prsn L1-assets ---------- " L1-assets)

 LOG-TO-FILE (word " Prsn L1-loan-debts ------ " L1-loan-debts)

] ;; end of ifelse(L1-loan-debts > (2 * g-p-standard-loan))

 ;; Else prsn is inellible.

 [

 ;; Case of prsn is inelligible.

 ;; Mark the prsn as bankrupt.

 set b-prsn-is-bankrupt 1

 LOG-TO-FILE (word " Prsn " who " is inelligible due to debt.")

 LOG-TO-FILE (word " Prsn L1-loan-debts ------ " L1-loan-debts)

 LOG-TO-FILE (word " Prsn " who " is now bankrupt.")

] ;; end of case of prsn is inelligible.

] ;; end of Bank can make loans.

] ;; end prsn needs a loan.

 ;; Else

 [

 LOG-TO-FILE (word " A loan is not required!")

]

;; End of f-bsvcs-prsn-negotiates-an-L1-loan

end

;;---|

;; A client takes out a loan and places the money in its checkable (L1) account.

to f-bsvcs-client-takes-out-L1-loan [amount-to-borrow]

;; This routine is to be executed a prsn, a corp, or the GCRA.

 ;; This version is not used. See f-bsvcs-prsn-negotiates-an-L1-loan.

 ;; The client and the bank sign a loan agreement in duplicate, and the funds

 ;; are deposited into the client's checkable (L1) account. This requires

 ;; four entries - two of which are segregated in L1-loan variables.

 ;; Contact the bank.

 let the-bank (bank bank-who)

 ;; The loan is signed in duplicate, and the size recorded by both parties.

 ;; First, the bank registers the loan in an aggregator. Entry #1.

 ask the-bank [set L1-loan-assets (L1-loan-assets + amount-to-borrow)]

 ;; Then the client stores the copy of the loan in their own records.

 ;; Entry #2.

 set L1-loan-debts (L1-loan-debts + amount-to-borrow)

 ;; Now, the bank makes checkable money available to its client. Entry #3.

 ask the-bank [set L1-debts (L1-debts + amount-to-borrow)]

 ;; And the client records the claim to the money in its own check book.

 ;; Entry #4.

 set L1-assets (L1-assets + amount-to-borrow)

 LOG-TO-FILE (word " BSvcs: L1 loan taken ---------- " amount-to-borrow)

 ;; As a result of this, the bank will need to move some of its reserves

 ;; from excess reserves to required reserves. This is handled when the

 ;; bank and CRB reconcile their books daily.

;; end of f-bsvcs-client-takes-out-L1-loan

end

;;---|

;; A client makes a payment on an L1 loan from its checkable (L1) account.

to f-bsvcs-client-makes-L1-loan-payment [amount-to-pay]

;; This routine is to be executed a prsn, a corp or the GCRA.

 ;; Contact the bank.

 let the-bank (bank bank-who)

 ;; This is a partial reversal of the routine to take out a loan.

 ;; First, the bank decreases the size of the loan in its aggregator.

 ask the-bank [set L1-loan-assets (L1-loan-assets - amount-to-pay)]

 ;; Then the client decreases the size of the loan in its own records.

 set L1-loan-debts (L1-loan-debts - amount-to-pay)

 ;; Now, the bank reduces the checkable money available to its clients.

 ask the-bank [set L1-debts (L1-debts - amount-to-pay)]

 ;; And the client reduces its claim to the money in its own check book.

 set L1-assets (L1-assets - amount-to-pay)

 LOG-TO-FILE (word " BSvcs: L1 loan paid ----------- " amount-to-pay)

;; end of f-bsvcs-client-makes-L1-loan-payment

end

;;---|

;; A client is charged daily interest on outstanding amount of L1 loan(s).

to f-bsvcs-client-accrues-daily-interest-on-L1-loan

;; This routine is to be executed a prsn, a corp or the GCRA.

 ;; THEORY: -ptbfs- This causes a flow of money from the real

 ;; economy to the banking sector because the interest on L1 bank

 ;; loans is paid by Prsns directly to the Banks. As such, it is part

 ;; of the "Prsns to Banks Flows" (ptbfs). It can be turned off

 ;; by setting g-iobl to zero.

 if(g-iobl > 0)

 [

 ;; THEORY: Interest on L1 loans is to be paid by the prsn to the bank.

 ;; The size of the loan may vary due to new amounts taken out or payments

Orrery Software Pg. 31 NTF Code for CmLab V1.17

 ;; made, so interest is charged and accrued on a daily basis, but only

 ;; paid on a monthly basis. This interest is a debt which expands the

 ;; shadow money supply, as it is basically a loan from the bank to the

 ;; prsn until it is paid. There is a hair to be split, here, and I am

 ;; splitting it this way. Because this debt is visible to the banks,

 ;; and really amounts to a bank loan, it should be considered part of the

 ;; logical money supply (L1) instead of the shadow money supply (S1).

 ;; But, because I want to focus on L1 loan tracking in this application,

 ;; I have chosen, somewhat arbitrarily, to include it in S1 until it

 ;; is paid.

 ;; Contact the bank.

 let the-bank (bank bank-who)

 ;; The bank only has an aggregate variable for all of the L1 loans of all

 ;; of its clients. Only the client's record indicates the size of the

 ;; loan associated with this client.

 let loan-size L1-loan-debts

 ;; The annual interest on bank loans is in slider g-iobl.

 let annual-interest-due (loan-size * g-iobl / 100)

 ;; Prorate this to a daily rate (12 months; 30 days per month).

 let daily-interest-due (annual-interest-due / (12 * 30))

 ;; The bank records the increase in its S1 aggregator for

 ;; L1 loan interest receivable.

 ask the-bank [set S1-L1ir-assets (S1-L1ir-assets + daily-interest-due)]

 ;; The client records the increase in its S1 record for interest payable.

 set S1-L1ip-debts (S1-L1ip-debts + daily-interest-due)

 LOG-TO-FILE (word " BSvcs: L1 interest accrued ---- " daily-interest-due)

]

;; end of f-bsvcs-client-accrues-daily-interest-on-L1-loan

end

;;---|

;; A client pays outstanding interest on L1 loan(s) monthly.

to f-bsvcs-client-pays-monthly-interest-on-L1-loan

;; This routine is to be executed a prsn, a corp or the GCRA.

 ;; THEORY: Interest on L1 loans is to be paid by the prsn to the bank.

 ;; It accrues daily, but is paid in aggregate monthly.

 ;; When interest is accrued, it is stored with 16 (or so) digits after

 ;; the decimal, but it is paid in dollar units. I don't want to round

 ;; away all of the accuracy of the interest payments, since I accrue

 ;; it daily. So, I determine the floor of the amount due, pay that,

 ;; and leave a residual amount to be paid the next month. By doing it

 ;; this way, the shadow money supply holds the (not-absolutely precise)

 ;; fractional debts, but the logical money supply is always accurate

 ;; with infinite precision to the dollar.

 ;; This may affect the way I compare total interest payments, over time,

 ;; with total write-offs, over time, but I don't think it will.

 ;; TODO: I need to watch that.

 ;; Interest collected by the bank represents a change in its corporate

 ;; net worth. This income is outside of its role as the guardian of

 ;; the rule of conservation of money, its public trust, and so must be

 ;; put into its own corporate checking account (a C1 account) as if

 ;; it is a client of itself.

 ;; So this payment is a peculiar client-to-client payment mediated by

 ;; the bank's back room that manages the public trust. This payment

 ;; requires a total of six accounting entries, two of which counter-act

 ;; each other and are suppressed.

 ;; Contact the bank.

 let the-bank (bank bank-who)

 ;; The bank only has an aggregate variable for all of the interest payable

 ;; on all loans to its clients. Only the client's records indicate the

 ;; size of the accrued interest associated with this client.

 ;; Determine the largest integral dollar amount payable.

 let monthly-interest-paid floor(S1-L1ip-debts)

 ;; Settle the records for the shadow money supply first.

 ;; The client notes the payment, subtracting it from dues accrued,

 ;; and leaving a residual.

 set S1-L1ip-debts (S1-L1ip-debts - monthly-interest-paid)

 ;; The bank decreases its aggregator by the same amount.

 ask the-bank [set S1-L1ir-assets (S1-L1ir-assets - monthly-interest-paid)]

 ;; Now, the client has to actually pay the bill with real money.

 ;; The payment is noted in the client's check book.

 set L1-assets (L1-assets - monthly-interest-paid)

 ask the-bank

 [

 ;; The front-room corporate comptroller notes the payment in its check book.

 set C1-assets (C1-assets + monthly-interest-paid)

 ;; The bank's back-room staff who manage the public trust note the payment.

 ;; Two entries are required to note the decreased liability for one client

 ;; and the increased liability for the other client. These all happen in

 ;; an aggregator that is used to track all clients. So, they cancel each

 ;; other out, and are suppressed for performance purposes.

 ;; set L1-debts (L1-debts - monthly-interest-paid)

 ;; set L1-debts (L1-debts + monthly-interest-paid)

]

 LOG-TO-FILE (word " BSvcs: L1 interest paid ------- " monthly-interest-paid)

;; end of f-bsvcs-client-pays-monthly-interest-on-L1-loan

end

;;---|

;; A bank is charged daily interest on outstanding amounts of L2 savings.

to f-bsvcs-client-accrues-daily-interest-on-L2-savings

;; This routine is to be executed a prsn, a corp or the GCRA.

 if(g-iosd > 0)

 [

 ;; THEORY: Interest on L2 savings is to be paid by the bank to the client.

 ;; The size of the savings may vary daily due to commercial activity,

 ;; so interest is charged and accrued on a daily basis, but only

 ;; paid on a monthly basis. This interest is a debt which expands the

 ;; shadow money supply, as it is basically a loan from the client to the

 ;; bank until it is paid.

 ;;

 ;; The same as for L1 loans, there is a hair to be split, here, and I am

 ;; splitting it this way. Because this debt is visible to the banks,

 ;; and really amounts to a reverse bank loan, it should be considered

 ;; part of the logical money supply (L1) instead of the shadow money

 ;; supply (S1).

 ;; But, because I want to focus on L1 loan tracking in this application, I have

 ;; chosen, somewhat arbitrarily, to include it in S1 until it is paid.

Orrery Software Pg. 32 NTF Code for CmLab V1.17

 ;; Contact the bank.

 let the-bank (bank bank-who)

 ;; The bank only has an aggregate variable for all of the savings of all

 ;; of its clients. Only the client's records indicate the size of the

 ;; savings deposit associated with this client.

 let savings-account-size L2-assets

 ;; The annual interest on bank deposits is in slider g-iosd.

 let annual-interest-due (savings-account-size * g-iosd / 100)

 ;; Prorate this to a daily rate (12 months; 30 days per month).

 let daily-interest-due (annual-interest-due / (12 * 30))

 ;; The bank records the increase in its S1 aggregator for

 ;; savings (L2) interest payable.

 ask the-bank [set S1-L2ip-debts (S1-L2ip-debts + daily-interest-due)]

 ;; The client records the increase in its S1 record for interest receivable.

 set S1-L2ir-assets (S1-L2ir-assets + daily-interest-due)

 LOG-TO-FILE (word " BSvcs: L2 interest accrued ---- " daily-interest-due)

]

;; end of f-bsvcs-client-accrues-daily-interest-on-L2-savings

end

;;---|

;; A client pays outstanding interest on savings deposits monthly.

to f-bsvcs-client-paid-monthly-interest-on-L2-savings

;; This routine is to be executed a prsn, a corp or the GCRA.

 ;; THEORY: Interest on L2 savings is to be paid by the bank to the client.

 ;; It accrues daily, but is paid in aggregate monthly.

 ;; When interest is accrued, it is stored with 17 (or so) digits after

 ;; the decimal, but it is paid in dollar units. I don't want to round

 ;; away all of the accuracy of the interest payments, since I accrue

 ;; it daily. So, I determine the floor of the amount due, pay that,

 ;; and leave a residual amount to be paid the next month. By doing it

 ;; this way, the shadow money supply holds the (not-absolutely precise)

 ;; fractional debts, but the logical money supply is always accurate

 ;; with infinite precision to the dollar.

 ;; This may affect the way I compare total interest payments, over time,

 ;; with total write-offs, over time, but I don't think it will.

 ;; TODO: I need to watch that.

 ;; Interest paid by the bank represents a change in its corporate

 ;; net worth. This expense is outside of its role as the guardian of

 ;; the rule of conservation of money, its public trust, and so must be

 ;; put into its own corporate checking account (a C1 account) as if

 ;; it is a client of itself.

 ;; So this payment is a peculiar client-to-client payment mediated by

 ;; the bank's back room that manages the public trust. This payment

 ;; requires a total of six accounting entries, two of which counter-act

 ;; each other and are suppressed.

 ;; Contact the bank.

 let the-bank (bank bank-who)

 ;; The bank only has an aggregate variable for all of the interest payable

 ;; on all savings deposits of its clients. Only the client's records

 ;; indicate the size of the accrued interest associated with this client.

 ;; Determine the largest integral dollar amount payable.

 let monthly-interest-paid floor(S1-L2ir-assets)

 ;; Settle the records for the shadow money supply first.

 ;; The client notes the payment, subtracting it from dues accrued,

 ;; and leaving a residual.

 set S1-L2ir-assets (S1-L2ir-assets - monthly-interest-paid)

 ;; The bank decreases its aggregator by the same amount.

 ask the-bank [set S1-L2ip-debts (S1-L2ip-debts - monthly-interest-paid)]

 ;; Now, the bank has to actually pay the bill with real money.

 ;; The payment is noted in the client's check book.

 set L1-assets (L1-assets + monthly-interest-paid)

 ask the-bank

 [

 ;; The front-room corporate comptroller notes the payment in its check book.

 set C1-assets (C1-assets - monthly-interest-paid)

 ;; The bank's back-room staff who manage the public trust note the payment.

 ;; Two entries are required to note the decreased liability for one client

 ;; and the increased liability for the other client. These all happen in

 ;; an aggregator that is used to track all clients. So, they cancel each

 ;; other out, and are suppressed for performance purposes.

 ;; set L1-debts (L1-debts - monthly-interest-paid)

 ;; set L1-debts (L1-debts + monthly-interest-paid)

]

 LOG-TO-FILE (word " BSvcs: L2 interest received --- " monthly-interest-paid)

;; end of f-bsvcs-client-paid-monthly-interest-on-L2-savings

end

;;---|

;; A prsn pays another prsn for something. This is a capital exchange.

to f-bsvcs-prsn1-pays-prsn2-by-cash [prsn2who amount-to-pay]

;; This routine is to be executed a prsn.

 ;; THEORY: This is the most simple capital exchange possible, in the

 ;; real world, but has its minor complications in this program due to

 ;; the separation of physical and logical money. The exchange requires

 ;; four entries.

 ;; Due to the fact that this model does not pay any regard to the goods

 ;; and services exchanged in reciprocity for the cash exchanged, the

 ;; money is simply moved from prsn to prsn. Because this is a cash

 ;; only transaction, no bank is involved. As such, the bank has no

 ;; real visibility into this volume of economic activity, and so it is

 ;; in some sense part of the shadow economy, but it definitely affects

 ;; only the physical and logical money, and not shadow money.

 ;; TODO: this routine may also work for corps, as long as the recipient

 ;; is a prsn.

 ;; Contact prsn2.

 let prsn2 (prsn prsn2who)

 ;; prsn1 takes the cash out of its wallet.

 set P0-assets (P0-assets - amount-to-pay)

 set L0-assets (L0-assets - amount-to-pay)

 ;; prsn2 puts the cash into its wallet.

 ask prsn2

 [

 set P0-assets (P0-assets + amount-to-pay)

 set L0-assets (L0-assets + amount-to-pay)

]

Orrery Software Pg. 33 NTF Code for CmLab V1.17

 LOG-TO-FILE (word " BSvcs: Prsn " who " paid Prsn "

 prsn2who " ----------- " amount-to-pay)

;; end of f-bsvcs-prsn1-pays-prsn2-by-cash

end

;;---|

;; A prsn pays another prsn for something. This is a capital exchange.

to f-bsvcs-prsn1-pays-prsn2-by-check [prsn2who amount-to-pay]

;; This routine is to be executed a prsn.

 ;; THEORY: This is a simple capital exchange using a check. In this

 ;; program due to the involvement of two banks there are some minor

 ;; wrinkles to be managed. The exchange requires four entries if it

 ;; is within a single bank, but six for bank-to-bank exchange. Only

 ;; the net worth of the prsns change.

 ;; Due to the fact that this model does not pay any regard to the goods

 ;; and services exchanged in reciprocity for the cash exchanged, the

 ;; money is simply moved from prsn to prsn. Because this is a check

 ;; only transaction, two banks are involved. As such, the bank has

 ;; real visibility into this volume of economic activity and functions

 ;; entirely within the logical money supply.

 ;; TODO: this routine may also work for corps, as long as the recipient

 ;; is a prsn.

 ;; Contact my bank.

 let my-bank (bank bank-who)

 ;; Contact prsn2.

 let prsn2 (prsn prsn2who)

 ;; Contact bank of prsn2.

 let prsn2-bank (bank ([bank-who] of prsn2))

 ;; THEORY: A payment by check requires three double-entry actions, or

 ;; six entries in total:

 ;; -- The check books of the two parties in the transactions need to

 ;; be changed to reflect the transfer of money. I.e. their L1-assets

 ;; variables need to be altered. This changes the net worth of each

 ;; party to the transaction, which is as expected.

 ;; -- To match the transfer, the L1-debts variables of the associated

 ;; banks need to be altered. But this changes the net worth of the

 ;; back room of each chartered bank, which is not good. The assets

 ;; of each bank need to be altered to match the liabilities of each

 ;; bank.

 ;; -- To balance the books within each bank (back room) the L1-assets

 ;; variables must also be adjusted. In effect, one bank transfers its

 ;; obligations to the other bank.

 ;; If both prsns use the same bank, since the L1-assets and L1-debts variables

 ;; are aggregators for all clients of the bank, the above four actions

 ;; counter-act each other. So this works whether the prsns are

 ;; clients of the same or different banks.

 ;; prsn1 writes the check, recording it in its check book.

 set L1-assets (L1-assets - amount-to-pay)

 ;; prsn2 accepts the check and indicates an L1 deposit in its check book.

 ask prsn2 [set L1-assets (L1-assets + amount-to-pay)]

 ;; Now the back rooms of the two banks reconcile their books.

 ask my-bank [set L1-assets (L1-assets - amount-to-pay)]

 ask my-bank [set L1-debts (L1-debts - amount-to-pay)]

 ask prsn2-bank [set L1-assets (L1-assets + amount-to-pay)]

 ask prsn2-bank [set L1-debts (L1-debts + amount-to-pay)]

 LOG-TO-FILE (word " BSvcs: Prsn " who " paid Prsn "

 prsn2who " --- " amount-to-pay)

;; end of f-bsvcs-prsn1-pays-prsn2-by-check

end

;;---|

;; BANKING SERVICES

;;---|

;; All of the routines that perform banking services start with f-cbsvcs-xxx or

;; or f-bsvcs-xxx or f-bnkrpt-xxx. They address the activities of the

;; central reserve bank (the CRB), the chartered banks (front and back room

;; activities), and all bankruptcy processing.

;; The routines are all gathered here to enable consistency and easy scrutiny.

;;

;; START OF -BSVCS- SUBSECTION.

;;---|

;; The Gov't finds a suitable bank to do business.

to f-bsvcs-gcra-find-bank

 ;; This routine is to be executed by a GCRA.

 ;; This GCRA does not yet have a bank assigned.

 ;; Does this GCRA already have a bank?

 ifelse(bank-who = -1)

 [

 ;; It does not have a bank.

 ;; Establish a list of potential banks.

 ;; Potential bank must need clients.

 ;; A dummy let statement.

 let bank-list []

 ;; Bank must need GCRA clients.

 set bank-list (banks with

 [(no-of-gcra-clients < 1)])

 if(any? bank-list)

 [

 let this-bank one-of bank-list

 ;; The search is successful.

 set bank-who ([who] of this-bank)

 ask this-bank [set no-of-gcra-clients (no-of-gcra-clients + 1)]

 LOG-TO-FILE (word " Found - " this-bank)

]

] ;; End of if(bank-who = -1)

 ;; Else

 [

 LOG-TO-FILE (word " Bank not needed! Not searching.")

]

 ;; End Else

;; End of f-bsvcs-gcra-find-bank

end

;;---|

;; The CRB finds a suitable chartered bank for its C1 account.

to f-bsvcs-crb-find-bank

 ;; This routine is to be executed by a CRB.

 ;; This CRB does not yet have a bank assigned.

Orrery Software Pg. 34 NTF Code for CmLab V1.17

 ;; Does this CRB already have a bank?

 ifelse(bank-who = -1)

 [

 ;; It does not have a bank.

 ;; Establish a list of potential banks.

 ;; Potential bank must need clients.

 ;; A dummy let statement.

 let bank-list []

 ;; Bank must need CRB clients.

 set bank-list (banks with

 [(no-of-crb-clients < 1)])

 if(any? bank-list)

 [

 let this-bank one-of bank-list

 ;; The search is successful.

 set bank-who ([who] of this-bank)

 ask this-bank [set no-of-crb-clients (no-of-crb-clients + 1)]

 LOG-TO-FILE (word " Found - " this-bank)

]

] ;; End of if(bank-who = -1)

 ;; Else

 [

 LOG-TO-FILE (word " Bank not needed! Not searching.")

]

 ;; End Else

;; End of f-bsvcs-crb-find-bank

end

;;---|

;; Prsns find a suitable bank to do business.

to f-bsvcs-prsn-find-bank

 ;; This routine is to be executed by a prsn.

 ;; This prsn may have a bank already assigned. Then a new one is assigned.

 LOG-TO-FILE (word "Prsn " who " finding a bank.")

 ;; Establish a list of potential banks.

 ;; Potential bank must need clients.

 ;; A dummy let statement.

 let bank-list []

 ;; Bank should have available P0-ER-assets.

 set bank-list (banks with [P0-ER-assets > 0])

 ifelse(any? bank-list)

 [

 let this-bank one-of bank-list

 ;; The search is successful.

 set bank-who ([who] of this-bank)

 ask this-bank [set no-of-prsn-clients (no-of-prsn-clients + 1)]

 LOG-TO-FILE (word " Found - " this-bank)

]

 ;; else none have ER available.

 [

 ;; Choose any bank.

 let this-bank one-of banks

 set bank-who ([who] of this-bank)

 ask this-bank [set no-of-prsn-clients (no-of-prsn-clients + 1)]

]

 ;; End of f-bsvcs-prsn-find-bank

end

;;---|

;; Corps find a suitable bank to do business.

to f-bsvcs-corp-find-bank

 ;; This routine is to be executed by a corp.

 ;; This corp does not yet have a bank assigned.

 ;; Does this corp already have a bank?

 ifelse(bank-who = -1)

 [

 ;; It does not have a bank.

 ;; Establish a list of potential banks.

 ;; Potential bank must need clients.

 ;; A dummy let statement.

 let bank-list []

 ;; Bank must need corp clients.

 set bank-list (banks with

 [(no-of-corp-clients < g-no-of-corps-per-bank)])

 if(any? bank-list)

 [

 let this-bank one-of bank-list

 ;; The search is successful.

 set bank-who ([who] of this-bank)

 ask this-bank [set no-of-corp-clients (no-of-corp-clients + 1)]

 LOG-TO-FILE (word " Found - " this-bank)

]

] ;; End of if(bank-who = -1)

 ;; Else

 [

 LOG-TO-FILE (word " Bank not needed! Not searching.")

]

 ;; End Else

 ;; End of f-bsvcs-corp-find-bank

end

;;---|

;; Any of GCRA, prsn or corp makes a payment on a loan.

to f-bsvcs-agent-makes-a-payment-on-loan

;; This routine is to be executed by a GCRA, prsn or corp.

 ;; Pre-requisite: L1-assets exist, and L1-loan-debts > 0.

 ASSERT (L1-loan-debts > 0) ("Improper debts.") who

 LOG-TO-FILE (word " Borrower L1 assets --------------- " L1-assets)

 LOG-TO-FILE (word " Borrower L1 loan debts ----------- " L1-loan-debts)

 ;; Determine the payment size.

 ;; Pay the least of standard payment, or remaining principal.

 let amount-to-pay g-p-standard-loan-payment

 if(amount-to-pay > L1-loan-debts)

 [

 set amount-to-pay L1-loan-debts

]

 ;; Contact the bank.

 let mybank (bank bank-who)

 ask mybank

 [

 LOG-TO-FILE (word " Bank L1 loan assets ------------ " L1-loan-assets)

 LOG-TO-FILE (word " Bank L1 debts ------------------ " L1-debts)

Orrery Software Pg. 35 NTF Code for CmLab V1.17

 LOG-TO-FILE (word " Loan payment ------------------- " amount-to-pay)

 set L1-loan-assets (L1-loan-assets - amount-to-pay)

 set L1-debts (L1-debts - amount-to-pay)

 LOG-TO-FILE (word " Bank L1 loan assets ------------ " L1-loan-assets)

 LOG-TO-FILE (word " Bank L1 debts ------------------ " L1-debts)

]

 ;; Note the payment in the agent's checkbook.

 set L1-assets (L1-assets - amount-to-pay)

 ;; Note that the principal on the loan has been reduced.

 set L1-loan-debts (L1-loan-debts - amount-to-pay)

 LOG-TO-FILE (word "Borrower L1 assets ----------------- " L1-assets)

 LOG-TO-FILE (word "Borrower L1 loan debts ------------- " L1-loan-debts)

;; end of f-bsvcs-agent-makes-a-payment-on-loan

end

;;---|

;; Process a prsn that is bankrupt.

to f-bsvcs-process-prsn-bankruptcy

;; This routine is to be executed by a prsn.

 ;; TODO: After debugging, suppress this.

 ;; f-force-debug-output-on

 ;; TODO: Remove this if annoying.

 ;; beep

 ;; PART A - I need to collapse the assets and declare bankruptcy.

 ;; Prsns are bankrupt when they have insufficient funds to get through

 ;; a standard day, their savings are <= zero and they are unable

 ;; to take a loan because their bank does not have any excess reserves.

 ;; When they last attempted to get a loan, the bank would have marked a

 ;; failed loan request as a bankruptcy.

 ;; So, I need to collapse the assets and debts of this prsn, pay off

 ;; the loan as well as possible, and effect bankruptcy.

 ASSERT (b-prsn-is-bankrupt = 1) "Prsn not bankrupt" who

 ;; This prsn is bankrupt. I need to address the following:

 ;; - deposit any cash into the checking account;

 ;; - withdraw all savings (+ or -) and put into checking account;

 ;; - resolve all 30-day receivables;

 ;; - resolve all 30-day payables;

 ;; - pay all interest payable;

 ;; - collect all interest receivable;

 ;; - pay off what can be paid on outstanding loan;

 ;; - petition for a restart.

 LOG-TO-FILE(word "PRSN " who " is bankrupt.")

 ;; First, deposit cash, and move savings to checking.

 f-bnkrpt-prsn-collapses-cash-and-savings

 ;; Collect all 30-day receivables.

 f-bnkrpt-prsn-collects-all-30day-receivables

 ;; Collect all interest receivable.

 f-bnkrpt-prsn-collects-all-interest-receivable

 ;; Pay all 30-day payables. Even if there is not enough money.

 ;; This might run up a negative in L1-assets.

 f-bnkrpt-prsn-pays-all-30day-payables

 ;; Pay all interest payable.

 f-bnkrpt-prsn-pays-all-interest-payable

 ;; Use what assets remain to pay down the loan.

 f-bnkrpt-prsn-pays-down-loan

 ;; Due to the program structure, the prsn must initiate action

 ;; to retire the loan, instead of the bank.

 f-bnkrpt-prsn-has-loan-written-off

 ;; TODO: Remove this after debug.

 ;; f-force-debug-output-off

 set g-counts-p-deaths (g-counts-p-deaths + 1)

 ;; The prsn has been removed from the model.

 ;; A replacement prsn may be added in the "do-post-tick" routine.

 set g-no-of-prsns (count prsns)

 ;; The prsn now has zero assets of any kind, and can be removed.

 ;; Die MUST be the last command.

 die

;; end of f-bsvcs-process-prsn-bankruptcy

end

;;---|

;; A prsn collapses cash and savings account into checking account.

to f-bnkrpt-prsn-collapses-cash-and-savings

;; This routine is to be executed by a prsn.

 ;; This is done as part of bankruptcy proceedings.

 ;; Contact the bank.

 let my-bank (bank bank-who)

 ;; PART A - Disbursement of assets and debts.

 ;; All of their assets are returned to the bank as L1-assets.

 ;; Then the residual of debts, after assets are cancelled, are

 ;; written off.

 ;; L0 and P0 assets are deposited into the checking account.

 let my-P0-cash P0-assets ;; note the amount.

 let my-L0-cash L0-assets ;; note the amount.

 LOG-TO-FILE (WORD " Depositing cash assets")

 LOG-TO-FILE (word " Checking account was ---------- " L1-assets)

 LOG-TO-FILE (word " Cash assets deposited --------- " my-L0-cash)

 LOG-TO-FILE (word " Physical cash deposited ------- " my-P0-cash)

 f-bsvcs-prsn-deposits-cash L0-assets

 LOG-TO-FILE (word " Checking account is now ------- " L1-assets)

 ;; There should be no savings, but things may have happened.

 ;; Savings may be positive or negative.

 ;; L2 assets are deposited into the checking account.

 LOG-TO-FILE (word " Savings transferred ----------- " L2-assets)

 f-bsvcs-prsn-moves-L2-to-L1 L2-assets

 LOG-TO-FILE (word " Checking account is now ------- " L1-assets)

;; end of f-bnkrpt-prsn-collapses-cash-and-savings

end

;;---|

;; A prsn collects ALL of the outstanding 30-day receivables.

to f-bnkrpt-prsn-collects-all-30day-receivables

;; This routine is to be executed by a prsn.

 ;; Contact my bank

 let my-bank (bank bank-who)

 ;; Collect from everybody except myself.

Orrery Software Pg. 36 NTF Code for CmLab V1.17

 ;; The problem to be resolved is this. The prsn has kept track of who

 ;; it owes payment to, but not who owes payment to it. This is

 ;; for reasons of computer performance in daily activities, but it

 ;; causes a problem during bankruptcy processing. I need to canvass

 ;; all other prsns, ask them what they owe me, then get them to

 ;; pay now, in advance of the due date.

 LOG-TO-FILE (word " Collecting 30-day receivables")

 let mywho who

 ;; Initialize an aggregator.

 let total-collected 0

 ask other prsns

 [

 let my-receivables (filter [mywho = (item 0 ?)] payables-30day)

 set payables-30day (filter [mywho != (item 0 ?)] payables-30day)

 ;; Initialize an aggregator.

 let amount-collected 0

 ;; Inter-bank payements by check require six entries.

 if ((length my-receivables) > 0)

 [

 ;; Contact his bank.

 let his-bank (bank bank-who)

 ;; Process all of his payables that are due to the bankrupt prsn.

 foreach my-receivables

 [

 let amount-due (item 2 ?)

 LOG-TO-FILE (word " Amount collected -------------- " amount-due)

 ;; Remove from payor's check-book. Entry #1.

 set L1-assets (L1-assets - amount-due)

 ;; Remove from bank of payor. Entries #s 2 & 3.

 ask his-bank [set L1-debts (L1-debts - amount-due)]

 ask his-bank [set L1-assets (L1-assets - amount-due)]

 ;; Remove from his tally of total debts.

 set S1-30day-total-debts (S1-30day-total-debts - amount-due)

 ;; Add to payor's tally of debts paid off under duress.

 set amount-collected (amount-collected + amount-due)

] ;; end of foreach receivable

 set total-collected (total-collected + amount-collected)

 LOG-TO-FILE (word " Total collected - this prsn --- " amount-collected)

] ;; end of if ((length my-receivables) > 0)

] ;; end of ask other prsns

 ;; Enter the total collected into the payee's check book. Entry #4.

 set L1-assets (L1-assets + total-collected)

 ;; Update the bank's records. Entries #5 & #6.

 ask my-bank [set L1-debts (L1-debts + total-collected)]

 ask my-bank [set L1-assets (L1-assets + total-collected)]

 ;; Update the aggregator.

 set S1-30day-total-assets (S1-30day-total-assets - total-collected)

 LOG-TO-FILE (word " Total collected - all prsns --- " total-collected)

 LOG-TO-FILE (word " 30day-assets are now ---------- " S1-30day-total-assets)

 LOG-TO-FILE (word " Checking account is now ------- " L1-assets)

;; end of f-bnkrpt-prsn-collects-all-30day-receivables

end

;;---|

;; A prsn collects ALL of the outstanding interest receivable.

to f-bnkrpt-prsn-collects-all-interest-receivable

;; This routine is to be executed by a prsn.

 ;; This would include interest on savings deposits.

 ;; TODO: Also includes interest on bonds, and stocks. (Not yet implemented.)

 ;; Contact my bank

 let my-bank (bank bank-who)

 ;; I want to paid an integral amount, but reduce the bank's

 ;; records by the precise amount.

 let amount-due S1-L2ir-assets

 let amount-paid floor(S1-L2ir-assets)

 LOG-TO-FILE (word " Interest due on L2 savings ---- " amount-due)

 LOG-TO-FILE (word " Interest rec'd on L2 savings -- " amount-paid)

 let residual (amount-due - amount-paid)

 ask my-bank

 [

 ;; Take the money from the bank's corporate funds. Entry #1.

 set C1-assets (C1-assets - amount-paid)

 ;; Reduce the off-books record of debt by the full amount due. This

 ;; effectively discards the fractional residual due.

 set S1-L2ip-debts (S1-L2ip-debts - amount-due)

 ;; Two counteracting entries suppressed, for performance purposes.

 ;; set L1-debts (L1-debts - amount-paid) ;; Remove from bank. Entry #2.

 ;; set L1-debts (L1-debts + amount-paid) ;; Insert to bank. Entry #3.

]

 ;; Record the payment in bank book. Entry #4.

 set L1-assets (L1-assets + amount-paid)

 LOG-TO-FILE (word " Checking account is now ------- " L1-assets)

 LOG-TO-FILE (word " Residual ignored by both ------ " residual)

 set S1-L2ir-assets 0

;; end of f-bnkrpt-prsn-collects-all-interest-receivable

end

;;---|

;; A prsn pays all of the owed payables as part of bankruptcy processing.

to f-bnkrpt-prsn-pays-all-30day-payables

;; This routine is to be executed by a prsn.

 ;; As part of bankruptcy processing, pay all payables.

 LOG-TO-FILE (word " Paying 30-day payables")

 ;; Contact my bank

 let my-bank (bank bank-who)

 ;; Inter-bank payments by check require six entries.

 let total-paid 0 ;; Initialize an aggregator.

 if ((length payables-30day) > 0)

 [

 foreach payables-30day

 [

 let payee (prsn (item 0 ?))

 let amount-due item 2 ?

 ;; Aggregate the total for reporting purposes.

Orrery Software Pg. 37 NTF Code for CmLab V1.17

 set total-paid (total-paid + amount-due)

 ask payee

 [

 ;; Contact his bank.

 let his-bank (bank bank-who)

 ;; Put the money into his bank book. Entry #1.

 set L1-assets (L1-assets + amount-due)

 ;; Record it in his bank records. Entries #2 & #3.

 ask his-bank [set L1-debts (L1-debts + amount-due)]

 ask his-bank [set L1-assets (L1-assets + amount-due)]

 ;; Reduce his record of receivables.

 set S1-30day-total-assets (S1-30day-total-assets - amount-due)

 LOG-TO-FILE (word " Amount paid ------------------- " amount-due)

]

 ;; Mark the payment in bankruptee's bank book. Entry #4.

 set L1-assets (L1-assets - amount-due)

 ;; Inform the bank of the bankruptee. Entries #5 & #6.

 ask my-bank [set L1-debts (L1-debts - amount-due)]

 ask my-bank [set L1-assets (L1-assets - amount-due)]

 ;; Reduce his record of payables.

 set S1-30day-total-debts (S1-30day-total-debts - amount-due)

] ;; end of foreach payable

 set S1-30day-total-debts 0 ;; All cleared.

 set payables-30day [] ;; All cleared.

] ;; end of if ((length payables-30day) > 0)

 LOG-TO-FILE (word " Total of all 30day paydowns --- " total-paid)

 LOG-TO-FILE (word " L1-assets post 30day paydowns - " L1-assets)

;; end of f-bnkrpt-prsn-pays-all-30day-payables

end

;;---|

;; A prsn pays all interest payable.

to f-bnkrpt-prsn-pays-all-interest-payable

;; This routine is to be executed by a prsn.

 ;; This would include interest on bank loans deposits.

 ;; TODO: add log-to-file here and in all .

 ;; Contact my bank

 let my-bank (bank bank-who)

 ;; Note the amount due.

 let amount-due S1-L1ip-debts

 ;; I want to pay an integral amount, but reduce the bank's

 ;; records by the precise amount.

 let amount-paid floor(S1-L1ip-debts)

 LOG-TO-FILE (word " Interest on bank loan ------------ " amount-paid)

 let residual (amount-due - amount-paid)

 ;; An intra-bank payment requires only 4 entries, two of which are suppressed.

 ask my-bank

 [

 ;; Put money into the bank's corporate funds. Entry #1.

 set C1-assets (C1-assets + amount-paid)

 ;; Change the off-book record by the precise amount, discarding residual.

 set S1-L1ir-assets (S1-L1ir-assets - amount-due)

 ;; Two counteracting entries suppressed, for performance purposes.

 ;; set L1-debts (L1-debts + amount-paid) ;; Insert to bank. Entry #2.

 ;; set L1-debts (L1-debts - amount-paid) ;; Remove from bank. Entry #3.

]

 ;; Record the payment in bankrupt prsn's bank book. Entry #4.

 set L1-assets (L1-assets - amount-paid)

 ;; Change the off-book record by the precise amount, discarding the residual.

 set S1-L1ip-debts (S1-L1ip-debts - amount-due)

 LOG-TO-FILE (word " L1-assets after interest paydown - " L1-assets)

 LOG-TO-FILE (word " Residual discarded --------------- " residual)

;; end of f-bnkrpt-prsn-pays-all-interest-payable

end

;;---|

;; A prsn pays down the loan as far as possible.

to f-bnkrpt-prsn-pays-down-loan

;; This routine is to be executed by a prsn.

 ;; This is part of bankruptcy processing.

 ;; The prsn uses whatever resources remain to pay down the loan.

 ;; Note that those resources (in L1-assets) may be positive or

 ;; negative, and may reduce the loan or add to it.

 ;; Such a payment is within one bank/client relationship, and

 ;; can be completed with four entries.

 ;; Contact my bank

 let my-bank (bank bank-who)

 let amount-paid L1-assets

 ask my-bank

 [

 ;; Pay money against the loan. This brings down the value of

 ;; the loan. Entry #1.

 set L1-loan-assets (L1-loan-assets - amount-paid)

 ;; Debts follow assets. The net value of the funds in public

 ;; trust must not change. So the amount of L1-funds made

 ;; available to the client must be removed from the client's

 ;; checking account. Entry #2.

 set L1-debts (L1-debts - amount-paid) ;; Insert to bank.

 ;; The net worth of the bank's books has not changed.

]

 ;; Record a reduction in the principal of the loan. Entry #3.

 set L1-loan-debts (L1-loan-debts - amount-paid)

 ;; Record the payment in bankrupt prsn's bank book. Entry #4.

 set L1-assets (L1-assets - amount-paid)

 ;; The net worth of the client has not changed.

 LOG-TO-FILE (word " L1-assets after loan paydown ----- " L1-assets)

;; end of f-bnkrpt-prsn-pays-down-loan

end

;;---|

;; A prsn requests the loan be written off. The bank agrees.

to f-bnkrpt-prsn-has-loan-written-off

;; This routine is to be executed by a prsn.

Orrery Software Pg. 38 NTF Code for CmLab V1.17

 ;; This is part of bankruptcy processing.

 ;; The prsn asks the bank to forgive the debt.

 ;; The size of the loan is determined by the client's loan record.

 ;; This is because the bank's loan record is an aggregate for all

 ;; of its loans.

 let amount-written-off L1-loan-debts

 ;; THEORY: This can be handled two different ways. Either the bank that

 ;; has serviced the bankruptee up until now can bear the brunt of the

 ;; bankruptcy, or the loss can be spread across all banks. I call this

 ;; control bank insurance.

 ;; Contact my bank

 let my-bank (bank bank-who)

 ;; THEORY: Cancel the debt. This is tricky. At this point all of the

 ;; assets and debts of the bankrupt person have been converted to

 ;; be part of the loan. There are no S1, L1, or L2 assets or

 ;; liabilities other than the L1-loan. For a single-bank transaction

 ;; the net change in the back room must be zero, and transactional

 ;; conservation of money requires that two other offsetting entries

 ;; must be made. The client will have the loan written-off, but

 ;; has no assets for the required offset. The bank must provide those

 ;; assets, and so it takes a loss on the loan.

 ;; In double-entry bookkeeping terms:

 ;; The bank's loan-asset offsets the prsn's loan-debt.

 ;; The bank's L1-debt should be offset by the prsn's L1-asset.

 ;; But the prsn has no L1-asset. It has been stripped away.

 ;; So, the bank's corporate C1-asset "eats the loss" and is

 ;; used to settle the loan. In this option, that loss is spread across

 ;; all banks.

 LOG-TO-FILE (word "Loan is being written off.")

 ;; Cancelling a loan requires four entries.

 ;; So, the client is informed that the loan is written off. Entry #1.

 LOG-TO-FILE (word " Checking account is now - " L1-assets)

 LOG-TO-FILE (word " Outstanding loan debt --- " L1-loan-debts)

 set L1-loan-debts (L1-loan-debts - amount-written-off)

 LOG-TO-FILE (word " Amount written off ------ " amount-written-off)

 LOG-TO-FILE (word " Remaining loan debt ----- " L1-loan-debts)

 ;; Note that there are no client L1 assets remaining to be co-cancelled.

 ;; They have wandered off to the L1-asset accounts of some other prsns.

 ask my-bank

 [

 ;; Bank cancels the loan to this client by reducing its aggregator.

 ;; Entry #2.

 LOG-TO-FILE (word " Bank's loan assets were - " L1-loan-assets)

 set L1-loan-assets (L1-loan-assets - amount-written-off)

 LOG-TO-FILE (word " Bank's loan assets are -- " L1-loan-assets)

 ;; To maintain the back room net worth, an equivalent amount of L1

 ;; funds available to the economy must be withdrawn from action

 ;; effectively shrinking the MS-II money supply. Entry #3.

 set L1-debts (L1-debts - amount-written-off)

 ;; Finally, someone active in the economy needs to cough up the money

 ;; that has been withdrawn. The bankrupt client cannot provide it.

 ;; That money has wandered off to who-knows-where. So the front room

 ;; of the bank must provide it out of its C1 corporate accounts.

 ;; The front room of the bank is a customer of its own back room. So

 ;; this amounts to a payment from the corporate bank to the client

 ;; cancelling its debt. Entry #4.

 LOG-TO-FILE (word " Bank's C1 assets were --- " C1-assets)

 set C1-assets (C1-assets - amount-written-off)

 LOG-TO-FILE (word " Bank's C1 assets are ---- " C1-assets)

]

 ;; Prsn takes over again.

 ;; Only invoke insurance if there is a clear loss.

 ;; Sometimes a prsn goes bankrupt with a minor positive net worth.

 if(amount-written-off > 0)

 [

 if(gb-bank-insurance = true)

 [

 LOG-TO-FILE (word " Banking insurance is on.")

 ;; Bank insurance is turned on. All banks share the loss.

 ;; At this point, my-bank has born the whole cost. Now, refund it.

 LOG-TO-FILE (word " Amount refunded --------- " amount-written-off)

 ask my-bank [set C1-assets (C1-assets + amount-written-off)]

 ask my-bank [LOG-TO-FILE (word " Bank's C1 assets are ---- " C1-assets)]

 ;; Determine the status before the write-off.

 let total-C1-assets (sum [C1-assets] of banks)

 let donation-factor 0 ;; a dummy declaration.

 let donation 0 ;; a dummy declaration.

 let total-donation 0 ;; a dummy declaration.

 ;; My bank will also make a donation, and receive the donation, to cover

 ;; its portion of the cost. This makes the code more simple.

 ask banks

 [

 set donation-factor (C1-assets / total-C1-assets)

 set donation floor(amount-written-off * donation-factor)

 LOG-TO-FILE (word " Bank " who " donated ------- " donation)

 ;; This is an intra-bank cost. It requires three entries.

 ;; Mark in corporate check books. Entry #1.

 set C1-assets (C1-assets - donation)

 ;; Make the back room entries. Entries #2 and #3.

 set L1-assets (L1-assets - donation)

 set L1-debts (L1-debts - donation)

 ;; Keep an aggregate tally. Includes a self-donation.

 set total-donation (total-donation + donation)

]

 ;; Due to rounding, the total donated (and written off, in each

 ;; case) may not equal the amount to be written off. My bank

 ;; has already taken its share of the lumps given, but it must

 ;; also handle the residual.

 ask my-bank

 [

 let residual (amount-written-off - total-donation)

 ;; Mark in corporate check book. Entry #1.

 set C1-assets (C1-assets - residual)

 ;; Make back room entries. Entries #2 and #3.

 set L1-assets (L1-assets - residual)

 set L1-debts (L1-debts - residual)

]

] ;; end if (gb-bank-insurance = true)

]

;; end of f-bnkrpt-prsn-has-loan-written-off

end

Orrery Software Pg. 39 NTF Code for CmLab V1.17

;;---|

;; Process a bank that is bankrupt.

to f-bsvcs-process-bank-bankruptcy

;; This routine is to be executed by a bank.

 ;; TODO: After debugging, suppress this.

 ;; f-force-debug-output-on

 ;; TODO: Remove this if annoying.

 ;; beep

 ;; PART A - I need to collapse the assets and declare bankruptcy.

 ;; Banks are bankrupt when they have insufficient P0-assets to make loans

 ;; or earn interest from the CRB, and they have no existing L1 loans.

 ;; When they last attempted to issue a loan, the bank would have marked a

 ;; failed loan request as its own bankruptcy.

 ;; So, I need to collapse the assets and debts of this bank.

 ASSERT (b-bank-is-bankrupt = 1) "Bank not bankrupt" who

 ;; This bank is bankrupt. I need to address the following:

 ;; - send GCRA account, if there is one, to another bank;

 ;; - disperse all client accounts to other banks;

 ;; - disperse all P0 assets to other banks;

 ;; - disperse all -tve C1 assets to other banks, who must share the losses;

 LOG-TO-FILE(word "BANK " who " is bankrupt.")

 ;; Send the GCRA to another bank.

 if(no-of-gcra-clients > 0)

 [

 let new-bank one-of other banks

 let new-bank-who [who] of new-bank

 ask gcras [set bank-who new-bank-who]

 LOG-TO-FILE (word " GCRA has a new bank ------------- " new-bank-who)

 set no-of-gcra-clients 0

 ask new-bank [set no-of-gcra-clients (no-of-gcra-clients + 1)]

]

 ;; Send the CRB to another bank.

 if(no-of-crb-clients > 0)

 [

 let new-bank one-of other banks

 let new-bank-who [who] of new-bank

 ask crbs [set bank-who new-bank-who]

 LOG-TO-FILE (word " CRB has a new bank -------------- " new-bank-who)

 set no-of-crb-clients 0

 ask new-bank [set no-of-crb-clients (no-of-crb-clients + 1)]

]

 ;; Disperse other clients to new banks.

 ifelse(no-of-prsn-clients > 0)

 [

 ;; Get a list of prsns that use this bank.

 let client-list (prsns with [bank-who = who])

 LOG-TO-FILE(word " Client list: " [who] of client-list)

 ;; Get a list of suitable banks.

 let bank-list (other banks)

 LOG-TO-FILE(word " Alternate bank list: " [who] of bank-list)

 ask client-list

 [

 ;; Each prsn moves accounts to a new bank.

 ;; P0 assets (currency) does not need to be moved. It is not in

 ;; the bank.

 ;; L1-loans do not need to be moved. A condition of bankruptcy is

 ;; this bank has no outstanding loans, and no RR or ER deposits.

 let old-bank (bank bank-who) ;; who of bankrupt bank.

 let old-bank-who ([who] of old-bank)

 let new-bank (one-of bank-list) ;; who of some other bank.

 set bank-who ([who] of new-bank) ;; bank-to-bank client transfer

 LOG-TO-FILE(word " Prsn " who " moves from bank "

 old-bank-who " to " bank-who ".")

 ;; Move the assets. This requires 6 entries.

 ;; No entry is needed in the client's checkbook.

 let L1-to-move L1-assets

 let L2-to-move L2-assets

 LOG-TO-FILE(word " L1-assets moved --------------" L1-assets)

 LOG-TO-FILE(word " L2-assets moved --------------" L2-assets)

 ask old-bank

 [

 ;; Entries #1, #2 and #3.

 set L1-assets (L1-assets - L1-to-move)

 set L1-debts (L1-debts - L1-to-move)

 set L2-debts (L2-debts - L2-to-move)

]

 ask new-bank

 [

 ;; Entries #4, #5 and #6.

 set L1-assets (L1-assets + L1-to-move)

 set L1-debts (L1-debts + L1-to-move)

 set L2-debts (L2-debts + L2-to-move)

]

 ;; Cancel any shadow debts.

 ask old-bank

 [

 ;; Remove this client's interest payable on L1-loans.

 set S1-L1ir-assets (S1-L1ir-assets - S1-L1ip-debts)

 LOG-TO-FILE(word " S1-L1ip-debts cancelled ------" S1-L1ip-debts)

 ;; Remove this client's interest receivable on L2 savings.

 set S1-L2ip-debts (S1-L2ip-debts - S1-L2ir-assets)

 LOG-TO-FILE(word " S1-L2ir-assets cancelled -----" S1-L2ir-assets)

]

 set S1-L1ip-debts 0

 set S1-L2ir-assets 0

] ;; end of ask client-list

] ;; end of ifelse(no-of-prsn-clients > 0)

 ;; else

 [

 LOG-TO-FILE(word " No clients affected.")

]

 ;; Distribute any C1-assets (whether +ve or -ve).

 ;; Distribute any P0-assets.

 ;; So, first, pack up the P0 assets.

 f-cbsvcs-bank-moves-rr-to-vc P0-rr-assets

 f-cbsvcs-bank-moves-er-to-vc P0-er-assets

 let P0-assets-to-move P0-vc-assets

 ifelse(P0-assets-to-move > 0)

 [

 LOG-TO-FILE(word " P0-assets to move -------------- " P0-assets-to-move)

 let no-of-banks (count banks)

 let one-C1-share floor(C1-assets / (no-of-banks - 1))

Orrery Software Pg. 40 NTF Code for CmLab V1.17

 let C1-residual (C1-assets - (one-C1-share * (no-of-banks - 1)))

 let one-P0-share floor(P0-vc-assets / (no-of-banks - 1))

 let P0-residual (P0-vc-assets - (one-P0-share * (no-of-banks - 1)))

 ;; Give every bank one share of asset/debt of each kind.

 ask other banks

 [

 ;; This is a bank-to-bank check. It requires six entries.

 ;; Mark in the bank's checkbook. Entry #1.

 set C1-assets (C1-assets + one-C1-share)

 ;; Mark in the back room records. Entries #2 and #3.

 set L1-assets (L1-assets + one-C1-share)

 set L1-debts (L1-debts + one-C1-share)

 ;; Add the physical cash to the vault.

 set P0-vc-assets (P0-vc-assets + one-P0-share)

 LOG-TO-FILE(word " P0-assets moved to bank " who " - " one-P0-share)

]

 ;; Mark in the back room books. Entries #4 and #5.

 set L1-assets (L1-assets - C1-assets)

 set L1-debts (L1-debts - C1-assets)

 ;; Mark in this bank's check book. Entry #6. Assets are gone.

 set C1-assets 0

 set P0-vc-assets 0

 ;; One bank paid a full share when it should only have paid the

 ;; residual, which may not be a full share. Correct this.

 ask one-of other banks

 [

 ;; It requires six entries.

 ;; Mark in the bank's checkbook. Entry #1.

 set C1-assets (C1-assets - one-C1-share)

 ;; Mark in the back room records. Entries #2 and #3.

 set L1-assets (L1-assets - one-C1-share)

 set L1-debts (L1-debts - one-C1-share)

 ;; Mark in the bank's checkbook. Entry #4.

 set C1-assets (C1-assets + C1-residual)

 ;; Mark in the back room records. Entries #5 and #6.

 set L1-assets (L1-assets + C1-residual)

 set L1-debts (L1-debts + C1-residual)

 ;; Adjust the physical cash.

 set P0-vc-assets (P0-vc-assets - one-P0-share)

 set P0-vc-assets (P0-vc-assets + P0-residual)

 LOG-TO-FILE(word " P0-assets change at bank " who " - "

 (P0-residual - one-P0-share))

]

] ;; end ifelse(P0-assets-to-move > 0)

 ;; else

 [

 LOG-TO-FILE(word " No P0-assets need to move. ")

]

 ifelse((S1-rrir-assets > 0) or (S1-rrir-assets > 0))

 [

 ;; Cancel any interest receivable on ER and RR. Probably none.

 let crb-bank one-of crbs

 let rrir-to-cancel S1-rrir-assets

 let erir-to-cancel S1-erir-assets

 ask crb-bank

 [

 set S1-rrip-debts (S1-rrip-debts - rrir-to-cancel)

 LOG-TO-FILE(word " S1-rrir-assets cancelled -------- " rrir-to-cancel)

 set S1-erip-debts (S1-erip-debts - erir-to-cancel)

 LOG-TO-FILE(word " S1-erir-assets cancelled -------- " erir-to-cancel)

]

 set S1-rrir-assets 0

 set S1-erir-assets 0

] ;; end ifelse((S1-rrir-assets> 0) or (S1-rrir-assets > 0))

 ;; else

 [

 LOG-TO-FILE(word " No interest receivables need be cancelled. ")

]

 ;; The bank has been removed from the model.

 ;; A replacement bank may be added in the "do-post-tick" routine.

 set g-no-of-banks (count banks)

 ;; TODO: Remove this after debug.

 ;; f-force-debug-output-off

 ;; This bank has now been stripped of all assets and debts, and

 ;; all connections to clients of all kinds.

 set g-counts-b-deaths (g-counts-b-deaths + 1)

 ;; Die MUST be the last command.

 die

;; end of f-bsvcs-process-bank-bankruptcy

end

;;---|

;; START OF -CBSVCS- SUB-SECTION.

;;---|

;; These routines involve the Central Reserve Bank (CRB) and its services.

;; THEORY: In this section of the code all of the patterns for types of central

;; bank services have been pulled together in a single place. This is to

;; enable consistency in the means of implmenting each type of service, with

;; the hope that it will make coding, debugging, and maintenance easier, at

;; a possible cost of performance.

;; Note that it is intentional that none of these routine do range error

;; checking on the variables affected. So, for example, a bank with no cash

;; in an excess reserve account may still move cash from there to its vault.

;; The creation of negatives and their ultimate removal again all gets

;; resolved in the daily visit to the CRB by each bank. If a bank becomes

;; overextended, a boolian switch is flipped that prevents further action

;; until clients pay down their loans and the bank is no longer over-extended.

;; The real purpose of these routines is to defend the public trust that

;; physical money is properly conserved unless explicitly indicated otherwise.

;; Rather that implementing the complicated issue of linking CRB accounts

;; directly to banks, the banks keep track of the details of their own

;; accounts, and the CRB only keeps track of aggregate amounts. This

;; simplifies the coding dramatically, and so reduces the chances of coding

;; error, but it puts the onus on the banks to have their books in order.

;; These central bank routines look after that.

;;---|

;; Distribute the initial endowment of assigned assets to prsns.

to f-cbsvcs-distribute-assets-to-prsns

 ;; This routine is to be executed by the CRB.

 LOG-TO-FILE (word "")

 LOG-TO-FILE (word "Distribution of Money Base by CRB")

 ;; Establish CRB endowment by fiat.

 ;; Physical dollars

 set P0-assets (g-no-of-prsns-max * g-crb-assets-per-prsn)

Orrery Software Pg. 41 NTF Code for CmLab V1.17

 ;; Logical dollars

 set L0-assets P0-assets

 ;; THEORY: On start, assets must just appear to imply fiat creation.

 ;; When it is handed out as wages, or, if you wish, as a share

 ;; of ownership in the society and economy, a liability is created

 ;; for the government, in the person of the CRB.

 ;; Each cash dollar held, as a personal asset, implies a government-backed

 ;; promise to pay in legal tender (gold, or replacement dollars,

 ;; or ??).

 set P0-debts 0

 set L0-debts 0

 ;; I use the code word "debts" to mean "liabilities" just because it

 ;; is shorter. Note that, for banks, these words have somewhat

 ;; counter-intituitive meanings.

 ;; Store the who of the CRB for access by prsns.

 let crbwho who

 ;; Create a handle for the CRB.

 let the-crb (crb crbwho)

 ask prsns

 [

 ;; Determine how much to give to each prsn.

 let per-person-endowment g-crb-assets-per-prsn

 ;; Put cash into the hands of the prsn.

 ;; $1 cash = ($1 logical + $1 physical)

 set P0-assets per-person-endowment

 set L0-assets per-person-endowment

 ask the-crb

 [

 ;; THEORY: Adjust CRB's records for each prsn.

 ;; The associated liability is created at the CRB.

 ;; It does not move. This is part of the "fiat" process of

 ;; creating valued currency in the economy.

 ;; The ultimate result is currency in the economy that has value

 ;; because the government guarantees that it can be exchanged

 ;; for value (in kind, in gold, or in replacement dollars).

 ;; Remove physical and logical $ from CRB assets.

 ;; Logical money is treated as an increase in logical liability.

 set L0-debts (L0-debts + per-person-endowment)

 ;; Physical money is actually removed from CRB vaults.

 set P0-assets (P0-assets - per-person-endowment)

]

]

 ;; The prsns deposit some cash, creating checking and savings accounts.

 ask prsns [f-prsn-visits-a-bank]

 ;; The currency assets are now all out in the economy, while the

 ;; currency liabilities are all in the CRB.

 LOG-TO-FILE (word " After CRB distribution")

 LOG-TO-FILE (word " CRB P0-assets ------------------ " P0-assets)

 LOG-TO-FILE (word " CRB L0-assets ------------------ " L0-assets)

 LOG-TO-FILE (word " CRB P0-debts ------------------- " P0-debts)

 LOG-TO-FILE (word " CRB L0-debts ------------------- " L0-debts)

 LOG-TO-FILE (word " CRB P0-rr-assets --------------- " P0-rr-assets)

 LOG-TO-FILE (word " CRB P0-er-assets --------------- " P0-er-assets)

 let sum-of-P0 (sum [P0-assets] of prsns)

 let sum-of-L0 (sum [L0-assets] of prsns)

 LOG-TO-FILE (word " All Prsns P0-assets ------------ " sum-of-P0)

 LOG-TO-FILE (word " All Prsns L0-assets ------------ " sum-of-L0)

 ;; End of f-cbsvcs-distribute-assets-to-prsns

end

;;---|

;; The GCRA (Govt Consolidated Revenue Accts) are reconciled with banks.

to f-cbsvcs-gcra-reconciles-with-crb-monthly

;; This routine is to be executed by the observer.

 ;; THEORY: The GCRA might deal with a bank for a couple of reasons.

 ;; 1. The CRB must pay interest on reserve deposits, and this must come out

 ;; of the government consolidated revenue accounts (GCRA). So interest

 ;; on both ER deposits and RR deposits must be accounted for.

 ;; 2. TODO: The CRB might loan out reserves to banks that need them, and so

 ;; may collect interest on those loans, which would go into GCRA.

 ;; 3. TODO: Expenses from gov't buying may exceed income from taxes, and so

 ; the government may want to address the budget deficit with a normal

 ;; L1 bank loan from a chartered bank.

 ;; TODO: Only item #1 is implemented so far.

 ;; In all cases, the positive and negative changes in the corporate assets

 ;; and liabilities of the CRB are reflected in the variable C1-assets.

 ;; Contact the CRB.

 let the-crb (one-of crbs) ;; There is only one CRB.

 ;; Contact the chartered bank that holds the CRB's C1 account.

 let bank-of-crb (bank ([bank-who] of the-crb))

 ask gcras ;; There is only one GCRA.

 [

 ;; Contact the chartered bank used by the GCRA.

 let gcra-bank (bank bank-who)

 ;; Move the private (i.e. "corporate") assets and debts from the CRB

 ;; into the government consolidated revenue accounts.

 let amount-to-transfer ([C1-assets] of the-crb)

 LOG-TO-FILE (word "")

 LOG-TO-FILE (word "GCRA visits CRB.")

 LOG-TO-FILE (word "TRANSFER CRB CORP ACCTS TO GCRA")

 LOG-TO-FILE (word " GCRA L1 assets prior to xfer ---- " L1-assets)

 LOG-TO-FILE (word " CRB C1 assets prior to xfer ----- " amount-to-transfer)

 ;; NOTE: I use negative assets to record debts.

 ;; This inter-bank payment requires six entries.

 ;; The amount-to-transfer moves from CRB assets to GCRA assets.

 ;; Entry #1. Add the assets to the check book of the GCRA.

 set L1-assets (L1-assets + amount-to-transfer)

 ;; Entry #2. Add the liability to the bank of the GCRA.

 ask gcra-bank [set L1-debts (L1-debts + amount-to-transfer)]

 ;; Entry #3. Assets must follow debts.

 ask gcra-bank [set L1-assets (L1-assets + amount-to-transfer)]

 LOG-TO-FILE (word " GCRA L1 assets after xfer ------- " L1-assets)

 ;; At this point the GCRA has the assets, and the net worth of

 ;; the chartered bank that deals with the GCRA has not changed.

Orrery Software Pg. 42 NTF Code for CmLab V1.17

 ;; Remove from the CRB account.

 ask the-crb

 [

 ;; Entry #4. Remove the assets from the CRB's check book.

 set C1-assets (C1-assets - amount-to-transfer)

 ;; A payment usually requires six entries. Two into the bank

 ;; books of the participants, and four back-room entries by the

 ;; banks recording the change in assets/liability for the banks.

 ;; This exchange involves three banks: the CRB and two chartered

 ;; banks in which the GCRA stores its funds.

 LOG-TO-FILE (word " CRB C1 assets after xfer -------- " C1-assets)

]

 ask bank-of-crb

 [

 ;; Entry #5. Record the change in liabilities.

 set L1-debts (L1-debts - amount-to-transfer)

 ;; Entry #6. Assets follow liabilities.

 set L1-assets (L1-assets - amount-to-transfer)

]

 ;; The transaction is completed. The net worth of both chartered bank's

 ;; back room records has not changed, but the assets have moved from

 ;; the CRB's C1 account to the GCRA's L1 account.

]

;; end of f-cbsvcs-gcra-reconciles-with-crb-monthly

end

;;---|

;; A bank has vault cash (vc) and deposits into its excess reserve (ER)

;; account at the CRB.

to f-cbsvcs-bank-moves-vc-to-er [amount-to-move]

;; This routine is to be executed a bank.

 ;; Contact the CRB.

 let the-crb (crb crb-who)

 ;; Move the physical cash within the bank's records.

 set P0-vc-assets (P0-vc-assets - amount-to-move)

 ;; Adjust the phantom account in which assets = liabilities.

 set P0-er-assets (P0-er-assets + amount-to-move)

 set P0-er-debts (P0-er-debts + amount-to-move)

 ;; Put the physical cash into the CRB's vault as ER (P0-er).

 ask the-crb

 [

 ;; Add it to the aggregate ER amount in the CRB.

 set P0-er-assets (P0-er-assets + amount-to-move)

]

 LOG-TO-FILE (word " CBSvcs: Amount of ER deposited -- " amount-to-move)

;; end of f-cbsvcs-bank-moves-vc-to-er

end

;;---|

;; A bank has ER funds in the CRB and withdraws physical cash (P0).

to f-cbsvcs-bank-moves-er-to-vc [amount-to-move]

;; This routine is to be executed a bank.

 ;; Contact the bank.

 let the-crb (crb crb-who)

 ;; This is the reversal of a move vc-to-er.

 ;; Get the physical cash from the CRB's vault as ER (P0-er).

 ask the-crb

 [

 ;; Subract it from the aggregate ER amount in the CRB.

 set P0-er-assets (P0-er-assets - amount-to-move)

]

 ;; Move the physical cash within the bank's records.

 set P0-vc-assets (P0-vc-assets + amount-to-move)

 ;; Adjust the phantom account in which assets = liabilities.

 set P0-er-assets (P0-er-assets - amount-to-move)

 set P0-er-debts (P0-er-debts - amount-to-move)

 LOG-TO-FILE (word " CBSvcs: Amount of ER withdrawn -- " amount-to-move)

;; end of f-cbsvcs-bank-moves-er-to-vc

end

;;---|

;; A bank has vault cash (vc) and deposits into its required reserve (RR)

;; account at the CRB.

to f-cbsvcs-bank-moves-vc-to-rr [amount-to-move]

;; This routine is to be executed a bank.

 ;; Contact the CRB.

 let the-crb (crb crb-who)

 ;; Move the physical cash within the bank's records.

 set P0-vc-assets (P0-vc-assets - amount-to-move)

 ;; Adjust the phantom account in which assets = liabilities.

 set P0-rr-assets (P0-rr-assets + amount-to-move)

 set P0-rr-debts (P0-rr-debts + amount-to-move)

 ;; Put the physical cash into the CRB's vault as RR (P0-er).

 ask the-crb

 [

 ;; Add it to the aggregate ER amount in the CRB.

 set P0-rr-assets (P0-rr-assets + amount-to-move)

]

 LOG-TO-FILE (word " CBSvcs: Amount of RR deposited -- " amount-to-move)

;; end of f-cbsvcs-bank-moves-vc-to-rr

end

;;---|

;; A bank has RR funds in the CRB and withdraws physical cash (P0).

to f-cbsvcs-bank-moves-rr-to-vc [amount-to-move]

;; This routine is to be executed a bank.

 ;; Contact the bank.

 let the-crb (crb crb-who)

 ;; This is the reversal of a move vc-to-rr.

 ;; Get the physical cash from the CRB's vault as RR (P0-rr).

 ask the-crb

Orrery Software Pg. 43 NTF Code for CmLab V1.17

 [

 ;; Subract it from the aggregate RR amount in the CRB.

 set P0-rr-assets (P0-rr-assets - amount-to-move)

]

 ;; Move the physical cash within the bank's records.

 set P0-vc-assets (P0-vc-assets + amount-to-move)

 ;; Adjust the phantom account in which assets = liabilities.

 set P0-rr-assets (P0-rr-assets - amount-to-move)

 set P0-rr-debts (P0-rr-debts - amount-to-move)

 LOG-TO-FILE (word " CBSvcs: Amount of RR withdrawn -- " amount-to-move)

;; end of f-cbsvcs-bank-moves-rr-to-vc

end

;;---|

;; The CRB is charged daily interest on outstanding amounts of ER deposits.

to f-cbsvcs-bank-accrues-daily-interest-on-ER-deposits

;; This routine is to be executed a bank.

 ;; THEORY: -ptbfs- This causes a flow of money from the real

 ;; economy to the banking sector because the interest on excess

 ;; reserves is paid by the government to the banks out of the

 ;; Consolidated Revenue Accounts of the government, which comes out

 ;; of personal taxes. As such, it is part of the "Prsns to Banks

 ;; Flows" (ptbfs). It can be turned off by setting g-ioer to zero.

 if(g-ioer > 0)

 [

 ;; THEORY: Interest on ER deposits is to be paid by the CRB to the bank.

 ;; The size of the deposits may vary daily due to commercial activity,

 ;; so interest is charged and accrued on a daily basis, but only

 ;; paid on a monthly basis. This interest is a debt which expands the

 ;; shadow money supply, as it is basically a loan from the bank to the

 ;; CRB until it is paid.

 ;;

 ;; I note that this makes sense only if the CRB can then loan out

 ;; any excess physical cash (P0) held in ER deposits to other banks, in

 ;; place of using fiat powers to create more physical cash (P0, L0) when

 ;; needed. In this way the CRB can expand the physical money supply in a

 ;; fashion similar to the way a chartered bank can expand the logical money

 ;; supply. I have NOT implemented this. In this model, the physical money

 ;; supply is not expandable by that technique, though it would be easy to

 ;; add.

 ;;

 ;; The same as for L1 loans, there is a hair to be split, here, and I am

 ;; splitting it this way. Because this debt is visible to the banks,

 ;; and really amounts to a bank loan of sorts, it should be considered

 ;; part of the logical money supply (L1) instead of the shadow money

 ;; supply (S1).

 ;; But, because I want to focus on L1 loan tracking in this application, I have

 ;; chosen, somewhat arbitrarily, to include it in S1 until it is paid.

 ;; Contact the CRB.

 let the-crb (crb crb-who)

 ;; The CRB only has an aggregate variable for all of the ER deposits of all

 ;; of its client banks. Only the bank's records indicate the size of the

 ;; ER deposit associated with this bank.

 let er-account-size P0-er-assets

 ;; The annual interest on ER deposits is in slider g-ioer.

 let annual-interest-due (er-account-size * g-ioer / 100)

 ;; Prorate this to a daily rate (12 months; 30 days per month).

 let daily-interest-due (annual-interest-due / (12 * 30))

 ;; The CRB records the increase in its S1 aggregator for

 ;; ER deposits (P0-er) interest payable.

 ask the-crb [set S1-erip-debts (S1-erip-debts + daily-interest-due)]

 ;; The bank records the increase in its S1 record for interest receivable.

 set S1-erir-assets (S1-erir-assets + daily-interest-due)

 LOG-TO-FILE (word " CBSvcs: ER interest accrued ----- " daily-interest-due)

]

;; end of f-cbsvcs-bank-accrues-daily-interest-on-ER-deposits

end

;;---|

;; The CRB is charged daily interest on outstanding amounts of RR deposits.

to f-cbsvcs-bank-accrues-daily-interest-on-RR-deposits

;; This routine is to be executed a bank.

 ;; THEORY: -ptbfs- This causes a flow of money from the real

 ;; economy to the banking sector because the interest on required

 ;; reserves is paid by the government to the banks out of the

 ;; Consolidated Revenue Accounts of the government, which comes out

 ;; of personal taxes. As such, it is part of the "Prsns to Banks

 ;; Flows" (ptbfs). It can be turned off by setting g-iorr to zero.

 if(g-iorr > 0)

 [

 ;; THEORY: Interest on RR deposits is to be paid by the CRB to the bank.

 ;; The size of the deposits may vary daily due to commercial activity,

 ;; so interest is charged and accrued on a daily basis, but only

 ;; paid on a monthly basis. This interest is a debt which expands the

 ;; shadow money supply, as it is basically a loan from the bank to the

 ;; CRB until it is paid.

 ;;

 ;; I note that this makes sense only if the CRB can then loan out

 ;; any excess physical cash (P0) held in ER deposits to other banks, in

 ;; place of using fiat powers to create more physical cash (P0, L0) when

 ;; needed. In this way the CRB can expand the physical money supply in a

 ;; fashion similar to the way a chartered bank can expand the logical money

 ;; supply. I have NOT implemented this. In this model, the physical money

 ;; supply is not expandable by that technique, though it would be easy to

 ;; add.

 ;;

 ;; The same as for L1 loans, there is a hair to be split, here, and I am

 ;; splitting it this way. Because this debt is visible to the banks,

 ;; and really amounts to a bank loan of sorts, it should be considered

 ;; part of the logical money supply (L1) instead of the shadow money

 ;; supply (S1).

 ;; But, because I want to focus on L1 loan tracking in this application, I have

 ;; chosen, somewhat arbitrarily, to include it in S1 until it is paid.

 ;; Contact the CRB.

 let the-crb (crb crb-who)

 ;; The CRB only has an aggregate variable for all of the RR deposits of all

 ;; of its client banks. Only the bank's records indicate the size of the

 ;; RR deposit associated with this bank.

 let rr-account-size P0-rr-assets

Orrery Software Pg. 44 NTF Code for CmLab V1.17

 ;; The annual interest on RR deposits is in slider g-iorr.

 let annual-interest-due (rr-account-size * g-iorr / 100)

 ;; Prorate this to a daily rate (12 months; 30 days per month).

 let daily-interest-due (annual-interest-due / (12 * 30))

 ;; The CRB records the increase in its S1 aggregator for

 ;; RR deposits (P0-rr) interest payable.

 ask the-crb [set S1-rrip-debts (S1-rrip-debts + daily-interest-due)]

 ;; The bank records the increase in its S1 record for interest receivable.

 set S1-rrir-assets (S1-rrir-assets + daily-interest-due)

 LOG-TO-FILE (word " CBSvcs: RR interest accrued ----- " daily-interest-due)

]

;; end of f-cbsvcs-bank-accrues-daily-interest-on-RR-deposits

end

;;---|

;; A client pays outstanding interest on er deposits monthly.

to f-cbsvcs-bank-paid-monthly-interest-on-er-deposits

;; This routine is to be executed by a bank.

 ;; THEORY: Interest on ER deposits is to be paid by the CRB to the bank.

 ;; It accrues daily, but is paid in aggregate monthly.

 ;; When interest is accrued, it is stored with 17 (or so) digits after

 ;; the decimal, but it is paid in dollar units. I don't want to round

 ;; away all of the accuracy of the interest payments, since I accrue

 ;; it daily. So, I determine the floor of the amount due, pay that,

 ;; and leave a residual amount to be paid the next month. By doing it

 ;; this way, the shadow money supply holds the (not-absolutely precise)

 ;; fractional debts, but the logical money supply is always accurate

 ;; with infinite precision to the dollar.

 ;; This may affect the way I compare total interest payments, over time,

 ;; with total write-offs, over time, but I don't think it will.

 ;; TODO: I need to watch that.

 ;; Interest paid by the CRB represents a change in its corporate

 ;; net worth. This expense is outside of its role as the guardian of

 ;; the rule of conservation of money, its public trust, and so must be

 ;; put into its own corporate checking account (a C1 account) as if

 ;; it is a client of itself.

 ;; So this payment is a peculiar client-to-client payment mediated by

 ;; the two banks' own back rooms that manage the public trust. This

 ;; payment requires a total of six accounting entries, one of which is

 ;; redundant and is suppressed.

 ;; Contact the CRB.

 let the-crb (crb crb-who)

 ;; Contact the bank that holds the C1 assets of the CRB

 let bank-of-crb (bank ([bank-who] of the-crb))

 ;; The CRB only has an aggregate variable for all of the interest payable

 ;; on all ER deposits of its client banks. Only this bank's records

 ;; indicate the size of the accrued interest associated with this bank.

 ;; Determine the largest integral dollar amount payable.

 let monthly-interest-paid floor(S1-erir-assets)

 ;; Settle the records for the shadow money supply first.

 ;; The bank notes the payment, subtracting it from dues accrued,

 ;; and leaving a residual.

 set S1-erir-assets (S1-erir-assets - monthly-interest-paid)

 ;; The CRB decreases its aggregator by the same amount.

 ask the-crb [set S1-erip-debts (S1-erip-debts - monthly-interest-paid)]

 ;; Now, the CRB has to actually pay the bill with real money.

 ;; A payment is normally a six-entry event. Two entries are in the

 ;; check books of the participating agents, and four are back-room

 ;; changes in banker's assets/debts. In this case two banks are involved

 ;; so it gets confusing. The two banks must each separate their

 ;; corporate "check books" from their back-room role to protect the

 ;; public trust. The corporate assets are C1-assets. The back-room

 ;; banking records are L1-assets/L1-debts.

 ;; The payment is noted in this bank's corporate check book. Entry #1.

 set C1-assets (C1-assets + monthly-interest-paid)

 ;; And the money enters the logical money supply in the bank's

 ;; L1 aggregator by its back room staff. Entry #2.

 set L1-debts (L1-debts + monthly-interest-paid)

 ;; Assets must follow debts. Entry #3.

 set L1-assets (L1-assets + monthly-interest-paid)

 ask the-crb

 [

 ;; The front-room corporate comptroller notes the payment in its check book.

 ;; Entry #4.

 set C1-assets (C1-assets - monthly-interest-paid)

 ask bank-of-crb

 [

 ;; Entry #5.

 set L1-debts (L1-debts - monthly-interest-paid)

 ;; Entry #6. Assets must follow debts.

 set L1-assets (L1-assets - monthly-interest-paid)

]

 ;; The CRB's assets will be quickly transferred to the GCRA.

]

 LOG-TO-FILE (word " BSvcs: ER interest received --- " monthly-interest-paid)

;; end of f-cbsvcs-bank-paid-monthly-interest-on-er-deposits

end

;;---|

;; A client pays outstanding interest on rr deposits monthly.

to f-cbsvcs-bank-paid-monthly-interest-on-rr-deposits

;; This routine is to be executed by a bank.

 ;; THEORY: Interest on RR deposits is to be paid by the CRB to the bank.

 ;; It accrues daily, but is paid in aggregate monthly.

 ;; When interest is accrued, it is stored with 17 (or so) digits after

 ;; the decimal, but it is paid in dollar units. I don't want to round

 ;; away all of the accuracy of the interest payments, since I accrue

 ;; it daily. So, I determine the floor of the amount due, pay that,

 ;; and leave a residual amount to be paid the next month. By doing it

 ;; this way, the shadow money supply holds the (not-absolutely precise)

 ;; fractional debts, but the logical money supply is always accurate

 ;; with infinite precision to the dollar.

 ;; This may affect the way I compare total interest payments, over time,

 ;; with total write-offs, over time, but I don't think it will.

 ;; TODO: I need to watch that.

 ;; Interest paid by the CRB represents a change in its corporate

 ;; net worth. This expense is outside of its role as the guardian of

 ;; the rule of conservation of money, its public trust, and so must be

 ;; put into its own corporate checking account (a C1 account) as if

 ;; it is a client of itself.

Orrery Software Pg. 45 NTF Code for CmLab V1.17

 ;; So this payment is a peculiar client-to-client payment mediated by

 ;; the two banks' own back rooms that manage the public trust. This

 ;; payment requires a total of six accounting entries, one of which is

 ;; redundant and is suppressed.

 ;; Contact the CRB.

 let the-crb (crb crb-who)

 ;; Contact the bank that holds the C1 assets of the CRB

 let bank-of-crb (bank ([bank-who] of the-crb))

 ;; The CRB only has an aggregate variable for all of the interest payable

 ;; on all RR deposits of its client banks. Only this bank's records

 ;; indicate the size of the accrued interest associated with this bank.

 ;; Determine the largest integral dollar amount payable.

 let monthly-interest-paid floor(S1-rrir-assets)

 ;; Settle the records for the shadow money supply first.

 ;; The bank notes the payment, subtracting it from dues accrued,

 ;; and leaving a residual.

 set S1-rrir-assets (S1-rrir-assets - monthly-interest-paid)

 ;; The CRB decreases its aggregator by the same amount.

 ask the-crb [set S1-rrip-debts (S1-rrip-debts - monthly-interest-paid)]

 ;; Now, the CRB has to actually pay the bill with real money.

 ;; A payment is normally a four-entry event. Two entries are in the

 ;; bank books of the participating agents, and two are back-room

 ;; changes in banker's debts. In this case two banks are involved

 ;; so it gets confusing. The two banks must each separate their

 ;; corporate "bank books" from their back-room role to protect the

 ;; public trust. The corporate assets are C1-assets. The back-room

 ;; banking records are L1-debts. It requires six entries.

 ;; The payment is noted in the bank's corporate check book. Entry #1.

 set C1-assets (C1-assets + monthly-interest-paid)

 ;; And the money enters the logical money supply in the bank's

 ;; L1 aggregator by its back room staff. Entry #2.

 set L1-debts (L1-debts + monthly-interest-paid)

 ;; And assets follow debts, in the bank back room. Entry #3.

 set L1-assets (L1-assets + monthly-interest-paid)

 ask the-crb

 [

 ;; The front-room corporate comptroller notes the payment in its check book.

 ;; Entry #4.

 set C1-assets (C1-assets - monthly-interest-paid)

 ask bank-of-crb

 [

 ;; Entry #5.

 set L1-debts (L1-debts - monthly-interest-paid)

 ;; Entry #6. Assets must follow debts.

 set L1-assets (L1-assets - monthly-interest-paid)

]

 ;; The CRB's assets will be quickly transferred to the GCRA.

]

 LOG-TO-FILE (word " BSvcs: RR interest received --- " monthly-interest-paid)

;; end of f-cbsvcs-bank-paid-monthly-interest-on-rr-deposits

end

;; END OF -CBSVCS- SUBSECTION.

;;---|

;; START OF THE -BTPFS- SUBSECTION

;;---|

;; THEORY: This is a special part of the banking services section which is not

;; really about banking services, so much, as it is about flows of money

;; from the banking sector to the non-banking sector. In general money flows

;; to the banking sector through interest on ER and RR deposits, and through

;; interest on L1 loans. It flows from the banking sector through

;; bankruptcies and interest on savings deposits. Bankruptcies are a very

;; difficult thing to manage. They cause great instability, and public

;; policy governing bankruptcies is a key source of bias in all wealth

;; distributions. In particular, the debts of failed agents must be covered

;; by one bank or many banks, and assets for replacement agents must be

;; gathered from many agents. The way this is done may bias the wealth

;; distributions of both prsns and banks.

;;

;; The routines that start with f-btpfs-xxx are "banks-to-prsn-flows" special

;; routines that can be toggled on to provide additional flows from the

;; banking sector to the non-banking sector, in addition to the

;; default "bankruptcies" channel.

;;---|

;; Government collects a tax from banks, distributes to prsns.

to f-btpfs-government-special-monthly-transfer

;; This routine is to be executed by the observer.

 ;; THIS ROUTINE IS PART OF THE BANKS-TO-PRSNS-FLOWS (-btpfs-) REGIME.

 ;; As such, it is an adjunct to the standard -bnkrpt- regime.

 ;; THEORY: In basic mode there is a flow of money from prsns to banks, and

 ;; the only means for money to return to the non-financial sector is

 ;; via over-extended loans causing prsns to go bankrupt, and the bank

 ;; must cover the costs.

 ;; This causes a problem because I then need to find funds to re-constitute

 ;; the bankrupt prsn as a prsn of average net worth, and there is nowhere

 ;; to obtain the cash. So, this routine is one way in which some cash

 ;; can be returned to the non-banking sector.

 ;; It is controlled by the switch in the User Interface

 ;; gb-btpfs-monthly-taxes.

 ;; The government collects a tax from each bank removing all remaining

 ;; C1 assets and distributes it directly and evenly to all prsns.

 ;; Excess goes into the GCRA.

 if(gb-btpfs-monthly-taxes = true)

 [

 ask gcras

 [

 ;; Identify the bank of the GCRA.

 ;; The GCRA is not a bank. It keeps its accounts in a commercial bank.

 let gcra-bank (bank bank-who)

 let taxes-due 0 ;; Initialize a working variable.

 let all-taxes-paid 0 ;; initialize an aggregate to collect all taxes paid.

 ;; This routine proceeds in two steps:

 ;; STEP 1 - all banks are stripped of all C1 assets, going into the GCRA.

 ;; STEP 2 - the proceeds are distributed evenly to all prsns.

 ;; STEP 1 - COLLECT THE TAXES.

 ;; This functions like a prsn-to-prsn check, and requires six entries.

 ;; Two in client's check books. Four in bank back room records.

Orrery Software Pg. 46 NTF Code for CmLab V1.17

 ask banks

 [

 LOG-TO-FILE (word "BANK " who " PAYS TAXES")

 LOG-TO-FILE (word " Bank C1-assets -------------------- " C1-assets)

 set taxes-due C1-assets

 ;; Taxes are paid by bank-to-bank check.

 ;; Remove taxes from bank's bankbook. Entry #1.

 set C1-assets (C1-assets - taxes-due)

 ;; Remove the taxes from the bank's checking account. Entry #2.

 set L1-debts (L1-debts - taxes-due)

 ;; Assets follow debts. Entry #3.

 set L1-assets (L1-assets - taxes-due)

 ;; Record the amount as paid, for later entry to GCRA bankbook.

 ;; At this point the net change in prsn-bank is zero.

 set all-taxes-paid (all-taxes-paid + taxes-due)

 LOG-TO-FILE (word " Taxes paid ------------------------ " taxes-due)

 LOG-TO-FILE (word " Bank C1 assets after payment ------ " C1-assets)

] ;; end of ask banks

 LOG-TO-FILE (word " GCRA L1 assets before collection -- " L1-assets)

 LOG-TO-FILE (word " Total of all taxes collected ------ " all-taxes-paid)

 ;; Government adjusts its own bankbook. Entry #4.

 set L1-assets (L1-assets + all-taxes-paid)

 ;; Add the money to the gov't checking account. Entry #5.

 ask gcra-bank [set L1-debts (L1-debts + all-taxes-paid)]

 ;; Assets follow debts. Entry #6.

 ask gcra-bank [set L1-assets (L1-assets + all-taxes-paid)]

 ;; At this point the net change in gcra-bank is zero.

 LOG-TO-FILE (word " GCRA L1 assets after collection --- " L1-assets)

 ;; STEP 2 - PAY TO PRSNS.

 ;; Determine the payment to each prsn.

 let payout floor(all-taxes-paid / g-no-of-prsns)

 ;; So, due to the use of 'floor' the entire payout will be less than

 ;; or equal to all-taxes-paid. The residual will remain in the GCRA.

 ;; Initialize an aggregator.

 let total-dole-paid 0

 ;; This functions like a prsn-to-prsn check, and requires six entries.

 ;; Two in client's check books. Four in bank back room records.

 ask prsns

 [

 ;; Contact prsn's bank

 let prsns-bank (bank bank-who)

 LOG-TO-FILE (word "Prsn " who " RECEIVES DOLE")

 LOG-TO-FILE (word " Prsn L1-assets before dole -------- " L1-assets)

 ;; Dole is paid by bank-to-bank check.

 ;; Add dole to prsn's bankbook. Entry #1.

 set L1-assets (L1-assets + payout)

 ;; Adjust checking account. Entry #2.

 ask prsns-bank [set L1-debts (L1-debts + payout)]

 ;; Assets follow debts. Entry #3.

 ask prsns-bank [set L1-assets (L1-assets + payout)]

 ;; Record the amount as paid, for later entry to GCRA bankbook.

 ;; At this point the net change in prsn-bank is zero.

 set total-dole-paid (total-dole-paid + payout)

 LOG-TO-FILE (word " Taxes paid ------------------------ " taxes-due)

 LOG-TO-FILE (word " Prsn L1 assets after payment ------ " L1-assets)

] ;; end of ask banks

 LOG-TO-FILE (word " GCRA L1 assets before payments ---- " L1-assets)

 LOG-TO-FILE (word " Total of all dole paid ------------ " total-dole-paid)

 ;; Government adjusts its own bankbook. Entry #4.

 set L1-assets (L1-assets - total-dole-paid)

 ;; Add the money to the gov't checking account. Entry #5.

 ask gcra-bank [set L1-debts (L1-debts - total-dole-paid)]

 ;; Assets follow debts. Entry #6.

 ask gcra-bank [set L1-assets (L1-assets - total-dole-paid)]

 ;; At this point the net change in gcra-bank is zero.

 LOG-TO-FILE (word " GCRA L1 assets after payments ----- " L1-assets)

] ;; end of ask gcras

] ;; end of if (gb-btpfs-monthly-taxes = true)

;; end of f-btpfs-government-special-monthly-transfer

end

;;---|

;; Banks buy using checks.

to f-btpfs-banks-buy-using-checks

;; This routine is to be executed by the observer.

 ;; THIS ROUTINE IS PART OF THE BANKS-TO-PRSNS-FLOWS (-btpfs-) REGIME.

 ;; As such, it is an adjunct to the standard -bnkrpt- regime.

 ;; THEORY: In basic mode there is a flow of money from prsns to banks, and

 ;; the only means for money to return to the non-financial sector is

 ;; via over-extended loans causing prsns to go bankrupt, and the bank

 ;; must cover the costs.

 ;; This causes a problem because I then need to find funds to re-fashion

 ;; the bankrupt prsn as a prsn of average net worth, and there is nowhere

 ;; to obtain the cash. So, this routine is one way in which some cash

 ;; can be returned to the non-banking sector.

 ;; It is controlled by the switch in the User Interface

 ;; gb-btpfs-daily-purchases.

 ;; Each prsn canvasses its own bank for a $1 purchase per prsn per tick,

 ;; coming out of its corporate funds, unless those C1 funds are drained.

 ;; You might think of this as administrative costs for building, personnel

 ;; and supplies.

 if (gb-btpfs-daily-purchases = true)

 [

 ;; Initialize a grand aggregator.

 let grand-total-spent 0

 LOG-TO-FILE (word " ")

 LOG-TO-FILE (word "Do-buy-sell: Banks purchase daily supplies")

 ask prsns

 [

 let amount-to-spend 1

 ;; Contact the prsn's bank so money can be sent.

 let prsns-bank (bank bank-who)

 ;; Payment by inter-bank check requires six entries.

 let go-flag ([C1-assets] of prsns-bank)

 if(go-flag > 0)

Orrery Software Pg. 47 NTF Code for CmLab V1.17

 [

 ;; Bank records the aggregate of all payments in its own corporate

 ;; check book. Entry #1.

 ask prsns-bank [set C1-assets (C1-assets - amount-to-spend)]

 ;; The bank settles all check in it back-room records. Entries #2 and #3.

 ;; ask prsns-bank [set L1-assets (L1-assets - amount-to-spend)]

 ;; ask prsns-bank [set L1-debts (L1-debts - amount-to-spend)]

 ;; Prsn receives the money and enters it in their own check book. Entry #4.

 set L1-assets (L1-assets + amount-to-spend)

 ;; Their bank records the check with two entries - #5 and #6.

 ;; ask prsns-bank [set L1-assets (L1-assets + amount-to-spend)]

 ;; ask prsns-bank [set L1-debts (L1-debts + amount-to-spend)]

 ;; Increment the aggregator.

 set grand-total-spent (grand-total-spent + amount-to-spend)

 ;; The private net worth of the bank has been reduced by total-spent.

 ;; The private net worth of each prsn has increased by amount-to-spend.

 ;; The net worth of public funds in trust (in the bank's back rooms)

 ;; has not changed.

] ;; end of if(go-flag > 0)

] ;; end ask prsns

 LOG-TO-FILE (word " All banks have spent this tick -- " grand-total-spent)

] ;; end if (gb-btpfs-daily-purchases = true)

;; end of f-btpfs-banks-buy-using-checks

end

;;---|

;; SECTION E – DRAWING AND MAINTENANCE PROCEDURE(S)

;;---|

;;---|

;; Dump all of the data to debug file, or to control centre.

to f-dump-all-agent-data

 ;; This routine is to be executed by the observer.

 ;; Dump the GCRA data

 f-dump-gcras-data

 f-dump-crbS-data

 f-dump-bankS-data

 f-dump-prsnS-data

 ;; TODO: Corps not implemented yet.

 ;; f-dump-corpS-data

 ;; End of f-dump-all-agent-data

end

;;---|

;; Dump all GCRA data to debug file, or to control centre.

to f-dump-gcras-data

 ;; This routine is to be executed by the observer.

 ;; Dump the GCRA data

 ask gcras

 [

 f-dump-gcra-data

]

 ;; End of f-dump-gcras-data

end

;;---|

;; Dump the data of one calling GCRA to debug file, or to control centre.

to f-dump-gcra-data

 ;; This routine is to be executed by the GCRA.

 LOG-TO-FILE (word " ")

 LOG-TO-FILE (word "DUMP GCRA who# <<< " who " >>>")

 LOG-TO-FILE (word "bank-who ------------------ " bank-who)

 LOG-TO-FILE (word "L1-assets ----------------- " L1-assets)

 ;; LOG-TO-FILE (word "L1-debts ------------------ " L1-debts)

 LOG-TO-FILE (word "L1-loan-debts ------------- " L1-loan-debts)

 LOG-TO-FILE (word "S1-L1ip-debts ------------- " S1-L1ip-debts)

 ;; ss LOG-TO-FILE (word "L3-debts ------------------ " L3-debts)

 ;; ss LOG-TO-FILE (word "S1-L3ip-debts ------------- " S1-L3ip-debts)

 LOG-TO-FILE (word "ttl-P0-assets ------------- " ttl-P0-assets)

 LOG-TO-FILE (word "ttl-publ-assets ----------- " ttl-publ-assets)

 LOG-TO-FILE (word "ttl-publ-debts ------------ " ttl-publ-debts)

 LOG-TO-FILE (word "ttl-priv-assets ----------- " ttl-priv-assets)

 LOG-TO-FILE (word "ttl-priv-debts ------------ " ttl-priv-debts)

 LOG-TO-FILE (word "net-worth-publ ------------ " net-worth-publ)

 LOG-TO-FILE (word "net-worth-priv ------------ " net-worth-priv)

 ;; End of f-dump-gcra-data

end

;;---|

;; Dump all the CRB data to debug file, or to control centre.

to f-dump-crbs-data

 ;; This routine is to be executed by the observer.

 ;; Dump the CRB data

 ask crbs

 [

 f-dump-crb-data

]

 ;; End of f-dump-crbs-data

end

;;---|

;; Dump the data of the calling CRB to debug file, or to control centre.

to f-dump-crb-data

 ;; This routine is to be executed by the CRB.

 LOG-TO-FILE (word " ")

 LOG-TO-FILE (word "DUMP CRB who# <<< " who " >>>")

 LOG-TO-FILE (word "L0-assets ----------------- " L0-assets)

 LOG-TO-FILE (word "P0-assets ----------------- " P0-assets)

 LOG-TO-FILE (word "L0-debts ------------------ " L0-debts)

 LOG-TO-FILE (word "P0-debts ------------------ " P0-debts)

 LOG-TO-FILE (word "P0-rr-assets -------------- " P0-rr-assets)

 LOG-TO-FILE (word "P0-er-assets -------------- " P0-er-assets)

 LOG-TO-FILE (word "S1-rrip-debts ------------- " S1-rrip-debts)

 LOG-TO-FILE (word "S1-erip-debts ------------- " S1-erip-debts)

 LOG-TO-FILE (word "C1-assets ----------------- " C1-assets)

 ;; xx LOG-TO-FILE (word "c2-assets ----------------- " c2-assets)

 LOG-TO-FILE (word "ttl-P0-assets ------------- " ttl-P0-assets)

 LOG-TO-FILE (word "ttl-publ-assets ----------- " ttl-publ-assets)

 LOG-TO-FILE (word "ttl-publ-debts ------------ " ttl-publ-debts)

 LOG-TO-FILE (word "ttl-priv-assets ----------- " ttl-priv-assets)

 LOG-TO-FILE (word "ttl-priv-debts ------------ " ttl-priv-debts)

Orrery Software Pg. 48 NTF Code for CmLab V1.17

 LOG-TO-FILE (word "net-worth-publ ------------ " net-worth-publ)

 LOG-TO-FILE (word "net-worth-priv ------------ " net-worth-priv)

 ;; End of f-dump-crb-data

end

;;---|

;; Dump all bank data to debug file, or to control centre.

to f-dump-banks-data

 ;; This routine is to be executed by the observer.

 ;; Dump the bank data

 ask banks

 [

 f-dump-bank-data

]

 ;; End of f-dump-banks-data

end

;;---|

;; Dump the data of the calling bank to debug file, or to control centre.

to f-dump-bank-data

 ;; This routine is to be executed by a bank.

 LOG-TO-FILE (word " ")

 LOG-TO-FILE (word "DUMP BANK who# <<< " who " >>>")

 LOG-TO-FILE (word "b-bank-can-make-loans ----- " b-bank-can-make-loans)

 LOG-TO-FILE (word "b-bank-is-bankrupt -------- " b-bank-is-bankrupt)

 LOG-TO-FILE (word "L1-assets ----------------- " L1-assets)

 LOG-TO-FILE (word "L1-loan-assets ------------ " L1-loan-assets)

 LOG-TO-FILE (word "L1-debts ------------------ " L1-debts)

 LOG-TO-FILE (word "S1-L1ir-assets ------------ " S1-L1ir-assets)

 LOG-TO-FILE (word "L2-debts ------------------ " L2-debts)

 LOG-TO-FILE (word "S1-L2ip-debts ------------- " S1-L2ip-debts)

 ;; ss LOG-TO-FILE (word "L3-assets ----------------- " L3-assets)

 LOG-TO-FILE (word "P0-vc-assets -------------- " P0-vc-assets)

 LOG-TO-FILE (word "P0-rr-assets -------------- " P0-rr-assets)

 LOG-TO-FILE (word "P0-er-assets -------------- " P0-er-assets)

 LOG-TO-FILE (word " ")

 LOG-TO-FILE (word "no-of-prsn-clients -------- " no-of-prsn-clients)

 LOG-TO-FILE (word "no-of-corp-clients -------- " no-of-corp-clients)

 LOG-TO-FILE (word "no-of-gcra-clients -------- " no-of-gcra-clients)

 LOG-TO-FILE (word "no-of-crb-clients --------- " no-of-crb-clients)

 LOG-TO-FILE (word "S1-rrir-assets ------------ " S1-rrir-assets)

 LOG-TO-FILE (word "S1-erir-assets ------------ " S1-erir-assets)

 LOG-TO-FILE (word "C1-assets ----------------- " C1-assets)

 ;; xx LOG-TO-FILE (word "c2-assets ----------------- " c2-assets)

 LOG-TO-FILE (word "ttl-P0-assets ------------- " ttl-P0-assets)

 LOG-TO-FILE (word "ttl-publ-assets ----------- " ttl-publ-assets)

 LOG-TO-FILE (word "ttl-publ-debts ------------ " ttl-publ-debts)

 LOG-TO-FILE (word "ttl-priv-assets ----------- " ttl-priv-assets)

 LOG-TO-FILE (word "ttl-priv-debts ------------ " ttl-priv-debts)

 LOG-TO-FILE (word "net-worth-publ ------------ " net-worth-publ)

 LOG-TO-FILE (word "net-worth-priv ------------ " net-worth-priv)

 ;; End of f-dump-bank-data

end

;;---|

;; Dump all prns data to debug file, or to control centre.

to f-dump-prsns-data

 ;; This routine is to be executed by the observer.

 ;; Dump the prsn data

 ask prsns

 [

 f-dump-prsn-data

]

 ;; End of f-dump-prsns-data

end

;;---|

;; Dump all one prns's data to debug file, or to control centre.

to f-dump-prsn-data

 ;; This routine is to be executed by a prsn.

 LOG-TO-FILE (word " ")

 LOG-TO-FILE (word "DUMP PRSN who# <<< " who " >>>")

 LOG-TO-FILE (word "b-prsn-is-bankrupt -------- " b-prsn-is-bankrupt)

 LOG-TO-FILE (word "Bank-who ------------------ " bank-who)

 LOG-TO-FILE (word "P0-assets ----------------- " P0-assets)

 LOG-TO-FILE (word "L0-assets ----------------- " L0-assets)

 LOG-TO-FILE (word "L1-assets ----------------- " L1-assets)

 LOG-TO-FILE (word "L1-loan-debts ------------- " L1-loan-debts)

 LOG-TO-FILE (word "S1-L1ip-debts ------------- " S1-L1ip-debts)

 LOG-TO-FILE (word "30day payables total ------ " S1-30day-total-debts)

 LOG-TO-FILE (word "30day receivables total --- " S1-30day-total-assets)

 foreach payables-30day

 [

 LOG-TO-FILE ?

]

 LOG-TO-FILE (word "L2-assets ----------------- " L2-assets)

 LOG-TO-FILE (word "S1-L2ir-assets ------------ " S1-L2ir-assets)

 ;; ss LOG-TO-FILE (word "L3-corpwho ---------------- " L3-corpwho)

 ;; ss LOG-TO-FILE (word "L3-assets ----------------- " L3-assets)

 ;; ss LOG-TO-FILE (word "S1-L3ir-assets ---- " S1-L3ir-assets)

 ;; ss LOG-TO-FILE (word "L4-corpwho ---------------- " L4-corpwho)

 ;; ss LOG-TO-FILE (word "L4-assets ----------------- " L4-assets)

 ;; ss LOG-TO-FILE (word "L4-dividend-receivable ---- " L4-dividend-receivable)

 LOG-TO-FILE (word "ttl-P0-assets ------------- " ttl-P0-assets)

 LOG-TO-FILE (word "ttl-publ-assets ----------- " ttl-publ-assets)

 LOG-TO-FILE (word "ttl-publ-debts ------------ " ttl-publ-debts)

 LOG-TO-FILE (word "ttl-priv-assets ----------- " ttl-priv-assets)

 LOG-TO-FILE (word "ttl-priv-debts ------------ " ttl-priv-debts)

 LOG-TO-FILE (word "net-worth-publ ------------ " net-worth-publ)

 LOG-TO-FILE (word "net-worth-priv ------------ " net-worth-priv)

 ;; End of f-dump-prsn-data

end

;;---|

;; Dump all corp data to debug file, or to control centre.

to f-dump-corps-data

 ;; This routine is to be executed by the observer.

 ;; Dump the corp data

 ask corps

 [

 f-dump-corp-data

]

 ;; End of f-dump-corps-data

Orrery Software Pg. 49 NTF Code for CmLab V1.17

end

;;---|

;; Dump all one corp's data to debug file, or to control centre.

to f-dump-corp-data

 ;; This routine is to be executed by a corp.

 LOG-TO-FILE (word " ")

 LOG-TO-FILE (word "DUMP CORP who# <<< " who " >>>")

 LOG-TO-FILE (word "b-corp-is-bankrupt -------- " b-corp-is-bankrupt)

 LOG-TO-FILE (word "Bank-who ------------------ " bank-who)

 LOG-TO-FILE (word "P0-assets ----------------- " P0-assets)

 LOG-TO-FILE (word "L0-assets ----------------- " L0-assets)

 LOG-TO-FILE (word "L1-assets ----------------- " L1-assets)

 LOG-TO-FILE (word "L1-debts ------------------ " L1-debts)

 LOG-TO-FILE (word "L1-loan-debts ------------- " L1-loan-debts)

 LOG-TO-FILE (word "S1-L1ip-debts ------------- " S1-L1ip-debts)

 LOG-TO-FILE (word "30day payables total ------ " S1-30day-total-debts)

 LOG-TO-FILE (word "30day receivables total --- " S1-30day-total-assets)

 foreach payables-30day

 [

 LOG-TO-FILE ?

]

 LOG-TO-FILE (word "L2-assets ----------------- " L2-assets)

 LOG-TO-FILE (word "S1-L2ir-assets ------------ " S1-L2ir-assets)

 ;; ss LOG-TO-FILE (word "no-of-bond-clients -------- " no-of-bond-clients)

 ;; ss LOG-TO-FILE (word "L3-assets ----------------- " L3-assets)

 ;; ss LOG-TO-FILE (word "L3-debts ------------------ " L3-debts)

 ;; ss LOG-TO-FILE (word "S1-L3ip-debts ------------- " S1-L3ip-debts)

 ;; ss LOG-TO-FILE (word "no-of-stock-clients ------- " no-of-stock-clients)

 ;; ss LOG-TO-FILE (word "L4-assets ----------------- " L4-assets)

 ;; ss LOG-TO-FILE (word "L4-debts ------------------ " L4-debts)

 ;; ss LOG-TO-FILE (word "S1-L4dp-debts ------- " S1-L4dp-debts)

 LOG-TO-FILE (word " ")

 LOG-TO-FILE (word "ttl-P0-assets ------------- " ttl-P0-assets)

 LOG-TO-FILE (word "ttl-publ-assets ------- " ttl-publ-assets)

 LOG-TO-FILE (word "ttl-publ-debts -- " ttl-publ-debts)

 LOG-TO-FILE (word "ttl-priv-assets ------ " ttl-priv-assets)

 LOG-TO-FILE (word "ttl-priv-debts - " ttl-priv-debts)

 LOG-TO-FILE (word "net-worth-publ ---------- " net-worth-publ)

 LOG-TO-FILE (word "net-worth-priv --------- " net-worth-priv)

 ;; End of f-dump-corp-data

end

;;---|

;; Update the values of global aggregate numbers.

to f-update-aggregates

 ;; This routine is to be executed by the observer.

 ;; Although this is a display-only routine, it may implicitly call the PRNG and

 ;; so may have an effect on the trajectory of the model. In a standard 'go'

 ;; run it is called only once per tick, before graphs are updated. If you

 ;; use the one-step debug buttons, it is called once after each step, so

 ;; debug runs that use those buttons will not replicate a real run.

 ;; Re-calculate all net worth statements.

 f-compute-each-net-worth

 ;; Update all aggregates.

 ;; In the following I use "debts" to mean "liabilities".

 ;; Money supplies

 set g-msi-ttl-assets (sum [msi-assets] of turtles) ;; Money supply I, Physical

money supply.

 set g-msii-ttl-assets (sum [msii-assets] of turtles) ;; Money supply II, Logical

money supply.

 set g-msiii-ttl-assets (sum [msiii-assets] of turtles) ;; Money supply III, Shadow

money supply.

 set g-msi-ttl-debts (sum [msi-debts] of turtles) ;; Money supply I, Physical money

supply.

 set g-msii-ttl-debts (sum [msii-debts] of turtles) ;; Money supply II, Logical

money supply.

 set g-msiii-ttl-debts (sum [msiii-debts] of turtles) ;; Money supply III, Shadow

money supply.

 set g-msi-net (g-msi-ttl-assets - g-msi-ttl-debts)

 set g-msii-net (g-msii-ttl-assets - g-msii-ttl-debts)

 set g-msiii-net (g-msiii-ttl-assets - g-msiii-ttl-debts)

 ;; Money Categories - by money supply.

 ;; MS-I - The money base - Physical money supply.

 set g-msi-prsn-P0-cash (sum [P0-assets] of prsns) ;; cash in circulation - assets

 set g-msi-corp-P0-cash (sum [P0-assets] of corps) ;; cash in circulation - assets

 set g-msi-bank-vc (sum [P0-vc-assets] of banks) ;; bank vault cash - assets

 set g-msi-bank-rr-assets (sum [P0-rr-assets] of banks) ;; bank required reserves -

debts

 set g-msi-bank-er-assets (sum [P0-er-assets] of banks) ;; bank excess reserves -

debts

 set g-msi-bank-rr-debts (sum [P0-rr-debts] of banks) ;; bank required reserves -

debts

 set g-msi-bank-er-debts (sum [P0-er-debts] of banks) ;; bank excess reserves -

debts

 set g-msi-crb-L0-assets (sum [L0-assets] of crbs) ;; money base endowment

 set g-msi-crb-P0-assets (sum [P0-assets] of crbs) ;; money base endowment

 set g-msi-crb-L0-debts (sum [L0-debts] of crbs) ;; money base endowment

 set g-msi-crb-P0-debts (sum [P0-debts] of crbs) ;; money base endowment

 set g-msi-crb-rr (sum [P0-rr-assets] of crbs) ;; CRB required reserves - assets

 set g-msi-crb-er (sum [P0-er-assets] of crbs) ;; CRB excess reserves - assets

 ;; MS-II - The logical money supply.

 set g-msii-prsn-L0-cash (sum [L0-assets] of prsns) ;; cash in circulation,

overlaps with MS-I.

 set g-msii-corp-L0-cash (sum [L0-assets] of corps) ;; cash in circulation,

overlaps with MS-I.

 set g-msii-crb-C1-assets (sum [C1-assets] of crbs) ;; privatecorp level assets

 ;; xx set g-msii-crb-c2-assets (sum [c2-assets] of crbs) ;; private corp level

assets

 set g-msii-gcra-L1-assets (sum [L1-assets] of gcras) ;; govt checking assets

 ;; set g-msii-gcra-L1-debts (sum [L1-debts] of gcras) ;; govt checking debts

 set g-msii-gcra-L1-loan-debts (sum [L1-loan-debts] of gcras) ;; govt loan debts

 ;; xx set g-msii-gcra-L2-assets (sum [L2-assets] of gcras) ;; govt savings assets

 ;; ss set g-msii-gcra-L3-debts (sum [L3-debts] of gcras) ;; govt bond debts

 set g-msii-bank-L1-assets (sum [L1-assets] of banks) ;; bank checking assets

 set g-msii-bank-L1-loan-assets (sum [L1-loan-assets] of banks) ;; bank checking

assets

 set g-msii-bank-L1-debts (sum [L1-debts] of banks) ;; bank checking debts

 set g-msii-bank-L2-assets (sum [L2-assets] of banks) ;; bank savings assets

 set g-msii-bank-L2-debts (sum [L2-debts] of banks) ;; bank savings debts

 ;; ss set g-msii-bank-L3-assets (sum [L3-assets] of banks) ;; bank bond assets

 set g-msii-bank-C1-assets (sum [C1-assets] of banks) ;; private L1 checking assets

 ;; xx set g-msii-bank-c2-assets (sum [C1-assets] of banks) ;; private L2 savings

assets

Orrery Software Pg. 50 NTF Code for CmLab V1.17

 set g-msii-prsn-L1-assets (sum [L1-assets] of prsns) ;; prsn checking assets

 set g-msii-prsn-L1-loan-debts (sum [L1-loan-debts] of prsns) ;; prsn loan debts

 set g-msii-prsn-L2-assets (sum [L2-assets] of prsns) ;; prsn savings assets

 ;; ss set g-msii-prsn-L3-assets (sum [L3-assets] of prsns) ;; prsn bond assets

 ;; ss set g-msii-prsn-L4-assets (sum [L4-assets] of prsns) ;; prsn bond assets

 set g-msii-corp-L1-assets (sum [L1-assets] of corps) ;; corp checking assets

 set g-msii-corp-L1-loan-debts (sum [L1-loan-debts] of corps) ;; corp loan debts

 set g-msii-corp-L2-assets (sum [L2-assets] of corps) ;; corp savings assets

 ;; ss set g-msii-corp-L3-assets (sum [L3-assets] of corps) ;; corp bond assets

 ;; ss set g-msii-corp-L3-debts (sum [L3-debts] of corps) ;; corp bond debts

 ;; ss set g-msii-corp-L4-assets (sum [L4-assets] of corps) ;; corp bond assets

 ;; ss set g-msii-corp-L4-debts (sum [L4-debts] of corps) ;; corp bond debts

 ;; MS-III - The shadow money supply.

 set g-msiii-crb-S1-rrip-debts (sum [S1-rrip-debts] of crbs) ;; CRB interest

payable on rr - debts

 set g-msiii-crb-S1-erip-debts (sum [S1-erip-debts] of crbs) ;; CRB interest

payable on er - debts

 set g-msiii-gcra-S1-L1ip-debts (sum [S1-L1ip-debts] of gcras) ;; govt interest

payable on loan - debts

 ;; ss set g-msiii-gcra-S1-L3ip-debts (sum [S1-L3ip-debts] of gcras) ;; govt

interest payable on bonds - debts

 set g-msiii-bank-S1-L1ir-assets (sum [S1-L1ir-assets] of banks) ;; bank interest

receivable on loans - assets

 set g-msiii-bank-S1-L2ip-debts (sum [S1-L2ip-debts] of banks) ;; bank interest

payable on savings - debts

 set g-msiii-bank-S1-rrir-assets (sum [S1-rrir-assets] of banks) ;; bank interest

receivable on rr - assets

 set g-msiii-bank-S1-erir-assets (sum [S1-erir-assets] of banks) ;; bank interest

receivable on er - assets

 set g-msiii-prsn-S1-L1ip-debts (sum [S1-L1ip-debts] of prsns) ;; prsn total 30day

payables - debts

 set g-msiii-prsn-S1-L1tp-debts (sum [S1-30day-total-debts] of prsns) ;; prsn

total 30day payables - debts

 set g-msiii-prsn-S1-L1tr-assets (sum [S1-30day-total-assets] of prsns) ;; prsn

total 30day receivables - assets

 set g-msiii-prsn-S1-L2ir-assets (sum [S1-L2ir-assets] of prsns) ;; prsn interest

receivable on savings - assets

 ;; ss set g-msiii-prsn-S1-L3ir-assets (sum [S1-L3ir-assets] of prsns) ;; prsn

interest receivable on bonds - assets

 ;; ss set g-msiii-prsn-S1-L4dr-assets (sum [L4-dividend-receivable] of prsns) ;;

prsn dividend receivable on stocks - assets

 set g-msiii-corp-S1-L1tp-debts (sum [S1-30day-total-debts] of corps) ;; corp total

30day payables - debts

 set g-msiii-corp-S1-L1tr-assets (sum [S1-30day-total-assets] of corps) ;; corp

total 30day receivables - assets

 set g-msiii-corp-S1-L2ir-assets (sum [S1-L2ir-assets] of corps) ;; corp interest

receivable on savings - assets

 ;; ss set g-msiii-corp-S1-L3ip-assets (sum [S1-L3ip-debts] of corps) ;; corp

interest payable on bonds - debts

 ;; ss set g-msiii-corp-S1-L4dp-assets (sum [S1-L4dp-debts] of corps) ;; corp

dividend payable on stocks - debts

 ;; Public funds in trust vs Private funds

 set g-crb-P0-assets (sum [ttl-P0-assets] of crbs) ;; In public trust

 set g-crb-publ-assets (sum [ttl-publ-assets] of crbs) ;; In public trust

 set g-crb-priv-assets (sum [ttl-priv-assets] of crbs) ;; Profit/Loss related

 set g-crb-publ-debts (sum [ttl-publ-debts] of crbs) ;; In public trust

 set g-crb-priv-debts (sum [ttl-priv-debts] of crbs) ;; Profit/Loss related

 set g-crb-publ-net-worth (sum [net-worth-publ] of crbs) ;; In public trust

 set g-crb-priv-net-worth (sum [net-worth-priv] of crbs) ;; Profit/Loss related

 set g-gcra-P0-assets (sum [ttl-P0-assets] of gcras) ;; In public trust

 set g-gcra-publ-assets (sum [ttl-publ-assets] of gcras) ;; In public trust

 set g-gcra-priv-assets (sum [ttl-priv-assets] of gcras) ;; Profit/Loss related

 set g-gcra-publ-debts (sum [ttl-publ-debts] of gcras) ;; In public trust

 set g-gcra-priv-debts (sum [ttl-priv-debts] of gcras) ;; Profit/Loss related

 set g-gcra-publ-net-worth (sum [net-worth-publ] of gcras) ;; In public trust

 set g-gcra-priv-net-worth (sum [net-worth-priv] of gcras) ;; Profit/Loss related

 set g-bank-P0-assets (sum [ttl-P0-assets] of banks) ;; In public trust

 set g-bank-publ-assets (sum [ttl-publ-assets] of banks) ;; In public trust

 set g-bank-priv-assets (sum [ttl-priv-assets] of banks) ;; Profit/Loss related

 set g-bank-publ-debts (sum [ttl-publ-debts] of banks) ;; In public trust

 set g-bank-priv-debts (sum [ttl-priv-debts] of banks) ;; Profit/Loss related

 set g-bank-publ-net-worth (sum [net-worth-publ] of banks) ;; In public trust

 set g-bank-priv-net-worth (sum [net-worth-priv] of banks) ;; Profit/Loss related

 set g-prsn-P0-assets (sum [ttl-P0-assets] of prsns) ;; In public trust

 set g-prsn-publ-assets (sum [ttl-publ-assets] of prsns) ;; In public trust

 set g-prsn-priv-assets (sum [ttl-priv-assets] of prsns) ;; Profit/Loss related

 set g-prsn-publ-debts (sum [ttl-publ-debts] of prsns) ;; In public trust

 set g-prsn-priv-debts (sum [ttl-priv-debts] of prsns) ;; Profit/Loss related

 set g-prsn-publ-net-worth (sum [net-worth-publ] of prsns) ;; In public trust

 set g-prsn-priv-net-worth (sum [net-worth-priv] of prsns) ;; Profit/Loss related

 set g-corp-P0-assets (sum [ttl-P0-assets] of corps) ;; In public trust

 set g-corp-publ-assets (sum [ttl-publ-assets] of corps) ;; In public trust

 set g-corp-priv-assets (sum [ttl-priv-assets] of corps) ;; Profit/Loss related

 set g-corp-publ-debts (sum [ttl-publ-debts] of corps) ;; In public trust

 set g-corp-priv-debts (sum [ttl-priv-debts] of corps) ;; Profit/Loss related

 set g-corp-publ-net-worth (sum [net-worth-publ] of corps) ;; In public trust

 set g-corp-priv-net-worth (sum [net-worth-priv] of corps) ;; Profit/Loss related

;;---|

 ;; To ensure that the PRNG is called whether or not plots are displayed, the

 ;; calculations needed for the histogram plots which invoke the PRNG

 ;; implicitly should be carried out here where they will happen every tick.

;;---|

 ;; Setup for Histograms "Net Worth of Agents" in Panel 01 and

 ;; "Net Worth of Prsns and Banks" in Panel 05.

 let prsn-nws ([net-worth-priv] of prsns) ;; a list

 let bank-nws ([net-worth-priv] of banks) ;; a list

 set g-agents-nw-xaxis-min (min sentence prsn-nws bank-nws) ;; a number

 set g-agents-nw-xaxis-min (1000 * floor(g-agents-nw-xaxis-min / 1000))

 if(g-agents-nw-xaxis-min > 0) [set g-agents-nw-xaxis-min 0]

 set g-agents-nw-xaxis-max (max sentence prsn-nws bank-nws) ;; a number

 set g-agents-nw-xaxis-max (1000 * ceiling(g-agents-nw-xaxis-max / 1000))

 if (g-agents-nw-xaxis-max < (g-agents-nw-xaxis-min + 1000))

 [

 set g-agents-nw-xaxis-max (g-agents-nw-xaxis-max + 1000)

]

 ;; Setup for histogram "Net Worth of Prsns" in Panel 06.

 set g-prsns-nw-xaxis-min (min prsn-nws) ;; a number

 set g-prsns-nw-xaxis-min (1000 * floor(g-prsns-nw-xaxis-min / 1000)) ;; a

number

 set g-prsns-nw-xaxis-max (max prsn-nws) ;; a number

 set g-prsns-nw-xaxis-max (1000 * ceiling(g-prsns-nw-xaxis-max / 1000)) ;; a

number

Orrery Software Pg. 51 NTF Code for CmLab V1.17

 if (g-prsns-nw-xaxis-max < (g-prsns-nw-xaxis-min + 1000))

 [

 set g-prsns-nw-xaxis-max (g-prsns-nw-xaxis-min + 1000)

]

 ;; Setup for histogram "Net Worth of Banks" in Panel 06.

 set g-banks-nw-xaxis-min (min bank-nws) ;; a number

 set g-banks-nw-xaxis-min (1000 * floor(g-banks-nw-xaxis-min / 1000)) ;; a

number

 set g-banks-nw-xaxis-max (max bank-nws) ;; a number

 set g-banks-nw-xaxis-max (1000 * ceiling(g-banks-nw-xaxis-max / 1000)) ;; a

number

 if (g-banks-nw-xaxis-max < (g-banks-nw-xaxis-min + 1000))

 [

 set g-banks-nw-xaxis-max (g-banks-nw-xaxis-min + 1000)

]

 ;; Setup for histogram "P0 Assets of Banks" in Panel 06.

 set g-banks-P0-xaxis-min (min [P0-all-assets] of banks) ;; a number

 set g-banks-P0-xaxis-min (1000 * floor(g-banks-P0-xaxis-min / 1000)) ;; a

number

 set g-banks-P0-xaxis-max (max [P0-all-assets] of banks) ;; a number

 set g-banks-P0-xaxis-max (1000 * ceiling(g-banks-P0-xaxis-max / 1000)) ;; a

number

 if (g-banks-P0-xaxis-max < (g-banks-P0-xaxis-min + 1000))

 [

 set g-banks-P0-xaxis-max (g-banks-P0-xaxis-min + 1000)

]

 ;; Setup for line graph "Bank P0 Assets - (Min, Mean, Max)" in Panel 07.

 set g-banks-P0-all-assets-min (min [P0-all-assets] of banks) ;; a number

 set g-banks-P0-all-assets-mean (mean [P0-all-assets] of banks) ;; a number

 set g-banks-P0-all-assets-max (max [P0-all-assets] of banks) ;; a number

 ;; Setup for line graph "Mean Net Worth" in Panel 07.

 set g-max-net-worth-priv-prsns (max [net-worth-priv] of prsns) ;; What it

says.

 set g-mean-net-worth-priv-prsns (mean [net-worth-priv] of prsns) ;; What it

says.

 set g-min-net-worth-priv-prsns (min [net-worth-priv] of prsns) ;; What it

says.

 set g-max-net-worth-priv-banks (max [net-worth-priv] of banks) ;; What it

says.

 set g-mean-net-worth-priv-banks (mean [net-worth-priv] of banks) ;; What it

says.

 set g-min-net-worth-priv-banks (min [net-worth-priv] of banks) ;; What it

says.

;;---|

 ;; Setup for Plot "AAAAAA"

 ;; This log entry may come from any step during debug operations.

 LOG-TO-FILE " Do-aaa: All aggregates updated."

end

;;---|

;; DEBUG AND DEBUG LOG FILE MANAGEMENT FUNCTIONS

;;---|

;;---|

;; Construct a CSV data file name.

to-report fr-construct-file-name [type-string]

 ;; This routine is to be executed by the observer.

 ;;

 ;; Date-string format "01:19:36.685 PM 19-Sep-2002"

 let date-string date-and-time

 let file-name (word "CmLab_" type-string "_")

 ;; Append the year as yy.

 set file-name word file-name (substring date-string 25 27)

 ;; Append the month as Mmm.

 set file-name word file-name fr-convert-mmm-mm (substring date-string 19 22)

 ;; Append the day as dd.

 set file-name word file-name (substring date-string 16 18)

 ;; Append a dash.

 set file-name word file-name "_"

 ;; Append the hour as hh.

 set file-name word file-name fr-convert1224 (substring date-string 0 2) (

substring date-string 13 15)

 ;; Append the minute as mm.

 set file-name word file-name (substring date-string 3 5)

 ;; Append the second as ss.

 set file-name word file-name (substring date-string 6 8)

 ;; Append the .csv extension.

 set file-name word file-name ".csv"

 report file-name

end

;;---|

;; Open a log file for debug output.

to f-open-log-file

 ;; This routine is to be executed by the observer.

 ;; Ensure previous log file is closed.

 if (is-string? gs-log-file-name)

 [

 if (file-exists? gs-log-file-name)

 [

 file-close-all

]

]

 ;; Date-string format "01:19:36.685 PM 19-Sep-2002"

 let date-string date-and-time

 set gs-log-file-name "CmLab_Log_"

 ;; Append the year as yy.

 set gs-log-file-name word gs-log-file-name (substring date-string 25 27)

 ;; Append the month as Mmm.

 set gs-log-file-name word gs-log-file-name fr-convert-mmm-mm (substring date-

string 19 22)

 ;; Append the day as dd.

 set gs-log-file-name word gs-log-file-name (substring date-string 16 18)

 ;; Append a dash.

 set gs-log-file-name word gs-log-file-name "_"

 ;; Append the hour as hh.

 set gs-log-file-name word gs-log-file-name fr-convert1224 (substring date-string

0 2) (substring date-string 13 15)

 ;; Append the minute as mm.

 set gs-log-file-name word gs-log-file-name (substring date-string 3 5)

 ;; Append the second as ss.

Orrery Software Pg. 52 NTF Code for CmLab V1.17

 set gs-log-file-name word gs-log-file-name (substring date-string 6 8)

 ;; Append the .txt extension.

 set gs-log-file-name word gs-log-file-name ".txt"

 file-open gs-log-file-name

 file-show "Log File for a CmLab (NetLogo) Model."

 file-show word "File Name: " gs-log-file-name

 file-show word "File opened at:" date-and-time

 file-show ""

 ;; Send a message directly to the command centre.

 ifelse (file-exists? gs-log-file-name)

 [

 show word gs-log-file-name " opened."

]

 [

 show word gs-log-file-name " not opened."

]

end

;;---|

;; Convert month in text form to digital form.

to-report fr-convert-mmm-mm [mmm]

 ;; This routine is to be executed by the observer.

 ;; It converts a string in the form mmm (alpha text) to the form mm (digit-text

).

 let mm "00"

 if(mmm = "Jan") [set mm "01"]

 if(mmm = "Feb") [set mm "02"]

 if(mmm = "Mar") [set mm "03"]

 if(mmm = "Apr") [set mm "04"]

 if(mmm = "May") [set mm "05"]

 if(mmm = "Jun") [set mm "06"]

 if(mmm = "Jul") [set mm "07"]

 if(mmm = "Aug") [set mm "08"]

 if(mmm = "SeP") [set mm "09"]

 if(mmm = "Oct") [set mm "10"]

 if(mmm = "Nov") [set mm "11"]

 if(mmm = "Dec") [set mm "12"]

 report mm

end

;;---|

;; Convert hour in 12 format to 24 hour format.

to-report fr-convert1224 [hh ampm]

 ;; This routine is to be executed by the observer.

 ;; It converts a string in 12 hour format to 24 hour format.

 let hour read-from-string hh

 if(ampm = "PM") [set hour (hour + 12)]

 let dd (word "00" hour)

 let d2 last dd

 set dd but-last dd

 let d1 last dd

 set dd (word d1 d2)

 report dd

end

;;---|

;; Close a log file for debug output.

to f-close-log-file

 ;; This routine is to be executed by the observer.

 let b-filename-exists 0

 if (is-string? gs-log-file-name)

 [

 if (file-exists? gs-log-file-name)

 [

 set b-filename-exists 1

]

]

 ifelse(b-filename-exists = 1)

 [

 ;; Ensure the file is selected.

 file-open gs-log-file-name

 ;; Stanp it.

 LOG-TO-FILE word "File closed at: " date-and-time

 ;; Flush the buffers.

 file-flush

 ;; Close it.

 file-close-all

 ;; Note sent to command centre.

 show word gs-log-file-name " closed."

 ;; Revert to dummy name.

 set gs-log-file-name "dummyname"

]

 [

 if(gs-log-file-name = "dummyname")

 [show "No log file is open. Cannot close it."]

]

end

;;---|

;; Select an already opened log file.

to f-select-log-file

 ;; This routine is to be executed by the observer.

 ifelse (file-exists? gs-log-file-name)

 [

 ;; Ensure the file is selected.

 file-open gs-log-file-name

 ;; Ensure it is open for writing.

 LOG-TO-FILE ""

 LOG-TO-FILE "SELECTED"

]

 [

 show word gs-log-file-name " is not open. Cannot select it."

]

end

;;---|

;; Change the debug mode from on to off, or vice versa.

to f-toggle-debug

 ;; This routine is to be executed by the observer, and is activated by a

 ;; button.

Orrery Software Pg. 53 NTF Code for CmLab V1.17

 ifelse(gb-debug-on = 1)

 [

 ;; Debug is On, turn it Off.

 ;; Close the file before turning debug logging off.

 f-close-log-file

 set gs-debug-status "0 (Off)" ;; This appears in the monitor.

 set gb-debug-on 0 ;; But this controls the debug feature.

]

 [

 ;; Debug is Off, turn it On.

 set gs-debug-status "1 (On)" ;; This appears in the monitor.

 set gb-debug-on 1 ;; But this controls the debug feature.

 ;; The switches, if needed, are reset manually by the user.

 ;; Open the log file after turning debug logging on.

 f-open-log-file

]

 ;; end of f-toggle-debug

end

;;---|

;; Toggles debug on. Used as a sieve.

to f-force-debug-output-on

;; This routine can be executed by anybody.

 if(gb-debug-on = 1)

 [

 f-toggle-debug ;; Turn it off.

]

 if(gb-debug-on = 0) ;; A certainty, now!

 [

 f-toggle-debug ;; Set flag on, opens debug file.

 set gs-debug-step-chooser "all" ;; Opens for all steps.

 set gb-debug-flow-on 1 ;; Turns on LOG-TO-FILE flows.

 set gb-debug-show-steps true ;; Directs flows to screen also.

]

;; end of f-force-debug-output-on

end

;;---|

;; Toggles debug off.

to f-force-debug-output-off

;; This routine can be executed by anybody.

 if(gb-debug-on = 1)

 [

 f-toggle-debug ;; Turn it off.

]

;; end of f-force-debug-output-off

end

;;---|

to f-regulate-debug-switches

 ;; This routine is to be performed by the observer.

 ;; There are certain combinations of debug switch settings which are meaning-

 ;; less when in debug mode. Rather than placing this logic here and there

 ;; throughout the application, this routine has the logic to ensure that

 ;; the debug switches remain in a meaningful configuration.

 if(gb-debug-on = 0)

 [

 ;; The debug feature is turned off. All switches should be set to default

 ;; positions, which is 'Off', or zero, or false.

 set gb-debug-show-steps false

]

end

;;---|

;; 'Show' a string in a debug log.

to LOG-TO-FILE [log-this-string]

 ;; This routine may be executed by any agent.

 ;; It should be invoked as a debug routine only, and would not be used for

 ;; normal output. It sends output to the debug log file, or, optionally,

 ;; also to the command centre.

 f-regulate-debug-switches

 ;; gb-debug-on is a global Boolean and has value 1 (true) or 0 (false).

 if(gb-debug-on = 1)

 [

 ;; gb-debug-flow-on is declared as a global Boolean variable, and its value

 ;; is 0 (false) or 1 (true) and is set on or off at the beginning of each

 ;; function (each do-step). It is controlled by the chooser that selects

'all'

 ;; or a specific do-function.

 ;;

 ;; When it is 'on' you can assume the debug log file exists and is open for

 ;; write.

 if(gb-debug-flow-on = 1)

 [

 file-show log-this-string

 if(gb-debug-show-steps = true)

 [

 show log-this-string

]

]

]

end

;;---|

;; This replicates the effect of an 'ASSERTION' in C++

to ASSERT [error-test error-string error-who]

;; This routine can be run by any agent.

if(error-test = false)

[

 show (word error-test " " error-string " " error-who)

 ;; Cause a run-time error and display a message.

 error (word "Agent: " error-who " - " error-string)

]

end

;;---|

;; Check whether the agents are all valid.

to-report frb-agents-are-all-valid

;; This routine can be run by the observer.

Orrery Software Pg. 54 NTF Code for CmLab V1.17

 let b-agents-are-all-valid true

 ;; TODO: fix this.

 if(gb-debug-on = 1)

 [

 ;; Do the check only if debug is on.

 ;; Check the GCRAs.

 ask gcras

 [

 if(frb-gcra-is-valid = false) [set b-agents-are-all-valid false]

]

 ;; Check the crbs.

 ask crbs

 [

 if(frb-crb-is-valid = false) [set b-agents-are-all-valid false]

]

 ;; Check the banks.

 ask banks

 [

 if(frb-bank-is-valid = false) [set b-agents-are-all-valid false]

]

 ;; Check the prsns.

 ask prsns

 [

 if(frb-prsn-is-valid = false) [set b-agents-are-all-valid false]

]

 ;; Check the corps.

 ask corps

 [

 if(frb-corp-is-valid = false) [set b-agents-are-all-valid false]

]

]

 report b-agents-are-all-valid

end

;;---|

;; Check whether a GCRA is valid.

to-report frb-gcra-is-valid

;; This routine can be run by a GCRA.

 let b-gcra-is-valid true

 report b-gcra-is-valid

end

;;---|

;; Check whether a crb is valid.

to-report frb-crb-is-valid

;; This routine can be run by a crb.

 let b-crb-is-valid true

 report b-crb-is-valid

end

;;---|

;; Check whether a bank is valid.

to-report frb-bank-is-valid

;; This routine can be run by a bank.

 let b-bank-is-valid true

 report b-bank-is-valid

end

;;---|

;; Check whether a prsn is valid.

to-report frb-prsn-is-valid

;; This routine can be run by a prsn.

 let b-prsn-is-valid true

 report b-prsn-is-valid

end

;;---|

;; Check whether a corp is valid.

to-report frb-corp-is-valid

;; This routine can be run by a corp.

 let b-corp-is-valid true

 report b-corp-is-valid

end

;; --|

;; END OF all CODE

;; --|

