Orrery Software

Pg.1

NTF Code for CmLab V1.17

Note To File
Author: Garvin H Boyle
Date: 160505

;; File Name: CmLab_V1.xx.nlogo
;; By Orrery Software

;; Dated: 2016-03-30

;; Author contact:

i Garvin H Boyle

H orrery@rogers.com

Y orrery-software.webs.com

;; As the author, I welcome questions, discussion of issues and suggestions
Y for improvements.

;; This CmLab app is a laboratory in which students can study aspects
Y of the proposed law of conservation of money.

;; code-determined global variables

globals

[
;; The version should be coded in this global variable to be included in
;i output files.
gs-Version

; Note: Some global variables are declared inside of switches, sliders and
H choosers when the interface is constructed and are not declared here.
Y For the sake of clarity and completeness, they are noted here.

;; There are several uses of global variables:

;; - Toggles (switches), and choosers which enable or disable features;
;; - Numbers (in variables or sliders) which act as parameters;

;; - Numbers (in variables) which collect data.

'native Boolean' have values of true or false.
'numeric Boolean' have values of 1 or 0.

;; Those marked as
;; Those marked as

;; Assumed “Model Settings” on startup
;; horizontal wrap: on

;; vertical wrap: on

;; location of origin: centre

;; patch size: 9.63 pixels

;; gs-scenario Y
g-scenario-number Y
;; The possible scenarios.
ge-scenario-with-prsns ;;
ge-scenario-with-corps ;; scenario 1

Implicit global variables due to model settings - patch locations

min-pxcor -15
max-pxcor 15
min-pycor -15
max-pycor 15

Chooser, string converts to a scenario number
scenario no., 0 or 1; interpretation of gs-scenario

scenario 0

To halt a scenario at a pre-determined tick.
g-halt-at-tick ;; Has it's own input box

Initialize the Pseudo Random Number Generator (PRNG) .
g-use-this-seed ;; Slider, (1 <= g-use-this-seed <= 100)

SWITCHES

These can be turned on and off during operations.

They are declared in the switches, and noted here.

-btfs- stands for bank-to-prsns flows, and these control the way
that interest collected by banks can flow back into the real
economy .

gb-btpfs-bankruptcies

gb-btpfs-daily-purchases

gb-btpfs-monthly-taxes Y

;; Always on, set in do-pre-tick.
;; Banks buy but do not sell.
All Cl assets taxed and redistributed

INTEREST RATES (Sliders) [min, inc, max, val]
Sliders can be altered during operations.

g-iorr ;; Interest On Required Reserves [0 .1 100 2]
g-ioer ;; Interest On Excess Reserves [0 .1 1001]
g-iosd ;; Interest On Savings Deposits [0 .1 100 1]
g-iobl ;; Interest On Bank Loans [0 .1 100 2]
TODO: Put g-docs into a % slider when Corps activated.

g-docs ;; Dividends on Corporate Stocks [0 .1 100 2]

OTHER SLIDERS:
The first three can be changed at any time, but are effective only
during setup.

;; g-no-of-banks-max HH [1 1 20 10 1
;; g-no-of-prsns-per-bank ;; [1 1 200 10 1
;; g-crb-assets-per-prsn ;; currency at start [100 100 10000 1000]
g-no-of-corps-per-bank ;; at start [1 1 20 4 1

;; These are effective during operations.

;; g-net-worth-tax-rate ;; Calculate taxes [00.1 0.5 10 1

Orrery Software

Pg. 2

NTF Code for CmLab V1.17

’

g-no-of-banks ;

;

g-reserve-requirement-ratio ;; [10.1 100 20 1
REALLY ADVANCED CONTROLS - PANEL 04

gb-bank-insurance ;; When true, banks share loss of bankruptcy.
g-bankruptcy-factor ;; Used to determine bankruptcy.

Derived variables:
Calculated value

;; g-no-of-banks-max ;; A slider

g-no-of-prsns ;
g-no-of-prsns-max ;
g-no-of-corps ;
g-no-of-corps-max ;

g
g
g
g
g
g

;

;

Calculated value
Calculated value
Calculated value
Calculated value

Various internal global constants derived from g-crb-assets-per-prsn.

-p-daily-cost-of-living ;; Used to determine daily purchases.
-p-daily-L0-allocation ;; Used to determine daily cash purchases.
-p-daily-Ll-allocation ;; Used to determine daily purchases by check.
-p-standard-loan ;; Used to set up loans.
-p-standard-loan-payment ;; Used to pay principal on loans.
-minimum-vault-cash ;; Used to manage reserves

7

7

The following global variables are not model controls or paramaters,
but, rather, are variables used to collect data about the model
for display in the user interface, in some fashion (monitors or plots),
or used to manage all of the debug routines and output.

DATA COLLECTION

In the following I use "debts" to mean "liabilities".

;; Money supplies

g-msi-ttl-assets ;
g-msii-ttl-assets ;
g-msiii-ttl-assets ;
g-msi-ttl-debts ;
g-msii-ttl-debts ;
g-msiii-ttl-debts ;
g-msi-net ;

Money supply I, Physical money supply.
Money supply II, Logical money supply.
Money supply III, Shadow money supply.
Money supply I, Physical money supply.
Money supply II, Logical money supply.
Money supply III, Shadow money supply.
Money supply I, Net money

g-msii-net ;; Money supply II, Net money
g-msiii-net ;; Money supply III, Net money

;; Money Categories - by money supply.
;; MS-I - The money base - Physical money supply.

g-msi-prsn-P0-cash ;; cash in circulation - assets
g-msi-corp-P0-cash ;; cash in circulation - assets
g-msi-bank-vc ;; bank vault cash - assets
g-msi-bank-rr-assets ;; bank required reserves - assets
g-msi-bank-er-assets ;; bank excess reserves - assets
g-msi-bank-rr-debts ;; bank required reserves - assets
g-msi-bank-er-debts ;; bank excess reserves - assets
g-msi-crb-L0-assets ;; money base logical endowment
g-msi-crb-P0-assets ;; money base physical endowment
g-msi-crb-L0-debts ;; money base logical endowment

g-msi-crb-P0-debts ;; money base physical endowment

g-msi-crb-rr ;; CRB required reserves - debts
g-msi-crb-er ;; CRB excess reserves - debts

;; MS-II - The logical money supply.

g-msii-prsn-LO-cash ;; cash in circulation, overlaps with MS-I.
g-msii-corp-LO-cash ;; cash in circulation, overlaps with MS-I.
g-msii-crb-Cl-assets ;; private corp level debts

;; XX g-msii-crb-c2-assets ;; private corp level assets

g-msii-gcra-Ll-assets ;; govt checking assets
g-msii-gcra-Ll-loan-debts ;; govt loan debts

;; Xx g-msii-gcra-L2-assets ;; govt savings assets
;; ss g-msii-gcra-L3-debts ;; govt bond debts

g-msii-bank-Ll-assets ;; bank checking assets
g-msii-bank-Ll-loan-assets ;; bank loan assets
g-msii-bank-Ll-debts ;; bank checking debts
g-msii-bank-L2-assets ;; bank savings assets
g-msii-bank-L2-debts ;; bank savings debts

;; ss g-msii-bank-L3-assets ;; bank bond assets
g-msii-bank-Cl-assets ;; private L1l checking assets
;; g-msii-bank-c2-assets ;; private L2 savings assets

g-msii-prsn-Ll-assets ;; prsn checking assets
g-msii-prsn-Ll-loan-debts ;; prsn loan debts
g-msii-prsn-L2-assets ;; prsn savings assets

;; ss g-msii-prsn-L3-assets ;; prsn bond assets
;; ss g-msii-prsn-L4-assets ;; prsn bond assets

g-msii-corp-Ll-assets ;; corp checking assets
g-msii-corp-Ll-loan-debts ;; corp loan debts
g-msii-corp-L2-assets ;; corp savings assets

;; ss g-msii-corp-L3-assets ;; corp bond assets
;; ss g-msii-corp-L3-debts ;; corp bond debts
;; ss g-msii-corp-L4-assets ;; corp bond assets
;; ss g-msii-corp-L4-debts ;; corp bond debts

;; MS-III - The shadow money supply.
g-msiii-crb-Sl-rrip-debts ;; interest payable on rr - debts

g-msiii-crb-Sl-erip-debts ;; interest payable on er - debts
g-msiii-gcra-Sl-Llip-debts ;; govt interest payable on loan - debts

;; ss g-msiii-gcra-S1-L3ip-debts ;; govt interest payable on bonds - debts
g-msiii-bank-Sl-Llir-assets ;; bank interest receivable on loans - assets
g-msiii-bank-S1-L2ip-debts ;; bank interest payable on savings - debts
g-msiii-bank-Sl-rrir-assets ;; bank interest receivable on rr - assets
g-msiii-bank-Sl-erir-assets ;; bank interest receivable on er - assets
g-msiii-prsn-Sl-Llip-debts ;; prsn interest payable on L1 loans - debts
g-msiii-prsn-S1l-Lltp-debts ;; prsn 30day total payables - debts
g-msiii-prsn-Sl-Lltr-assets ;; prsn 30day total receivables - assets
g-msiii-prsn-Sl-L2ir-assets ;; prsn interest receivable on savings - assets

;; ss g-msiii-prsn-Sl-L3ir-assets ;; prsn interest receivable on bonds - assets
;; ss g-msiii-prsn-Sl-L4dr-assets ;; prsn dividend receivable on stocks - assets
g-msiii-corp-Sl-Lltp-debts ;; corp 30day total payables - debts
g-msiii-corp-Sl-Lltr-assets ;; corp 30day total receivables - assets
g-msiii-corp-Sl-L2ir-assets ;; corp interest receivable on savings - assets

;; ss g-msiii-corp-Sl-L3ip-assets ;; corp interest payable on bonds - debts

;; ss g-msiii-corp-Sl-L4dp-assets ;; corp dividend payable on stocks - debts

;; Public funds in trust vs Private funds

g-crb-PO-assets ;; In public trust
g-crb-publ-assets ;; In public trust
g-crb-priv-assets ;; Profit/Loss related

Orrery Software

Pg. 3

NTF Code for CmLab V1.17

g-crb-publ-debts
g-crb-priv-debts
g-crb-publ-net-worth
g-crb-priv-net-worth

g-gcra-PO-assets
g-gcra-publ-assets
g-gcra-priv-assets
g-gcra-publ-debts

In public trust
Profit/Loss related
In public trust
Profit/Loss related

In public trust
In public trust
Profit/Loss related
In public trust

g-counts-b-deaths
g-counts-b-births

gb-debug-on
gs-debug-status

;; Numeric Boolean, opens debug log file, 0 or 1.
;; for monitor, 'l (On)' or 'O (Off)',

g-gcra-priv-debts ;; Profit/Loss related ;; gs-debug-step-chooser ;; Chooser, used with gb-debug-flow-on
g-gcra-publ-net-worth ;; In public trust gb-debug-flow-on ;; Numeric Boolean, in association with chooser,
g-gcra-priv-net-worth ;; Profit/Loss related gs-log-file-name ;; name of the debug log file
HY opens flow to log file

g-bank-P0O-assets ;; In public trust ;; gb-debug-show-steps ;; Switch, Native Boolean, show in command centre
g-bank-publ-assets ;; In public trust 1
g-bank-priv-assets ;; Profit/Loss related
g-bank-publ-debts ;; In public trust
g-bank-priv-debts ;; Profit/Loss related R Al bbbl b |
g-bank-publ-net-worth ;; In public trust ;; Attributes of patches
g-bank-priv-net-worth ;; Profit/Loss related patches-own

[
g-prsn-PO-assets ;; In public trust ;; BUILT-IN ATTRIBUTES
g-prsn-publ-assets ;; In public trust ;; pxcor ;; min-pxcor <= pxcor < max-pxcor
g-prsn-priv-assets ;; Profit/Loss related ;7 pycor ;; min-pxcor <= pxcor < max-pxcor
g-prsn-publ-debts ;; In public trust ;; pcolor ;; color of this patch (0 <= color < 140)
g-prsn-priv-debts ;; Profit/Loss related ;; plabel ;; label of this patch
g-prsn-publ-net-worth ;; In public trust ;; plabel-color ;; color of this patch's label (0 <= label-color < 140)
g-prsn-priv-net-worth ;; Profit/Loss related

;; CmLab-DETERMINED ATTRIBUTES

g-corp-P0O-assets ;; In public trust ;7 Nil.
g-corp-publ-assets ;; In public trust 1
g-corp-priv-assets ;; Profit/Loss related
g-corp-publ-debts ;; In public trust e e e e e e |
g-corp-priv-debts ;; Profit/Loss related ;; Attributes of links
g-corp-publ-net-worth ;; In public trust e e e e e e |
g-corp-priv-net-worth ;; Profit/Loss related ;; nil

;; DATA DISPLAY - Histogram axes

g-agents-nw-xaxis-min ;; Minimum value on prsn net worth histogram. e e e e e e |

g-agents-nw-xaxis-max ;; Maximum value on prsn net worth histogram. ;; THEORY: ATTRIBUTES WITH MONEY SUPPLY DESIGNATORS

g-prsns-nw-xaxis-min ;; Minimum value on prsn net worth histogram. - PO, LO, L1, L2, L3, L4, S1, C1.

g-prsns-nw-xaxis-max ;; Maximum value on prsn net worth histogram. i REPLACING MO, M1, M2, M3, M4.

g-banks-nw-xaxis-min ;; Minimum value on prsn net worth histogram. e e e e e e |

g-banks-nw-xaxis-max ;; Maximum value on prsn net worth histogram. ;; WARNING - I am NOT using the Mx designations as they are used in the

g-banks-P0-xaxis-min ;; Minimum value on PO-all-assets. HA the real world - for two reasons.

g-banks-P0-xaxis-max ;; Maximum value on PO-all-assets. HA 1. 1In the real world M4 includes M3, M3 includes M2, etc. until

g-banks-PO-all-assets-min ;; Minimum value on PO-all-assets. i the end where Ml includes MO. For me, each category of money

g-banks-P0-all-assets-mean ;; Mean value on PO-all-assets. Y is independent of the other. 1It's easier to track. The real

g-banks-P0-all-assets-max ;; Max value on PO-all-assets. Y world meaning can be recovered simply by adding the included
H data, at your choice. So I use LO, L1, L2, and PO.

;; DATA DISPLAY - Line Graphs i 2. No two countries seem to have the same definitions for each

g-max-net-worth-priv-prsns ;; What it says. i of the categories of money, so I do not try to accurately

g-mean-net-worth-priv-prsns ;; What it says. Y simulate or replicate that money supply structure of any one

g-min-net-worth-priv-prsns ;; What it says. i country, but, rather, I abstract a simplified model that is

g-max-net-worth-priv-banks ;; What it says. i relatively close to all of them.

g-mean-net-worth-priv-banks ;; What it says. i

g-min-net-worth-priv-banks ;; What it says. Y In addition, I use Cl and S1 as special temporary designators.

;; DATA DISPLAY - Event Counts ;; Which agents can hold which types of assets and debts is a bit of

g-counts-loans -
g-counts-p-deaths ;i
g-counts-p-births ;; LO assets - only prsns and corps can use cash.

a tricky question. I have resolved it this way.

All others make payments by

Orrery Software

check. LO assets are in the wallets of prsns and corps.

PO-assets - this is physical part of currency, stored in wallets and vaults.
PO savings accounts are the only investment option for commercial
banks, but are called PO-RR and PO-ER deposits, with the CRB.
Prsns and Corps hold PO-assets in their wallets.

; LO-debts - don't really exist. They become L1 debts.

Ll-assets - checking accounts are the work horse of this economy. All agents
have checking accounts. They accept L1 payments into their
L1l checking account and make Ll payments out of it. In the case
of the CRB or commercial banks, it is called Cl-assets, to
distinguish those accounts held in public trust from those that
function as their private funds. The CRB's Cl-assets are a
part of the GCRA Ll-assets and get merged there regularly.
Ll-loan-assets - Commercial banks are the only ones that can provide loans.
The loans stick with the borrower and the bank until they are paid
off. The loans are also the primary means for expanding the
MS-II money supply, using a pair of double-entry records.
When a loan is "signed" in two copies it creates a liability
for the borrower and an asset for the lender. Then the money
is created by entering an Ll liability for the bank, and an Ll
asset for the borrower. The two double-entries, or four entries
in total, represent the loan. No net worth is altered by such
an event since the entries counter-balance each other.
Any payment that alters the networth of participants involves
two entries that do not counter-balance. When a payment is
made on a loan, it requires two double-entries (four entries)
that counter-balance again to record the payment. Again, no
change in networth of either party happens, but the MS-II money
supply constracts again.

; Ll-debts - For commercial banks, this is the hind end of Ll-assets and

Cl-assets. Non-bank agents (GCRA, CRB, prsns, corps) have no
need of these. The sum of all explicit bank Ll-debts is the
standard money supply (MS-II).

; Ll-loan-debts - This is the second entry of the four that are required

to record a loan. This and the Ll-loan-assets must always be
incremented or decremented by matching records, indicating

the expansion or reduction of the MS-II money supply. Chartered
banks do not have loan debts. Their clients do. I.e. loan
debts are for prsns, corps, and the GCRA.

; Other Ll-type assets - all receivables are Sl-type assets.
;; Other Ll-type debts - all payables are Sl-type debts.

Sl-type money is convertible to Ll-type money when paid.

; L2-assets - L2 savings accounts are the primary investment option for agents

other than banks. GCRA, prsns and corps may hold L2-assets.

; L2-debts - only banks hold L2-debts.

TODO: Beyond L2 nothing has been implemented.
In the real world M3 and M4 are more and more broad designations. 1In this
program I have changed that. L3 are bonds. L4 are stocks.

; L3-assets - these are the assets of bond buyers/holders. That might include
prsns and corps.

; L3-debts - these are the debts of bond sellers. That includes

The GCRA, banks and corps.

; L4-assets - these are the assets of stock buyers/holders. That might include
prsns and corps.

; L4-debts - these are the debts of stock sellers. That includes

only the corps.

;; All interest on savings deposits (with CRB or banks), on bonds, on loans, or
HH all dividends, are Sl-type assets and debts, convertible to
By Ll-type money when paid.

;; Cl-assets and C2-assets - both the CRB and chartered banks have a dual role.
HA In the "back room" role they guard the public trust by ensuring
HY that money is properly conserved at the level of client-to-client
HY transactions. In the "front room" role they are organizations

HY that charge fees for financial services. The net worth of the

HY back room must always be zero. The net worth of the front room
HY is where corporate profits and losses are recorded. The back

HY room staff may have many "clients" consisting of prsns and corps,
HY but they have one special client, which is their own front room
HY organization.

HY Each client must maintain its own checking and savings bank books
H (in the variables Ll-assets and L2-assets. The front room

HY client must also keep such records separate from back room assets,
i which would also be in variables of the same name. So the front
;i room assets I have designated as Cl-assets and C2-assets.

;; Sl-assets and Sl-debts - those persistent debts that exist unpaid for a

HA duration longer than the moment required to create them are

HA part of the shadow money supply and are designated as Sl-type.
HA In some sense, I mean the shadow money supply to be that part of
;i the money supply that is invisible to the governing monetary

;i architecture (i.e. the CRB and its chartered banks), and I still
HA think that is the best definition for a real-world system. But
Y for this model I have implemented the shadow money supply as

HA all such persistent debts, excluding only the persistent debts
;i associated with Ll-loans from chartered banks. Double-entry

Y book-keeping still applies: for every Sl-debt created a counter-
i balancing Sl-asset is also created.

;; TODO: when stocks and bonds are implemented as part of the activation of

Y corps, they will be in the shadow money supply, and I may change
i the implementation to be more consistent with the "visibility"
i criterion.

[GCRAs GCRA]
[CRBs CRB]
breed [banks bank]
[prsns prsn]
[corps corp]

;; Attributes of GCRAs (Government Consolidated Revenue Accounts)
GCRAs-own

[
;; BUILT-IN ATTRIBUTES

;; who ;; fixed id number

;; breed ;; to which breed this turtle belongs [GCRA]
;; heading ;7 0 <= heading < 360, 0 = north

;; Xcor ;; min-pxcor <= xcor < max-pxcor

;; ycor ;; min-pxcor <= xcor < max-pxcor

;; size ;; size relative to a patch, default is 1

;; shape ;; a shape chosen from the shape library

;; color ;; color of this turtle (0 <= color < 140)
;; pen-mode ;7 "up" or "down"

;; pen-size ;7 in pixels

NTF Code for CmLab V1.17

Orrery Software

Pg.5

NTF Code for CmLab V1.17

;; hidden?
;; label
;; label-color

7
7

7

;
;

;

true or false
label of this turtle
color of this turtle's label (0 <= label-color < 140)

;; USER-DETERMINED ATTRIBUTES
;; Associated with GCRA dynamics.

default-colour
bank-who
Ll-assets
Ll-loan-debts
Sl-Llip-debts

;; xx L2-assets

;; ss L3-debts

;; ss S1-L3ip-debts

ttl-PO-assets
ttl-publ-assets
ttl-publ-debts
ttl-priv-assets
ttl-priv-debts
net-worth-publ
net-worth-priv

;; as it says

;; bank that holds the loan

;; assets of the government

;; debts of the government (bank loans)
;; interest payable on L1 loan

;; savings of the government

;; debts of the government - bonds
;; payable on bonds

of
of
of

all
all
all

;; aggregate
;; aggregate
;; aggregate
;; aggregate of

physical assets
public assets
public debts
all private assets
;; aggregate of all private debts
;; total public assets minus debts
;; total private assets minus debts

;; Money supply aggregates

msi-assets
msi-debts
msii-assets
msii-debts
msiii-assets
msiii-debts

;; Physical money supply
;; Physical money supply
;; Logical money supply
;; Logical money supply
;; Shadow money supply
;; Shadow money supply

;; Attributes of CRBs (Central Reserve Banks)

CRBs-own
[

;; BUILT-IN ATTRIBUTES

;; who

; breed

; heading
;; xXcor

;; ycor

;; size

;; shape

;; color

;; pen-mode
;; pen-size
;; hidden?
;; label

;; label-color

;

;

;

fixed id number

to which breed this turtle belongs [CRB]
0 <= heading < 360, 0 = north

min-pxcor <= xcor < max-pxcor

min-pxcor <= xcor < max-pxcor

size relative to a patch, default is 1

a shape chosen from the shape library
color of this turtle (0 <= color < 140)
"up" or "down"

in pixels

true or false

label of this turtle

color of this turtle's label (0 <= label-color < 140)

;7 USER-DETERMINED ATTRIBUTES
;; Associated with CRB dynamics.

default-colour
PO-assets
LO-assets
PO-debts
LO-debts
PO-rr-assets
PO-er-assets

;; as it says

;; physical assets of the CRB

;; logical assets of the CRB

;; physcial debts of the CRB

;; logical debts of the CRB

;; required reserves of all banks
;; excess reserves of all banks

[

i

;; Associated with corporate bank dynamics.

bank-who
Sl-rrip-debts
Sl-erip-debts
Cl-assets

;; XX c2-assets

ttl-PO-assets
ttl-publ-assets
ttl-publ-debts
ttl-priv-assets
ttl-priv-debts
net-worth-publ
net-worth-priv

;; chartered bank that holds Cl account.
;; interest payable on required reserves - debts
;; interest payable on excess reserves - debts
;; corporate bank equivalent of Ll-assets

;; corporate bank equivalent of L2-assets

of
of
of

all
all
all

;; aggregate
;; aggregate
;; aggregate
;; aggregate of

physical assets
public assets
public debts
all private assets
;; aggregate of all private debts
;; total public assets minus debts
;; total private assets minus debts

;; Money supply aggregates

msi-assets
msi-debts
msii-assets
msii-debts
msiii-assets
msiii-debts

Attributes of banks
banks-own

;; BUILT-IN ATTR

;; who

;; breed

;; heading
;; Xcor

;; ycor

;; size

;; shape

;; color

;; pen-mode
;; pen-size
;; hidden?
;; label

;; label-color

7

IB

7

7

;; Physical money supply
;; Physical money supply
;; Logical money supply
;; Logical money supply
;; Shadow money supply
;; Shadow money supply

(deposit-taking banks)

UTES

fixed id number

to which breed this turtle belongs [bank]
0 <= heading < 360, 0 = north

min-pxcor <= xcor < max-pxcor

min-pxcor <= xcor < max-pxcor

size relative to a patch, default is 1

a shape chosen from the shape library
color of this turtle (0 <= color < 140)
"up" or "down"

in pixels

true or false

label of this turtle

color of this turtle's label (0 <= label-color < 140)

;7 USER-DETERMINED ATTRIBUTES
;; Associated with book-keeping bank dynamics.

default-colour

b-bank-can-make-loans ;;
b-bank-is-bankrupt I

Ll-assets
Ll-loan-assets
Ll-debts
Sl-Llir-assets

L2-assets
L2-debts
S1-L2ip-debts

;; ss L3-assets
;; ss L3-debts

;; as it says
boolean - 0 or 1
boolean - 0 or 1

;; assets in checking accounts

;; assets associated with a loan

;; debts in checking accounts

;; interest receibable on L1 loans - Cl-assets

;; assets in savings accounts
;; debts in savings accounts
;; on savings deposits

;; assets in bonds
;; debts in bonds

Orrery Software

Pg. 6

NTF Code for CmLab V1.17

crb-who ;; central reserve bank
PO-vc-assets ;; $c in the vault - assets
PO-er-assets ;; excess reserves - assets
PO-er-debts ;; excess reserves - debts
PO-rr-assets ;; required reserves - assets
PO-rr-debts ;; required reserves - debts
PO0-all-assets ;; An aggregate of VC, ER and RR.

;; Associated with corporate bank dynamics.

no-of-prsn-clients ;; How many clients currently
no-of-corp-clients ;; How many clients currently
no-of-gcra-clients ;; How many clients currently
no-of-crb-clients ;; How many clients currently

Sl-rrir-assets ;; interest on required reserves
Sl-erir-assets ;; interest on excess reserves

Cl-assets ;; corporate bank equivalent of Ll-assets

;; c2-assets ;; corporate bank equivalent of L2-assets

ttl-PO-assets ;
ttl-publ-assets ;
ttl-publ-debts ;

aggregate of all physical assets
aggregate of all public assets
aggregate of all public debts
ttl-priv-assets ;; aggregate of all private assets
ttl-priv-debts ;; aggregate of all private debts
net-worth-publ ;; total public assets minus debts
net-worth-priv ;; total private assets minus debts

;; Money supply aggregates
msi-assets ;; Physical money supply

msi-debts ;; Physical money supply
msii-assets ;; Logical money supply
msii-debts ;; Logical money supply
msiii-assets ;; Shadow money supply
msiii-debts ;; Shadow money supply

;; Attributes of prsns (non-corporate economic agents)
prsns-own
[

;; BUILT-IN ATTRIBUTES

;; who ;; fixed id number

;; breed ;; to which breed this turtle belongs [prsn]
;; heading ;; 0 <= heading < 360, 0 = north

;; Xcor ;; min-pxcor <= xcor < max-pxcor

;; ycor ;; min-pxcor <= xcor < max-pxcor

;; size ;; size relative to a patch, default is 1

;; shape ;; a shape chosen from the shape library

;; color ;; color of this turtle (0 <= color < 140)
;; pen-mode ;; "up" or "down"

;; pen-size ;; in pixels

;; hidden? ;; true or false

;; label ;; label of this turtle

;; label-color ;; color of this turtle's label (0 <= label-color < 140)

;; USER-DETERMINED ATTRIBUTES
;; Associated with prsn dynamics.

default-colour ;; as it says
b-prsn-is-bankrupt ;; boolean - 0 or 1

LO-assets ;; assets of the prsn - logical
PO-assets ;; assets of the prsn - physical

bank-who
Ll-assets
Ll-loan-debts
S1l-Llip-debts
payables-30day

; bank that holds the loan

; assets in checking accounts

; debts associated with loans

; payable on bank loans - debts
;; debts to be paid in 30 days

S1-30day-total-debts ;; sum of 30-day payables
S1-30day-total-assets ;; sum of 30-day receivables

L2-assets
Sl-L2ir-assets

;; ss L3-corpwho

;; ss L3-assets

; assets in savings accounts
;; interest on savings accounts

;; Holds a bond with this corp
;; assets in bonds

;; ss Sl-L3ir-assets ;; receivable on bond

;; ss L4-corpwho

;; ss L4-assets

;; Holds a stock with this corp
;; assets in stocks

;; ss L4-dividend-receivable ;; receivable on stocks

ttl-PO-assets
ttl-publ-assets
ttl-publ-debts
ttl-priv-assets
ttl-priv-debts
net-worth-publ
net-worth-priv

;; aggregate of all physical assets
;; aggregate of all public assets
;; aggregate of all public debts
;; aggregate of all private assets
;; aggregate of all private debts
;; total public assets minus debts
;; total private assets minus debts

;; Money supply aggregates

msi-assets
msi-debts
msii-assets
msii-debts
msiii-assets
msiii-debts

;; Physical money supply
;; Physical money supply
;; Logical money supply
;; Logical money supply
;; Shadow money supply
;; Shadow money supply

;; Attributes of corps (corporate economic agents)

corps-own

[

;; BUILT-IN ATTR

;; who

;; breed

;; heading
;7 Xcor

;; ycor

;; size

;; shape

;; color

;; pen-mode
;; pen-size
;; hidden?
;; label

;; label-color

;

IB

7

;

;

UTES

fixed id number

to which breed this turtle belongs [corp]
0 <= heading < 360, 0 = north

min-pxcor <= xcor < max-pxcor

min-pxcor <= xcor < max-pxcor

size relative to a patch, default is 1

a shape chosen from the shape library
color of this turtle (0 <= color < 140)
"up" or "down"

in pixels

true or false

label of this turtle

color of this turtle's label (0 <= label-color < 140)

;; USER-DETERMINED ATTRIBUTES
;; Associated with corp dynamics.

default-colour

;; as it says

b-corp-is-bankrupt ;; boolean - 0 or 1

LO-assets
PO-assets

;; assets of the corp - logical
;; assets of the corp - physical

Orrery Software

Pg. 7

bank-who ;; Does banking with this bank
Ll-assets ;; assets in checking accounts
Ll-loan-debts ;; debts associated with loans
S1-Llip-debts ;; payable on bank loans
payables-30day ;; debts payable in 30 days
S1-30day-total-debts ;; sum of 30 day payables
S1-30day-total-assets ;; sum of 30 day receivables
L2-assets ;; assets in savings accounts
Sl-L2ir-assets ;; interest on savings accounts
;; ss no-of-bond-clients ;; prsns owning bonds

;; ss L3-assets ;; assets in bonds

;; ss L3-debts ;; debts in bonds

;; ss S1-L3ip-debts ;; payable on bond

;; ss no-of-stock-clients ;; prsns owning stocks
;; ss L4-assets ;; assets in stocks

;; ss Lé4-debts ;; debts in stocks

;; ss Sl-L4dp-debts ;; payable-on-stocks

ttl-PO-assets ;

aggregate of all physical assets

ttl-publ-assets ;; aggregate of all public assets
ttl-publ-debts ;; aggregate of all public debts
ttl-priv-assets ;; aggregate of all private assets
ttl-priv-debts ;; aggregate of all private debts
net-worth-publ ;; total public assets minus debts
net-worth-priv ;; total private assets minus debts

;; Money supply aggregates

msi-assets ;; Physical money supply
msi-debts ;; Physical money supply
msii-assets ;; Logical money supply
msii-debts ;; Logical money supply
msiii-assets ;; Shadow money supply
msiii-debts ;; Shadow money supply

;; The 'autostart' startup routine
to startup
;; This routine is to be executed by the observer.

;; The manual describes this routine as follows:

;; This procedure, if it exists, will be called when a model is first loaded in
] the NetLogo application. Startup does not run when a model is run headless

] from the command line, or by parallel BehaviorSpace.

;; On loading the model, the debug feature is always off.
set gb-debug-on 0
set gs-debug-status "0 (Off)"

;; On loading the model, the choosers, switches and sliders are

H always reset to the values that are known to work. Only the chooser
H for the scenario is not reset. The last saved

Y selection of scenario is persistant. This allows the 'Reset Defaults'
;i button to NOT reset the scenario.

f-reset-default-parameters

;; Run the setup routine to initialize other globals.
;; End of startup
end

;; Reset the debug values for the interface-declared items.
to f-reset-debug-parameters
;; The observer executes this routine.

;; I only reset here the ones that differ for a debug run.c

set g-no-of-banks-max 4
set g-no-of-prsns-per-bank 2
set g-reserve-requirement-ratio 40
set g-bankruptcy-factor 1.5

;; Run the setup routine to initialize other globals.
;; End of f-reset-debug-parameters
end

;; Reset the default values for the interface-declared items.
to f-reset-default-parameters
;; The observer executes this routine.

;; Switches, sliders and choosers implicitly declare global variables. The
HA values in these variables are parameters for the model, and many

HH combinations of those parameters are not sustainable. However, the

HA values in those user interface devices are stored with the model and
i are persistant across a save/load action. The default values must

i be reset on load, or available to a user as a parameter set. The

i purpose of this routine is to store at least one viable set of

¥ parameter values.

;; To be clear, variables declared in the interface should be initialized

Y here and not in the setup procedure. They will be reset on startup

i (i.e. on load) but not on "Setup". A separate "Reset" button is on the
i interface to enable the user to reset these at will. Any interface-

Y declared variable (as opposed to those declared in the "globals"

i block) not included here will be persistent through a save/load

i action.

; CHOOSERS, SWITCHES AND SLIDERS

;; Initialize the chooser.
set gs-scenario "Prsns Only"

;; Initialize the Pseudo Random Number Generator (PRNG).
set g-use-this-seed 7

;; Interest sliders
set g-iorr 2

set g-iocer 1

set g-iosd 1

set g-iobl 2

;; set g-docs 2

;; Other startup and operations sliders
set g-crb-assets-per-prsn 3000

NTF Code for CmLab V1.17

Orrery Software

Pg. 8

NTF Code for CmLab V1.17

set g-no-of-banks-max 20

set g-no-of-prsns-per-bank 20

set g-no-of-corps-per-bank 1

set g-net-worth-tax-rate 0.5

set g-reserve-requirement-ratio 20

set g-bankruptcy-factor 2

;; Switches

set gb-plot-data true

set gb-btpfs-bankruptcies true

set gb-btpfs-daily-purchases false

set gb-btpfs-monthly-taxes false

set gb-bank-insurance true
end

;; The setup button(s)
to setup
;; This routine is to be executed by the observer.

;; NOTE: The contents of switches, sliders, and choosers seem to be
HY immune to these 'clear' commands.

clear-ticks

clear-turtles

clear-patches

clear-drawing

clear-all-plots

clear-output

;; clear-globals ;; Suppressed to make gb-debug-on value persistent.
;; NOTE: Instead of 'clear-globals', you must ensure all globals are
Y initialized properly in 'setup'.

; import-drawing "01-B OrrSW.jpg"

;; The version should be coded in this global variable to be included in
H output files.
set gs-Version "CmLab_V1.17"

; Debug features may be off or on depending on history.

Y - Perhaps 'setup' was called by 'to Startup'.

Y - Perhaps 'setup' was called during a 'BehaviorSpace' run.

Y - Perhaps 'setup' was called by a user-pushed 'setup' button.

; Setup needs to handle some quasi-persistant values correctly regardless of
; the history. For gb-debug-on, in particular, I want it to be

HY persistant so I can have debug output from the 'setup' routine routed

; to the debug log file, or to the command centre.

; 'startup' automatically sets gb-debug-on to 0 when the application is first
HH loaded. I want to be able to (A) toggle debug on, then, (B) press

I 'setup' and watch the debug output of the 'setup' command. The gb-debug-on
] must be persistant through the above 'clear' commands. The debug log

HH file name and status, however, should not be persistent and must be

] reset when setup runs, if appropriate.

ifelse (gb-debug-on =1)

[

;; Debug is on due to user setting, so file name and status should be

H reset. I do this by turn the feature off then on.

;; First toggle it off, closing any remnant log file, if needed.
f-toggle-debug

;; Then toggle it back on, opening a new time-stamped log file.
f-toggle-debug

;; else
[

;; Debug is off, possibly due to startup execution, possibly due to user

i choice.
;; Ensure associated variables have compatible settings.
set gb-debug-on 0 ;; Redundant but ensures consistency.

set gs-debug-status "0 (Off)" ;; Redundant but ensures consistency.
set gb-debug-flow-on 0 ;; Step-specific flow is off.
file-close-all ;; Close the debug log file.

set gs-log-file-name "dummyname"

1

;; Now, do the standard check that is done at the start of each debuggable
HY routine. This must follow the clear commands, which reset everything
H except globals, switches, sliders and choosers.
if (gb-debug-on = 1)
[
ifelse((gs-debug-step-chooser = "all") or (gs-debug-step-chooser = "setup")
)
[set gb-debug-flow-on 1 LOG-TO-FILE "" LOG-TO-FILE word "Do-setup: Debug on;
tick = " 0]
[set gb-debug-flow-on 0]
1

;; g-use-this-seed comes from a slider, and is persistant.
random-seed g-use-this-seed ;; Tells the PRNG to use this seed.

;; Override the scenario chooser.
set gs-scenario "Prsns Only"
f-set-scenario-number

;; SETUP FOR CONSERVEMONEYLAB
LOG-TO-FILE (" INTEREST RATES (Sliders):")

(
LOG-TO-FILE (word " 1Int. on Required Reserves --- " g-iorr " %")
LOG-TO-FILE (word " Int. on Excess Reserves ----- " g-iocer " %")
LOG-TO-FILE (word " 1Int. on Savings Deposits ---- " g-iosd " %")
LOG-TO-FILE (word " 1Int. on Bank Loans ---------- " g-iobl " &")
;; LOG-TO-FILE (word " Dividends on Corp Stocks ---- " g-docs " %")

LOG-TO-FILE " OTHER GLOBALS")

(
LOG-TO-FILE (word " g-crb-assets-per-prsn ------- " g-crb-assets-per-prsn)
LOG-TO-FILE (word " g-no-of-banks-max ----------- " g-no-of-banks-max)
LOG-TO-FILE (word " g-no-of-prsns-per-bank ------ " g-no-of-prsns-per-bank)

;; TODO: Remove this when slider is replaced.

set g-no-of-corps-per-bank 1

LOG-TO-FILE (word " g-no-of-corps-per-bank ------ " g-no-of-corps-per-bank)

LOG-TO-FILE (word " g-net-worth-tax-rate -------- " g-net-worth-tax-rate " %")

LOG-TO-FILE (word " g-reserve-requirement-ratio - " g-reserve-requirement-ratio
"ogn)

set g-no-of-banks (count banks)

set g-no-of-prsns-max (g-no-of-banks-max * g-no-of-prsns-per-bank)
set g-no-of-prsns (count prsns)

set g-no-of-corps (g-no-of-banks-max * g-no-of-corps-per-bank)

set g-p-daily-cost-of-living round(g-crb-assets-per-prsn / 30) ;; 30 days per
month

set g-p-daily-LO-allocation round(g-p-daily-cost-of-living / 4)

set g-p-daily-Ll-allocation (g-p-daily-cost-of-living - g-p-daily-LO-allocation)

set g-p-standard-loan (g-p-daily-cost-of-living * 64) ;; 60+4; Used to set up
loans.

Orrery Software

Pg. 9

set g-p-standard-loan-payment (g-p-standard-loan / 8) ;; Used to pay principal

on loans.

;; TODO: The minimum vault cash must increase when corps are activated.
H Used to manage reserves
set g-minimum-vault-cash (g-p-daily-LO-allocation * g-no-of-prsns-per-bank)

LOG-TO-FILE (word " g-no-of-banks-max ----------- " g-no-of-banks-max)
LOG-TO-FILE (word " g-no-of-banks --------------- " g-no-of-banks)
LOG-TO-FILE (word " g-no-of-prsns-max ----------- " g-no-of-prsns-max)
LOG-TO-FILE (word " g-no-of-prsns --------------- " g-no-of-prsns)
LOG-TO-FILE (word " g-no-of-corps-max - " g-no-of-corps-max)
LOG-TO-FILE (word " g-no-of-corps --------------- " g-no-of-corps)
LOG-TO-FILE (word " g-p-daily-cost-of-living ---- " g-p-daily-cost-of-living)
LOG-TO-FILE (word " g-p-daily-LO-allocation ----- " g-p-daily-LO-allocation)
LOG-TO-FILE (word " g-p-daily-Ll-allocation ----- " g-p-daily-Ll-allocation)
LOG-TO-FILE (word " g-p-standard-loan ----------- " g-p-standard-loan)
LOG-TO-FILE (word " g-p-standard-loan-payment --- " g-p-standard-loan-payment)
LOG-TO-FILE (word " g-minimum-vault-cash -------- " g-minimum-vault-cash)
LOG-TO-FILE (word " g-bankruptcy-factor --------- " g-bankruptcy-factor)
LOG-TO-FILE word " gb-plot-data ---------------- " gb-plot-data)

LOG-TO-FILE word " gb-bank-insurance " gb-bank-insurance)

(

(
LOG-TO-FILE (word "

(

(

gb-btpfs-bankruptcies ------- " gb-btpfs-bankruptcies)
LOG-TO-FILE word " gb-btpfs-daily-purchases ---- " gb-btpfs-daily-purchases)
LOG-TO-FILE word " gb-btpfs-monthly-taxes ------ " gb-btpfs-monthly-taxes)

;; END OF SETUP FOR CONSERVEMONEYLAB

;; There are 2 scenarios possible
set ge-scenario-with-prsns 0 ;; Prsns are active
set ge-scenario-with-corps 1 ;; Corps are active

;; Use the input from the chooser gs-scenario to invoke the selected scenario.
f-set-scenario-number

;; For debugging the setup procedure, log the values of the globals.

LOG-TO-FILE (word " Scenario number ------—---——--- " g-scenario-number)
LOG-TO-FILE (word " Scenario name -------——-—=————=— " gs-scenario)
LOG-TO-FILE (word " Random seed -----—---———===———— " g-use-this-seed)

;; For debugging the debug feature!!!

LOG-TO-FILE (word "SETUP: Debug Is --------------- " gb-debug-on)
LOG-TO-FILE (word "SETUP: Debug Status Is -- -- " gs-debug-status)
LOG-TO-FILE (word "SETUP: Step Chooser Is -- -- " gs-debug-step-chooser)
LOG-TO-FILE (word "SETUP: Flow Control Is -------- " gb-debug-flow-on)

ask patches
[
set pcolor brown

1

set g-agents-nw-xaxis-min 0

set g-agents-nw-xaxis-max 1000

set g-prsns-nw-xaxis-min 0

set g-prsns-nw-xaxis-max 1000

set g-banks-nw-xaxis-min 0

set g-banks-nw-xaxis-max 1000

set g-banks-PO-xaxis-min 0

set g-banks-PO-xaxis-max 1000

set g-banks-PO-all-assets-min 0 ;; Minimum value on P0O-all-assets.

set g-banks-PO-all-assets-mean 500 ;; Mean value on PO-all-assets.

set g-banks-PO-all-assets-max 1000 ;; Max value on PO-all-assets.

set g-counts-loans 0

set g-counts-p-deaths 0

set g-counts-p-births 0

set g-counts-b-deaths 0

set g-counts-b-births 0

reset-ticks ;; restarts tick counter and runs setup commands within plots

;; Set the switches to default setup values.
set gb-plot-data true ;; Enables all plotting calls.
set gb-bank-insurance true ;; Default insurance is on.

if (g-scenario-number = ge-scenario-with-prsns)
: set gb-plot-data
lf(g-scenario-number = ge-scenario-with-corps)
: set gb-plot-data
1

true ;; Enables all plotting calls.

true ;; Enables all plotting calls.

;; Initalization of CmLab Turtles

set-default-shape GCRAs '"triangle" ;; pulled from shapes library
set-default-shape CRBs "triangle" ;; pulled from shapes library
set-default-shape banks '"target" ;; pulled from shapes library
set-default-shape prsns '"truck" ;; pulled from shapes library
set-default-shape corps '"house" ;; pulled from shapes library

f-initialize-basic-scenario

;; Do the bank visits to arrange deposits.
f-everybody-visits-their-bank

;; Then update the net worth statements and global aggregates.
;; This call requires that 'reset-ticks' be called first.
f-update-aggregates ;; Totals and averages.

;; TODO: suppress or remove after debug.
f-dump-all-agent-data

;; Clears unwanted zeros in plots.
clear-all-plots

setup-plots

;; Debug controls

set gb-debug-flow-on 0 ;; Boolean, in association with chooser, turns debug LOG-
TO-FILE on/off
set g-halt-at-tick -1 ;; input variable to set a tick for stopping

;; ASSERT (frb-EMgr-is-valid) ("EMgr validity check: D-Setup") -1
LOG-TO-FILE " Do-Setup: procedure completed"

;; end of to setup
end

;; Set the scenario number using the input from the chooser.
to f-set-scenario-number
;; This routine is to be executed by the observer.

set g-scenario-number ge-scenario-with-prsns ;; default

NTF Code for CmLab V1.17

Orrery Software

Pg. 10

NTF Code for CmLab V1.17

;; 1f(gs-scenario = "Corps Not Implemented Yet")
;i [set g-scenario-number ge-scenario-with-corps]
set gs-scenario "Prsns Only"

;; End f-set-scenario-number
end

;; Initialize a GCRA, CRB, banks, corps and prsns.
to f-initialize-basic-scenario
;; This routine is to be executed by the observer.

;; NOTE: the order of initialization is critical since there are links
i established between them, once appropriate linkable agents are created.

;; Initialize a GCRA. (Government Consolidated Revenue Account)
create-gcras 1
[
f-initialize-gcra
setxy 0 0
1
;; Note: bank-who not set yet.

;; Initialize a CRB. (Central Reserve Bank)
create-crbs 1
[
f-initialize-crb
;; Move to a random point.
setxy 0 1
1
;; Note: bank-who not set yet.

;; Initialize the banks.
create-banks g-no-of-banks-max
[
set g-counts-b-births (g-counts-b-births + 1)
f-initialize-new-bank
;; Move to a random point.
setxy random-xcor random-ycor
1
set g-no-of-banks (count banks)
;; Move PO-assets to VC, ER and RR deposits, as appropriate.
f-the-crb-reconciles-with-banks-daily

;; Assign a bank to the GCRA

ask gcras [f-bsvcs-gcra-find-bank]
;; Assign a bank to the CRB

ask crbs [f-bsves-crb-find-bank]

;; Initialize the prsns.
;; Must do banks and corps first, then link prsns to both.
create-prsns g-no-of-prsns-max
[
set g-counts-p-births (g-counts-p-births + 1)
f-initialize-new-prsn
set heading 90
;; Move to a random point.
setxy random-xcor random-ycor
1

set g-no-of-prsns (count prsns)

;; Initialize the corps.

; Must do banks first, then link corps to banks.

;; TODO: Initialization of corps suppressed.

;; create-corps g-no-of-corps

i 0

HH set g-counts-c-births (g-counts-c-births + 1)
HH f-initialize-new-corp

HY ;; Move to a random point.

HY setxy random-xcor random-ycor

il

;; The initial endowment of cash must be distributed.
ask crbs
[

f-cbsves-distribute-assets-to-prsns

;; TODO: When corps implemented, include here.

;; End f-initialize-basic-scenario
end

;; Initialize a single GCRA.
to f-initialize-gcra
;; This routine is to be executed by a GCRA.
;; I.e. government consolidated revenue account.
set heading 0 ;; direction of motion
set color black

;; USER-DETERMINED ATTRIBUTES
;; Associated with GCRA dynamics.

set default-colour black ;; distinctive colour for GCRA
set bank-who -1 ;; bank that holds the loan
set Ll-assets 0 ;; standard checking account
set Ll-loan-debts 0 ;; debts associated with loan
set S1-Llip-debts 0 ;; payable on loans

;; TODO: If these are not used, remove them.

;; Xx set L2-assets 0 ;; standard savings account
;; ss set L3-debts 0 ;; bonds

;; ss set S1-L3ip-debts 0 ;; payable on bonds
LOG-TO-FILE (word " Initialize GCRA " who)

LOG-TO-FILE (word " Ll-assets --------—-—--—--—-—=- " Ll-assets)
LOG-TO-FILE (word " Ll-loan-debts -- - " Ll-loan-debts)
LOG-TO-FILE (word " Sl-Llip-debts --- - " Sl-Llip-debts)

;; xx LOG-TO-FILE (word " L2-assets ---------—-——-—————- " L2-assets)

;; ss LOG-TO-FILE (word " L3-debts -------==-————ceee——m " L3-debts)

;; ss LOG-TO-FILE (word " Sl-L3ip-debts -------- " S1-L3ip-debts)

set ttl-PO-assets
set ttl-publ-assets
set ttl-publ-debts
set ttl-priv-assets
set ttl-priv-debts
set net-worth-publ
set net-worth-priv

;; aggregate of all physical assets
;; aggregate of all public assets
;; aggregate of all public debts

; ; aggregate of all private assets
;; aggregate of all private debts
;; total public assets minus debts
;; total private assets minus debts

oOoooooo

;; Money supply aggregate

set msi-assets 0 ;; Physical money supply
set msi-debts 0 ;; Physical money supply
set msii-assets 0 ;; Logical money supply

Orrery Software

Pg. 11

NTF Code for CmLab V1.17

set msii-debts 0 ;; Logical money supply
set msiii-assets 0 ;; Shadow money supply
set msiii-debts 0 ;; Shadow money supply

;; Suppressed. Done after all banks initialized.
;; f£-bsves-gcra-find-bank ;; sets bank-who to a valid number

;; end f-initialize-gcra
end

;; Initialize a single CRB.
to f-initialize-crb
;7 This routine is to be executed by a CRB.
;; I.e. central reserve bank.
set heading 0 ;; direction of motion
set color yellow

;; USER-DETERMINED ATTRIBUTES

;; Associated with CRB dynamics.

set default-colour yellow ;; distinctive colour for CRB
;; TODO: Change when corps activated.

;; The functional values of the assets are set in

Y the routine f-cbsvcs-distribute-assets-to-prsns

set PO-assets 0

set PO-debts 0 ;; initial physcial debts on start
set LO-assets 0 ;; initial logical assets on start
set LO-debts 0 ;; initial logical debts on start

set PO-rr-assets 0 ;; required reserves

set PO-er-assets 0 ;; excess reserves

set bank-who -1 ;; chartered bank for Cl account

set Sl-rrip-debts 0 ;; interest payable on required reserves
set Sl-erip-debts 0 ;; interest payable on excess reserves

set Cl-assets 0 ;; corporate bank assets

;; XX set c2-assets 0 ;; corporate bank assets

LOG-TO-FILE (word " Initialize CRB " who)

LOG-TO-FILE (word " CRB MS-I PO Assets ------—----- " PO-assets)
LOG-TO-FILE (word " CRB MS-I FO Assets ----------- " LO-assets)
LOG-TO-FILE (word " CRB MS-I PO debts ------------ " PO-debts)
LOG-TO-FILE (word " CRB MS-I FO debts ----- " LO-debts)
LOG-TO-FILE (word " CRB Required reserves " PO-rr-assets)
LOG-TO-FILE (word " Sl-rrip-debts --------- " Sl-rrip-debts)
LOG-TO-FILE (word " CRB Excess reserves —---------- " PO-er-assets)
LOG-TO-FILE (word " Sl-erip-debts ---------------- " Sl-erip-debts)

set ttl-PO-assets

set ttl-publ-assets
set ttl-publ-debts
set ttl-priv-assets
set ttl-priv-debts
set net-worth-publ
set net-worth-priv

;; aggregate of all physical assets
;; aggregate of all public assets
;; aggregate of all public debts
; ; aggregate of all private assets
;; aggregate of all private debts
;; total public assets minus debts
;; total private assets minus debts

[=eNeNeNeNe Nl

;; Money supply aggregate

set msi-assets 0 ;; Physical money supply
set msi-debts 0 ;; Physical money supply
set msii-assets 0 ;; Logical money supply
set msii-debts 0 ;; Logical money supply

set msiii-assets 0 ;; Shadow money supply
set msiii-debts 0 ;; Shadow money supply

;; Suppressed. Done after all banks initialized.
;; f-bsvcs-crb-find-bank ;; sets bank-who to a valid number

;; end f-initialize-crb
end

;; Initialize a single bank.
to f-initialize-new-bank
;; This routine is to be executed by a bank.

;; BUILT-IN ATTRIBUTES
set heading 0 ;; direction of motion
set color red

LOG-TO-FILE (word " 1Initialize bank " who)
;; USER-DETERMINED ATTRIBUTES
;; Associated with bank dynamics.

set default-colour red ;; distinctive colour for banks
set b-bank-can-make-loans 1 ;; boolean - 0 or 1
set b-bank-is-bankrupt 0 ;; boolean - 0 or 1
set Ll-assets 0

set Ll-loan-assets 0

set Ll-debts 0

set Sl-Llir-assets 0

set L2-assets 0

set L2-debts 0

set S1-L2ip-debts 0

;; Xx set L3-assets 0

;; There is only one CRB, but the breed must be treated as a set.
set crb-who ([who] of (one-of crbs))

set PO-vc-assets
set PO-er-assets
set PO-er-debts
set PO-rr-assets
set PO-rr-debts
set PO-all-assets

oOo0ooooo

;; Associated with corporate bank dynamics.
set no-of-prsn-clients 0

set no-of-corp-clients 0

set no-of-gcra-clients 0

set no-of-crb-clients 0

set Sl-rrir-assets 0 ;; interest on required reserves

set Sl-erir-assets 0 ;; interest on excess reserves

set Cl-assets 0 ;; corporate bank equivalent of Ll-assets

;; Xx set c2-assets 0 ;; corporate bank equivalent of L2-assets

set ttl-PO-assets
set ttl-publ-assets
set ttl-publ-debts
set ttl-priv-assets
set ttl-priv-debts
set net-worth-publ

;; aggregate of all physical assets
;; aggregate of all public assets
;; aggregate of all public debts

;; aggregate of all private assets
;; aggregate of all private debts
;; total public assets minus debts

OoOoOo0Oo0ooo

Orrery Software

Pg. 12 NTF Code for CmLab V1.17

set

net-worth-priv

0

i

;; Money supply aggregate

set
set
set
set
set
set

I

end

msi-assets
msi-debts
msii-assets
msii-debts
msiii-assets
msiii-debts

oOo0ooooo

i
i
i
;i
i

i

;; Initialize a single prsn.

to f-initialize-new-prsn
This routine is to be executed by a prsn.

i
I
set
set

LOG-
USER-DETERMINED ATTRIBUTES

i

BUILT-IN ATTRIBUTES

total private assets minus debts

Physical money supply
Physical money supply
Logical money supply
Logical money supply
Shadow money supply
Shadow money supply

end f-initialize-new-bank

heading 0 ;; direction of motion

color green

TO-FILE (word "

Initialize prsn " who)

;; Associated with prsn dynamics.
green ;; distinctive colour for prsns

set
set

set
set

set
set
set
set
set
set
set

set

set
set
set
set
set
set
set

default-colour

b-prsn-is-bankrupt

PO-assets
LO-assets

bank-who
Ll-assets
Ll-loan-debts
S1l-Llip-debts
payables-30day

S1-30day-total-debts

0
0
0

[

1

0
0

1
0

S1-30day-total-assets 0

L2-assets

ss set L3-corpwho
ss set L3-assets

ss set L4-corpwho
ss set L4-assets

ttl-PO-assets
ttl-publ-assets
ttl-publ-debts
ttl-priv-assets
ttl-priv-debts
net-worth-publ
net-worth-priv

[=NeNeNeNeNe Nl

;; Money supply aggregate

set
set
set
set
set
set

msi-assets
msi-debts
msii-assets
msii-debts
msiii-assets
msiii-debts

0

oOoooo

7

0

;; boolean - 0 or 1

;; Does banking with this bank.

;; payable on bank loans

;; A list of 30-day payables
;; sum of 30 day payables

;; sum of 30 day receivables

-1 ;; Holds bond from this corp.
0

-1 ;; Holds stock from this corp.
0

aggregate of all physical assets
aggregate of all public assets
aggregate of all public debts
aggregate of all private assets
aggregate of all private debts
total public assets minus debts
total private assets minus debts

Physical money supply
Physical money supply

; Logical money supply
; Logical money supply

Shadow money supply
Shadow money supply

f-bsves-prsn-find-bank ;; Assign a bank to this prsn.
;; end f-initialize-new-prsn
end

;; Initialize a single corp.
to f-initialize-new-corp
;; This routine is to be executed by a corp.

;; BUILT-IN ATTRIBUTES
set heading 0 ;; direction of motion
set color black

LOG-TO-FILE (word " Initialize corp " who)
;; USER-DETERMINED ATTRIBUTES
;; Associated with corp dynamics.

set default-colour black ;; distinctive colour for corps
set b-corp-is-bankrupt 0 ;; boolean - 0 or 1

set PO-assets 0

set LO-assets 0

set bank-who -1 ;; Does banking with this bank.
set Ll-assets 0

set Ll-loan-debts 0

set Sl1-Llip-debts 0 ;; payable on bank loans

set payables-30day [1

set S1-30day-total-debts 0
set S1-30day-total-assets 0

set L2-assets 0

set Sl-L2ir-assets 0 ;; receivable on savings

;; ss set no-of-bond-clients 0 ;; prsns holding bonds
;; ss set L3-assets 0

;; ss set L3-debts 0

;; ss set no-of-stock-clients 0 ;; prsns holding stocks
;; ss set L4-assets 0

;; ss set L4-debts 0

set ttl-PO-assets
set ttl-publ-assets
set ttl-publ-debts
set ttl-priv-assets
set ttl-priv-debts
set net-worth-publ
set net-worth-priv

;; aggregate of all physical assets
;; aggregate of all public assets
;; aggregate of all public debts

;; aggregate of all private assets
;; aggregate of all private debts
;; total public assets minus debts
;; total private assets minus debts

[eNeleNeleNe Nl

;; Money supply aggregates

set msi-assets 0 ;; Physical money supply
set msi-debts 0 ;; Physical money supply
set msii-assets 0 ;; Logical money supply
set msii-debts 0 ;; Logical money supply
set msiii-assets 0 ;; Shadow money supply
set msiii-debts 0 ;; Shadow money supply

f-bsves-corp-find-bank ;; Assign a bank to this corp.
;; end f-initialize-new-corp
end

Orrery Software

NTF Code for CmLab V1.17

;; The go button
to go
;; This routine is to be executed by the observer.

;; Stop codes:
;; All stop decisions must be here in the
I exit from the current procedure only.

'go' procedure, as it causes an

if (g-halt-at-tick = ticks)
[

set g-halt-at-tick -1

stop
1

;; Ensure that the gb-btpfs-bankruptcies flag is always on.
set gb-btpfs-bankruptcies true

;; MANUAL CHANGE FOR DEBUG

;; If needed, each check for validity can be enabled between steps.

;; They have been suppressed (turned into comments) for the sake

HH of speed of execution, but can be re-enabled if a bug has

Y somehow been re-introduced.

;; A single call to the validity check has been left active inside of the
HY Do-Post-Tick step. If it flags a problem, re-activate these to

HY narrow down where the problem starts.

;; Major steps or functions, done once per tick, in order of execution.

do-pre-tick

;; if(frb-agents-are-all-valid = false)

H [LOG-TO-FILE (word "Agents failed validity test: Do-pre-tick.")]

do-move

;; if(frb-agents-are-all-valid = false)

H [LOG-TO-FILE (word "Agents failed validity test: Do-move.")]

do-buy-sell

;; if(frb-agents-are-all-valid = false)

H [LOG-TO-FILE (word "Agents failed validity test: Do-buy-sell.")]

do-accrue-interest

;; if(frb-agents-are-all-valid = false)

HH [LOG-TO-FILE (word "Agents failed validity test: Do-accrue-interest."

do-monthly

;; if(frb-agents-are-all-valid = false)

] [LOG-TO-FILE (word "Agents failed validity test: Do-monthly.") 1]

do-banking

;; if(frb-agents-are-all-valid = false)

] [LOG-TO-FILE (word "Agents failed validity test: Do-banking.")]

do-post-tick

;; 1f(frb-agents-are-all-valid = false)

H [LOG-TO-FILE (word "Agents failed validity test: Do-post-tick.")]
;; end of go

end

) 1

to do-pre-tick
;; This routine is to be executed by the observer.

if (gb-debug-on =1)
[
ifelse((gs-debug-step-chooser = "all") or (gs-debug-step-chooser = "pre-

tick"))
[set gb-debug-flow-on 1 LOG-TO-FILE "" LOG-TO-FILE word "Do-pre-tick: Debug
tick was " ticks]
[set gb-debug-flow-on 0]
1

on.;

;; Enter all commands that need to be done before a tick begins.
;; f-update-aggregates

;; Override the scenario chooser.
set gs-scenario "Prsns Only"
f-set-scenario-number

;; Advance the tick counter by 1 tick.
ifelse(gb-plot-data = true)
[
;; Advance the ticks by one and update the plots.
tick
;; 'tick' is exactly the same as 'update-plots' except that the tick counter
HA is incremented before the plot commands are executed.

1

;; else

[
;; Advance ticks by one but do not update the plots.
tick-advance 1

1

;; End else

;; Once the data is plotted, the per-tick counts can be cleared.
;; TODO: Clear such data collection per-tick aggregates here.

;; Reset the scenario number, in case the chooser has been changed.
f-set-scenario-number

LOG-TO-FILE (word "
LOG-TO-FILE (word "

Halt at tick - " g-halt-at-tick)
Current tick - " ticks)

LOG-TO-FILE " Do-pre-tick: Routine completed."
;; end of Do-pre-tick
end

to do-move
;; This routine is to be executed by the observer.

if (gb-debug-on = 1)
[

ifelse((gs-debug-step-chooser = "all") or (gs-debug-step-chooser = "move"

)

Orrery Software

Pg. 14

NTF Code for CmLab V1.17

[set gb-debug-flow-on 1 LOG-TO-FILE "" LOG-TO-FILE word "Do-move: Debug on;
tick = " ticks]
[set gb-debug-flow-on 0]

;; Implement 'arrow' behaviour from PSoup application. I.e. a strong

i probability of movement directly forward, and small probability of a
i slight turn. This represents the most effective search pattern for
i an arena that is wrapped on all sides. Of course, it doesn't matter
i since they don't actually feed.

let heading-list [-1 000000000 1]

;; The prsns move. 'Arrow' search pattern.
ask prsns
[
let delta-heading (item (random length heading-list) heading-list)
set heading (heading + delta-heading)
if(heading > 115) [set heading 115]
if(heading < 65) [set heading 65]
forward 1
1 ;; End ask prsns

;; f-update-aggregates
LOG-TO-FILE "

;; end of Do-move
end

Do-move: procedure completed"

to do-buy-sell
;; This routine is to be executed by the observer.

if (gb-debug-on =1)
[
ifelse((gs-debug-step-chooser = "all"
sell"))
[set gb-debug-flow-on 1 LOG-TO-FILE "" LOG-TO-FILE word "Do-buy-sell: Debug on;
tick = " ticks]
[set gb-debug-flow-on 0]

) or (gs-debug-step-chooser = "buy-

1

;; Each tick the prsns are paired as (buyer, seller) for cash transactions.

f-prsns-buy-sell-using-cash

;; Each tick the banks buy using checks on their Cl accounts.
f-btpfs-banks-buy-using-checks

;; Each tick the prsns are re-paired as (buyer, seller) on 30-day terms.
f-prsns-buy-sell-on-terms

;; Each tick each prsn then pays those bills that are 30 days old or more.

f-process-30-day-payables
;; TODO: When corps implemented, this needs to be added for them too.
f-update-aggregates

LOG-TO-FILE " Do-buy-sell: procedure completed"

;; end of Do-buy-sell

end

;; Prsns buy and sell, using cash.
to f-prsns-buy-sell-using-cash
;; This routine is to be executed by the observer.

;; Prsns buy and sell using cash.

;; Each tick the prsns are paired as (buyer,
LOG-TO-FILE (word "")

LOG-TO-FILE (word "Do-buy-sell: cash")

seller) for cash transactions.

;; Make a list.
let mylist []
ask prsns
[
set mylist lput self mylist
1

let no-of-prsns-left (length mylist)
;; LOG-TO-FILE (word " Do-buy-sell: no-of-prsns-left " no-of-prsns-left)
while [no-of-prsns-left > 1]
[

;; Isolate the first two prsns.

let buyer (item 0 mylist)

set mylist (but-first mylist)

let seller (item 0 mylist)

set mylist (but-first mylist)

set no-of-prsns-left (length mylist)

let buyer-who ([who] of buyer)
let seller-who ([who] of seller)

ask buyer
[
;; Buyer transfers cash (P0+L0O) to seller.
;; This is a similar technique to Yakovenko's capital exchange models.
;; Dragulescu and Yakovenko, 2000.
let amount-to-spend (1 + (random (g-p-daily-LO-allocation - 1)))

LOG-TO-FILE (word "Buyer: " buyer-who "; Seller: " seller-who)

LOG-TO-FILE (word " LO-assets of buyer ------------—--—---- " LO-assets)

LOG-TO-FILE (word " LO-assets of seller -----—----———-———- " ([LO-assets] of
seller))

LOG-TO-FILE (word " LO cost of purchase -------=--——————--- " amount-to-spend

)

f-bsvcs-prsnl-pays-prsn2-by-cash seller-who amount-to-spend

LO-assets of buyer ------------—----- " LO-assets)

LO-assets of seller -----—==—=———————— " ([LO-assets] of

LOG-TO-FILE (word "
LOG-TO-FILE (word "
seller))
1
1

;; end of f-prsns-buy-sell-using-cash
end

;; Prsns buy and sell, on 30-day terms.
to f-prsns-buy-sell-on-terms
;; This routine is to be executed by the observer.

Orrery Software NTF Code for CmLab V1.17

;; THEORY: Prsns buy and sell, paying by check after 30 days. T T e e e — - |
;; Each tick the prsns are randomly paired as (buyer, seller) on 30-day terms. ;; Corps buy and sell, using cash and on 30-day terms.

LOG-TO-FILE (word " ") to f-corps-buy-sell

LOG-TO-FILE (word "Do-buy-sell: 30-day terms") ;; This routine is to be executed by the observer.
;; Make a list of prsns other than me. ;; TODO: Not implemented yet.

let mylist []

ask other prsns ;; excludes me ;; end of f-corps-buy-sell

[end

;; Add themself to my list of prsns.

set mylist lput self mylist R e e ikl |
1 ;; Process 30-day payables.
to f-process-30-day-payables
let no-of-prsns-left (length mylist) ;; This routine is to be executed by the observer.
;; LOG-TO-FILE (word " Do-buy-sell: no-of-prsns-left " no-of-prsns-left)
while [no-of-prsns-left > 1] ;

[i

This is a connection between the shadow and the logical
The payables and receivables that were not in bank

; THEORY:
money supplies.

;; Isolate the first two prsns. HA records are now paid by checks and a -bsvecs- routine, and they become
let buyer (item 0 mylist) Y visible to the banks and their back room accountants.

set mylist (but-first mylist)

let seller (item 0 mylist) ;; All prsns may have 30-day payables.

set mylist (but-first mylist) ask prsns

set no-of-prsns-left (length mylist) [

;; If there are no payables, nothing need be done my this prsn.

let buyer-who ([who] of buyer) ;; TODO: For performance, add boolean to determine if payables are due
let seller-who ([who] of seller) H this tick.

if(S1-30day-total-debts > 0)
ask buyer [

[

7

THEORY: This is totally happening in the shadow money supply, and
no bank of any kind is involved. So, there is no "banking services"
routine (i.e. one with -bsvcs- in the name) to handle this. It is

;; I used lput to put the payables into a list. So I should be able to
Y pull them off of the front until those that are payable this tick
i have been looked after.

Y coded in detail here. let this-payable (item 0 payables-30day)
let seller-who item 0 this-payable

;; Buyer puts purchase on a 30-day tab. let tick-when-due item 1 this-payable

;; This puts the purchase into the MS-III money supply. let this-amount item 2 this-payable

let amount-to-spend (1 + (random (g-p-daily-Ll-allocation - 1)))

LOG-TO-FILE (word "Buyer:
LOG-TO-FILE (word "

debts)

LOG-TO-FILE (word "

Buyer spends expecting to pay by check in 30 days.
Buyer does not/cannot check for future solvency.
This must be paid 30 ticks from now.

" buyer-who "; Seller: "
30day payables of buyer

seller-who)
" S1-30day-total-

30day receivables of seller --------- " ([s1-30day-

total-assets] of seller))

if (tick-when-due <= ticks)
[
LOG-TO-FILE (word " ")
LOG-TO-FILE (word "PRSN " who " processing 30-day payables")

1

while [tick-when-due <= ticks]
[

let seller (prsn seller-who)

set S1-30day-total-debts (S1-30day-total-debts + amount-to-spend) LOG-TO-FILE (word " This payable ---------------- " this-payable)
ask seller [set S1-30day-total-assets (S1-30day-total-assets + amount-to- LOG-TO-FILE (word " Seller ---------—--——————————-— " seller-who)

spend)] LOG-TO-FILE (word " Tick-when-due --------------- " tick-when-due "; now -
let payable (list ([who] of seller) (ticks + 30) amount-to-spend) " ticks)
set payables-30day lput payable payables-30day LOG-TO-FILE (word " Seller's assets were -------- " ([Ll-assets] of
LOG-TO-FILE (word " This purchase [sllr, tick due, amt] - " payable) seller))
LOG-TO-FILE (word " 30day payables of buyer ------------- " S1-30day-total- LOG-TO-FILE (word " Buyer's assets were " Ll-assets)

debts) LOG-TO-FILE (word " Amount due ------—=-—=———————— " this-amount)

LOG-TO-FILE (word "

30day receivables of seller " ([s1-30day-

total-assets] of seller))

1
1

;; end of f-prsns-buy-sell-on-terms

end

f-bsves-prsnl-pays-prsn2-by-check seller-who this-amount

LOG-TO-FILE (word " Seller's assets are " ([Ll-assets] of
seller))

LOG-TO-FILE (word "

Buyer's assets are " Ll-assets)

;; Update the aggregator of the buyer.
set S1-30day-total-debts (S1-30day-total-debts - this-amount)

Orrery Software

NTF Code for CmLab V1.17

;; Update the aggregator of the seller.
ask seller [set S1-30day-total-assets
(S1-30day-total-assets - this-amount)]

;; The first payable in list is done. Drop from list.
set payables-30day (but-first payables-30day)
;; Check if there are any more.
ifelse(0 = length payables-30day)
[
set tick-when-due (ticks + 1) ;; Create end condition.
1
;; Else
[
;; Unpack the next payable.
set this-payable (item 0 payables-30day)
set seller-who item 0 this-payable
set tick-when-due item 1 this-payable
set this-amount item 2 this-payable

;; end of f-process-30-day-payables

D e |
to do-accrue-interest
;; This routine is to be executed by the observer.

if (gb-debug-on =1)
[
ifelse((gs-debug-step-chooser = "all") or (gs-debug-step-chooser = "accrue-
interest"))
[set gb-debug-flow-on 1 LOG-TO-FILE "" LOG-TO-FILE word "Do-accrue-interest:
Debug on; tick = " ticks]
[set gb-debug-flow-on 0]
1

; TODO: Corps and GCRA do not presently take out Ll loans, or make savings
Y deposits, so some of this code is anticipating that change. When those
HY things are added, walk through this again.

;; There are six kinds of interest that must be accrued, and paid monthly.

] - interest on Ll bank loans - client to bank

] - interest on L2 savings deposits - bank to client

] - interest on required reserves - CRB to bank

] - interest on excess reserves - CRB to bank

] - dividends on stocks - corps to shareholders (not implemented yet)

] - interest on bonds - GCRA and corps to bondholders (not implemented yet)

f-accrue-interest-on-bank-loans-and-deposits
f-accrue-interest-on-reserves

;; TODO: Implement when corps activated.

;; f-accrue-dividends-on-corporate-stocks

f-update-aggregates

LOG-TO-FILE " Do-accrue-interest: procedure completed"
;; end of do-accrue-interest

end

;7 In this routine all per-tick interest and dividends are accrued.
to f-accrue-interest-on-bank-loans-and-deposits
;; This routine is to be executed by the observer.

;; For each prsn (and corp, and gov't) figure out how much interest
HY must be paid on the current extant amount on a loan. This is calculated
HY daily (per tick) and added up, and paid at the end of the month.

;; First, check the government's consolidated revenue account (GCRA).
;; TODO: enable this when GCRA loans are implemented.

;; ask gcras

i L

H if(Ll-loan-debts > 0)

i [

HY LOG-TO-FILE (word " ")

H LOG-TO-FILE (word "GCRA Bank Loan ")

B LOG-TO-FILE (word " Size of L1 loan -------=——=-==—-— " Ll-loan-debts)
HA f-bsves-client-accrues-daily-interest-on-Ll-loan
Total interest due ------------ " Sl1-Llip-debts)

HA LOG-TO-FILE (word "
ii]

;; Next, check the prsns loans (Ll) and savings (L2) accounts.
;;k prsns
: ;; Loans appear as Ll debts.

if(Ll-loan-debts > 0)

: LOG-TO-FILE (word " ")

LOG-TO-FILE (word "PRSN " who " - Bank Loan")

LOG-TO-FILE (word " Size of L1 loan --------=—----—- " Ll-loan-debts)
f-bsves-client-accrues-daily-interest-on-Ll-loan

LOG-TO-FILE (word " Total interest due ------------ " Sl-Llip-debts)

1

;; Savings appear as L2 assets.
if(L2-assets > 0)
[

LOG-TO-FILE (word " ")

LOG-TO-FILE (word "PRSN " who " - Savings Deposit")

LOG-TO-FILE (word " Size of L2 savings deposit ---- " L2-assets)
f-bsvcs-client-accrues-daily-interest-on-L2-savings

LOG-TO-FILE (word " Total interest due ------------ " Sl-L2ir-assets)

;; TODO: Interest for corps not yet implemented.
;; Savings acct for GCRA not yet implemented.

Do like prsns.

;; end of f-accrue-interest-on-bank-loans-and-deposits
end

;; In this routine all per-tick interest is accrued.
to f-accrue-interest-on-reserves
;; This routine is to be executed by the observer.

;; For each bank figure out how much interest is payable on their CRB

Orrery Software

Pg. 17

NTF Code for CmLab V1.17

Y deposits. This is calculated daily (per tick) and added up,
HH and paid at the end of the month.

ask banks
[
;; Do required reserves first.
if(PO-rr-assets > 0)
[
LOG-TO-FILE (word " ")

LOG-TO-FILE (word "BANK " who " - RR Deposit")
LOG-TO-FILE (word " Size of RR deposit ------------ " PO-rr-assets)
f-cbsvcs-bank-accrues-daily-interest-on-RR-deposits ;; Contact the bank.

LOG-TO-FILE (word " Total interest due ------------ " Sl-rrir-assets)

;; Now do excess reserves.
if(PO-er-assets > 0)
[

LOG-TO-FILE (word " ")

LOG-TO-FILE (word "BANK " who " - ER Deposit")

LOG-TO-FILE (word " Size of ER deposit ------------ " PO-er-assets)
f-cbsvcs-bank-accrues-daily-interest-on-ER-deposits ;; Contact the bank.
LOG-TO-FILE (word " Total interest due ------------ " Sl-erir-assets)

1
1
;; end of f-accrue-interest-on-reserves
end

;; Accrue per-tick dividends on corporate stocks.

to f-accrue-dividends-on-corporate-stocks

;; This routine is to be executed by the observer.
;; TODO: Add a body to this hook.

;; end of f-accrue-dividends-on-corporate-stocks
end

to do-monthly
;; This routine is to be executed by the observer.

if(gb-debug-on =1)
[
ifelse((gs-debug-step-chooser = "all") or (gs-debug-step-chooser = "monthly"
))
[set gb-debug-flow-on 1 LOG-TO-FILE "" LOG-TO-FILE word "Do-monthly: Debug on;
tick = " ticks]
[set gb-debug-flow-on 0]
1

;; There are four or five procedures that need to be done once a

HH month (every 30 days)

let check-value (ticks mod 30)

if (check-value = 0)

[
f-cbsvcs-gcra-reconciles-with-crb-monthly
f-process-interest-payments-monthly
f-process-payments-on-loans-monthly
f-government-spends-and-taxes-monthly

f-btpfs-government-special-monthly-transfer

1
f-update-aggregates

LOG-TO-FILE " Do-monthly: procedure completed"
;; end of do-monthly
end

;; Process interest payments monthly.
to f-process-interest-payments-monthly
;; This routine is to be executed by the observer.

;; Monthly interest payments will be made by check
HY from/to the L1 checking accts.

;; Prsns can make payments on Ll loans and collect payments on L2 savings.
ask prsns
[

;; Contact the bank.

let mybank (bank bank-who)

;; NOTE: a payment of interest on a loan does not affect the principal.

HA It causes a change of net-worth of both participants. The payables
HA and receivables do not appear on the official books of either

Y party until the month-end reconciliation happens. The changes to the
Y Cl-assets and the Ll-assets are the effective transfer of

HA net-worth monthly. Only due payments above $1 are processed.

;; Make interest payments on Ll loans.
if(Sl1-Llip-debts > 1)
[

LOG-TO-FILE word "INTEREST PAYMENT ON LOAN:")

(
LOG-TO-FILE (word " Prsn " who " to bank " bank-who ".")
LOG-TO-FILE (word " Prsn Ll loan ---——-=—=—====——=———= " Ll-loan-debts)
LOG-TO-FILE (word " Prsn Ll assets before payment - " Ll-assets)
LOG-TO-FILE (word " Bank Cl assets before payment - " ([Cl-assets] of

mybank))
LOG-TO-FILE (word " Current amount payable -------- "
f-bsves-client-pays-monthly-interest-on-Ll-loan
;; NOTE: Due to the rounding of the interest-paid, a residual
i of interest payable will remain each month. I do this to
HA keep net worth integral.
LOG-TO-FILE (word " Prsn Ll assets after payment -- " Ll-assets)
LOG-TO-FILE (word " Bank Cl assets after payment -- " ([Cl-assets] of
mybank))
LOG-TO-FILE (word "

(S1-Llip-debts))

Residual payable -------------- " (S1-Llip-debts))

1

;; Collect interest payments on L2 savings deposits.
if(S1-L2ir-assets > 1)
[
let interest-due floor(Sl-L2ir-assets)
LOG-TO-FILE (word "INTEREST PAYMENT ON SAVINGS ACCOUNT:

")

LOG-TO-FILE (word " Bank " bank-who " to prsn " who)

LOG-TO-FILE (word " Prsn Ll assets before payment - " Ll-assets)

LOG-TO-FILE (word " Prsn L2 assets -—----——---———---—- " L2-assets)

LOG-TO-FILE (word " Bank Cl assets before payment - " ([Cl-assets] of
mybank))

LOG-TO-FILE (word " Current amount receivable ----- " (Sl-L2ir-assets))

f-bsves-client-paid-monthly-interest-on-L2-savings

Orrery Software

Pg. 18

NTF Code for CmLab V1.17

;; NOTE: Due to rounding above, some residual interest-receivable
H will remain.

LOG-TO-FILE (word " Prsn L1 assets after payment -- " Ll-assets)

LOG-TO-FILE (word " Bank Cl assets after payment -- " ([Cl-assets] of
mybank))

LOG-TO-FILE (word " Residual receivable ----------- " (Sl-L2ir-assets))

1

;; Prsns can collect payments on stocks and bonds.
;; TODO: Not yet implemented.

1 ;; End ask prsns

;; Corps can make payments on Ll loans and collect payments on L2 savings.
;; TODO: Not yet implemented.

;; The government can pay interest on bank loans.
ask gcras
[
;; Contact the bank.
let mybank (bank bank-who)
;; Make interest payments on Ll loans.
if(Sl1-Llip-debts > 1)
[
LOG-TO-FILE (word "INTEREST PAYMENT ON LOAN:")
LOG-TO-FILE (word " GCRA " who " to bank " bank-who ".")
LOG-TO-FILE (word "
(
(

GCRA L1 loan ------------------ " Ll-loan-debts)
LOG-TO-FILE word " GCRA Ll assets pre-payment ---- " Ll-assets)
LOG-TO-FILE word " Bank Cl assets pre-payment " ([Cl-assets] of

mybank))
LOG-TO-FILE (word " Current payable --------------- " (Sl-Llip-debts))
f-bsvecs-client-pays-monthly-interest-on-Ll-loan
;; NOTE: Due to the rounding of the interest-paid, a residual
H of interest payable will remain each month. I do this to
H keep net worth integral.

LOG-TO-FILE (word " GCRA Ll assets post-payment --- " Ll-assets)

LOG-TO-FILE (word " Bank Cl assets post-payment --- " ([Cl-assets] of
mybank))

LOG-TO-FILE (word " Residual payable -------------- " (Sl-Llip-debts))

1
1

;; The CRB can pay interest to banks on reserve deposits.
ask banks
[
;; Collect interest payments on required reserve deposits.
if(Sl-rrir-assets > 1)
[
let the-crb (crb crb-who)
LOG-TO-FILE (word "INTEREST PAYMENT ON RR:")
LOG-TO-FILE (word " CRB " crb-who " to bank " who ".")
LOG-TO-FILE (word " Bank Cl assets ----------—---—--- " Cl-assets)
LOG-TO-FILE (word " Bank Ll debts -- " Ll-debts)
LOG-TO-FILE (word " CRB Cl assets -- " ([Cl-assets] of the-
crb))

LOG-TO-FILE (word " Current receivable ------------ " (Sl-rrir-assets))

f-cbsvcs-bank-paid-monthly-interest-on-rr-deposits

LOG-TO-FILE (word " CRB Cl assets --—---—-—--=-——-—-——- " ([Cl-assets] of the-
crb))

LOG-TO-FILE (word " Bank Cl assets -----—---——--——- " (Cl-assets))

LOG-TO-FILE (word " Residual receivable (Sl-rrir-assets))

;; Collect interest payments on excess reserve deposits.
if(Sl-erir-assets > 1)
[
let the-crb
LOG-TO-FILE

crb crb-who)
word "INTEREST PAYMENT ON ER:")

(
(
LOG-TO-FILE (word " CRB " ([who] of the-crb) " to bank " who ".")
LOG-TO-FILE (word " Bank Cl assets -—-—--—-——===—————- " Cl-assets)
LOG-TO-FILE (word " Bank Ll debts -------==-=-———-—-—- " Ll-debts)
LOG-TO-FILE (word " CRB Cl assets --—-—--—-—===——————- " ([Cl-assets] of the-
crb))
LOG-TO-FILE (word " Current receivable ------------ " (Sl-erir-assets))
f-cbsvcs-bank-paid-monthly-interest-on-er-deposits
LOG-TO-FILE (word " CRB Cl assets --—-—--—-—===——————- " ([Cl-assets] of the-
crb))
LOG-TO-FILE (word " Bank Cl assets -—-—---—-—===——=———- " (Cl-assets))
LOG-TO-FILE (word " Residual receivable ----------- " (Sl-erir-assets))

1 ;; End ask banks
;; end of f-process-interest-payments-monthly
end

;; Process payments on loans.
to f-process-payments-on-loans-monthly
;; This routine is to be executed by the observer.

;; Monthly loan payments of principal will be made by check
i from/to the loan accts.

;; The GCRA can make a payment on L1 loans.

ask gcras with [Ll-loan-debts > 0]

[
LOG-TO-FILE (word "GCRA'S PAYMENT ON L1 BANK LOAN")
f-bsvcs-agent-makes-a-payment-on-loan

1

;; Prsns can make payments on Ll loans.

ask prsns with [Ll-loan-debts > 0]

[
LOG-TO-FILE (word "PRSN-" who "'S PAYMENT ON L1 BANK LOAN")
f-bsvcs-agent-makes-a-payment-on-loan

1

; Corps can make payments on Ll loans.

; TODO: Not implemented yet.

; ask corps with [Ll-loan-debts > 0]

i 0

;7 LOG-TO-FILE (word "CORP-" who "'S PAYMENT ON L1 BANK LOAN")
Y f-bsvcs-agent-makes-a-payment-on-loan

il

;; end of f-process-payments-on-loans-monthly
end

;; Government taxes and spends.
to f-government-spends-and-taxes-monthly
;; This routine is to be executed by the observer.

ask gcras

Orrery Software Pg. 19 NTF Code for CmLab V1.17

[;; Put money into prsn's bank account. Entry #1.
;; Tax first, spend second. Ensures money is in the coffers. ask prsn-bank [set Ll-debts (Ll-debts + monthly-wage)]
f-government-collects-taxes ;; Assets follow debts. Entry #2.
f-government-spends-money ask prsn-bank [set Ll-assets (Ll-assets + monthly-wage)]
1 ;; Enter the deposit into prsns check-book. Entry #3.
;; At this point the net change in prsn-bank is zero.

;; end of f-government-spends-and-taxes-monthly LOG-TO-FILE (word " PRSN " who " Ll assets prior to payment - " Ll-assets)
end set Ll-assets (Ll-assets + monthly-wage)
LOG-TO-FILE (word " PRSN " who " Ll assets after payment ---- " Ll-assets)

;; Enter the payment into the gov't tally-book.
set wages-paid (wages-paid + monthly-wage)

;; Government spends money.
to f-government-spends-money
;; This routine is to be executed the GCRA. 1

;; Remove the money from GCRA bank account. Entry #4.

;; THEORY: ask gcra-bank [set Ll-debts (Ll-debts - wages-paid)]
;; This applies to this routine, and also to f-government-collects-taxes. ;; Assets follow debts. Entry #5.

H ask gcra-bank [set Ll-assets (Ll-assets - wages-paid)]
;; How government spending and taxes are implemented are a matter of social ;; At this point the net change in gcra-bank is zero.

HY policy. Of course the government performs services when money is spent, ;; Note the payments in the gov't check book. Entry #6.

;7 but as long as the money goes back into its own economy, efficiency of set Ll-assets (Ll-assets - wages-paid)

HY of delivery of those services is somewhat irrelevant to the economy. LOG-TO-FILE (word " Total wages paid ------------------ " wages-paid)
;; Taxing and spending are a means to re-distribute the money from some agents LOG-TO-FILE (word " GCRA Ll assets after all payments - " Ll-assets)

H to other agents. If that also happens to build infrastructure, good.
;; So, I tax a slider-determined % based on net-worth-priv values. Taxes HH
HH are collected monthly, so, e.g., a 1% tax rate amounts to 12% annual tax. HH
;; Then I spend a fixed amount on each person. This is as if they receive

Y a regular wage, independent of their wealth.

;; The result is I redistribute money from the most wealthy to the most poor.
HY For example, I will tax a large amount from a wealthy person and pay

HY back a modest wage, while a poor person will pay little and receive a et ettt |
H modest wage. ;; Government collects a tax of net worth.

;; If you vary the tax rate, and the wage rate, then you should be able to to f-government-collects-taxes

Y effectively resist the effects of entropy production (inequitable ;; This routine is to be executed by the GCRA.

H distribution of wealth).
;; To achieve the best effect, I need to set the taxes and expenditures to if (g-net-worth-tax-rate > 0)
; roughly equal. I.e. I need to balance the monthly gov't budget. [

TODO: When I start taxing banks and corps, I need to add payments

to banks and corps.

;; end of f-government-spends-money
end

;; THEORY: See the routine f-government-spends-money for a complete
LOG-TO-FILE (word "") Y description of the approach to government taxing and spending.
LOG-TO-FILE (word "GCRA SPENDS MONEY")

;; Government spends by paying a wage to prsns.

;; The government collects a "net worth" tax and puts it into its

;
;

;

7

7
7

7

;

The government will spend all of its assets.
I am assuming that taxes have been collected previously and are waiting
to be spent.

Contact the bank of the GCRA.

let gcra-bank (bank bank-who)

;; Determine what the monthly wage will be.

;; All monies are spent.

The budget is balanced.

let monthly-wage round(Ll-assets / g-no-of-prsns)
;; Initialize an aggregate variable.
let wages-paid 0

LOG-TO-FILE (word "
LOG-TO-FILE (word "

’

I

7

GCRA L1 assets prior to payments -- " Ll-assets)
Monthly wage -----------—--——-———-——- " monthly-wage)
This functions like a prsn-to-prsn check, and requires six entries.

Two in client's check books. Four in bank back room records.

ask prsns

[
;; Contact bank
let prsn-bank (bank bank-who)

i "Government Consolidated Revenue Account", i.e. its GCRA.
;; It does not tax GCRA or crb accounts.
;; Private CRB "C" accounts are considered a sub-account of GCRA.

;; TODO: Add taxes for corps and private bank worth.
;; Identify the bank of the GCRA.
;; The GCRA is not a bank. It keeps its accounts in a commercial bank.

let gcra-bank (bank bank-who)

let taxes-due 0 I
let all-taxes-paid 0 P

Initialize a working variable.

;; This functions like a prsn-to-prsn check, and requires six entries.

Y Two in client's check books. Four in bank back room records.

ask prsns

[
LOG-TO-FILE (word "PRSN " who "
f-compute-prsn-net-worth
LOG-TO-FILE (word " Prsn net worth
set taxes-due round(net-worth-priv * g-net-worth-tax-rate / 100)

PAYS TAXES")

initialize an aggregate to collect all taxes paid.

" net-worth-priv)

Orrery Software

Pg. 20

NTF Code for CmLab V1.17

;; Taxes are paid by bank-to-bank check.
;; Contact the prsn's bank.
let prsn-bank (bank bank-who)

LOG-TO-FILE (word " Prsn Ll assets before payment ----- " Ll-assets)
;; Remove taxes from prsns bankbook. Entry #1.

set Ll-assets (Ll-assets - taxes-due)

;; Remove the taxes from the prsns checking account. Entry #2.

ask prsn-bank [set Ll-debts (Ll-debts - taxes-due)]

;; Assets follow debts. Entry #3.

ask prsn-bank [set Ll-assets (Ll-assets - taxes-due)]

;; Record the amount as paid, for later entry to GCRA bankbook.

;; At this point the net change in prsn-bank is zero.

set all-taxes-paid (all-taxes-paid + taxes-due)

LOG-TO-FILE (word " Taxes paid --------------—-—-——-————- " taxes-due)
LOG-TO-FILE (word " Prsn Ll assets after payment ------ " Ll-assets)
1
LOG-TO-FILE (word " GCRA L1 assets before collection -- " Ll-assets)
LOG-TO-FILE (word " Total of all taxes collected ------ " all-taxes-paid)

;; Government adjusts its own bankbook. Entry #4.

set Ll-assets (Ll-assets + all-taxes-paid)

;; Add the money to the gov't checking account. Entry #5.

ask gcra-bank [set Ll-debts (Ll-debts + all-taxes-paid)]

;; Assets follow debts. Entry #6.

ask gcra-bank [set Ll-assets (Ll-assets + all-taxes-paid)]

;; At this point the net change in gcra-bank is zero.

LOG-TO-FILE (word " GCRA Ll assets after collection --- " Ll-assets)

;; TODO: Add taxes on corporations.
;; TODO: Add taxes on private net worth of banks.
1

;; end of f-government-collects-taxes
end

;; Everybody visits their bank.

to f-everybody-visits-their-bank

;; This routine is to be executed by the observer.
;; It is executed on setup, and monthly.

LOG-TO-FILE (word " EVERYBODY VISITS BANK")
;; The prsns and corps must visit their banks.
f-prsns-visit-banks-daily

;; TODO: Add corps here.
;; f-corps-visit-banks-daily

;; end of f-everybody-visits-their-bank
end

;; Each prsn has accounts with one bank.
to f-prsns-visit-banks-daily
;; This routine is to be executed by the observer.

ask prsns

[
;; The following routine is used for daily visits, but also for setup,
H and to "initialize" new prsns.
f-prsn-visits-a-bank

1

;; end of f-prsns-visit-banks-daily
end

;; A prns deposits cash into an L1 (checking) account and moves it about.
to f-prsn-visits-a-bank
;; This routine is to be executed by a prsn.

;; This routine is used for daily visits, but also for setup,
HY and to initialize new prsns.

;; THEORY: The money must be shifted from the broadest categories towards the
HY most narrow categories to be useful when needed. Each shift requires
HY an assessment of needs and supply all of the way up the chain.

HY That is tricky and tedious, and prone to coding error.

;; The easiest way to handle it is to work through the categories of money
H from L0, L1, L2 to loan, and at each step, (PART A) deposit all of

HH it to the next broader category of money, and then (PART B) determine
HA what is needed and move that much back. Ultimately any shortage must
Y come from a bank loan if possible, and any overage goes to savings.

; This approach depends on the use of negatives to handle subtractions

Y implicitly, and so makes for much simpler code.

;; Contact the bank.
let my-bank (bank bank-who)
LOG-TO-FILE (word "PRSN " who " VISITS BANK " bank-who ".")

let affected-assets (LO-assets + Ll-assets + L2-assets)

LOG-TO-FILE (word " My PO-assets were ------------- " PO-assets)
LOG-TO-FILE (word " My LO-assets were ------------- " LO-assets)
LOG-TO-FILE (word " My Ll-assets were ------------- " Ll-assets)
LOG-TO-FILE (word " My L2-assets were ------------- " L2-assets)
LOG-TO-FILE (word " Total affected assets --------- " affected-assets)

; Establish appropriate P0/L0O holdings.

; (PART A) Deposit all cash.

ASSERT (PO-assets = LO-assets) "Bad cash" who
f-bsves-prsn-deposits-cash LO-assets

LOG-TO-FILE (word " My PO-assets are -------------- " PO-assets
LOG-TO-FILE (word " My LO-assets are -------------- " LO-assets

;; (PART B) Remove required amount of cash.
f-bsvcs-prsn-withdraws-cash g-p-daily-L0O-allocation

LOG-TO-FILE (word " My PO-assets are -------------- " PO-assets
LOG-TO-FILE (word " My LO-assets are -------------- " LO-assets

; Establish appropriate L1 holdings.

i

; (PART A) Deposit all checking into savings.

LOG-TO-FILE (word " My Ll-assets are -------------- " Ll-assets)
f-bsvcs-prsn-moves-Ll-to-L2 Ll-assets
LOG-TO-FILE (word " My Ll-assets are -------------- " Ll-assets)

;; (PART B) Put required amount of money back into L1.
f-bsves-prsn-moves-L2-to-L1 g-p-daily-Ll-allocation
LOG-TO-FILE (word " My Ll-assets are -------------- " Ll-assets)

Orrery Software Pg. 21 NTF Code for CmLab V1.17

;; Establish appropriate L2 holdings. ;; The given required reserve ratio is a percentage.
J i e m e ;; We need a numeric factor. Convert percentage to numeric factor.
;; THEORY: This will be different. Savings cannot be negative. let rr-factor (g-reserve-requirement-ratio / 100)
;; A prsn must maintain sufficient money in checking to get let needed-rr-deposits floor(Ll-loan-assets * rr-factor)
HH] throught a typical day (as determined by the standard if (needed-rr-deposits > ttl-reserves)
HH allocations), and this is done from the savings. When [
i savings fall below zero, it must be topped up by a bank set needed-rr-deposits ttl-reserves
H loan of a standard size. If the bank has insufficient 1
H cash reserves, then it can no longer offer loans, and f-cbsvcs-bank-moves-vc-to-rr needed-rr-deposits
H the prsn becomes insolvent (bankrupt). let remaining-reserves (ttl-reserves - needed-rr-deposits)
LOG-TO-FILE (word " Pre-loan - My L2-assets are --- " L2-assets) ;; Now I save some in the vault.
;; This routine will determine: let my-vc g-minimum-vault-cash
HY - if a loan is needed to top up the L2 assets. if (my-vc > remaining-reserves)
H - if the bank has excess reserves. [
Y - size of the loan. set my-vc remaining-reserves
H - whether the bank can continue to make loans. 1
Y - if this agent is solvent or insolvent. set remaining-reserves (remaining-reserves - my-vc)
f-bsves-prsn-negotiates-an-Ll-loan
LOG-TO-FILE (word " Post-loan - My LO-assets are -- " LO-assets) ;; The rest is excess reserves.
LOG-TO-FILE (word " Post-loan - My Ll-assets are -- " Ll-assets) f-cbsvecs-bank-moves-vc-to-er remaining-reserves
LOG-TO-FILE (word " Post-loan - My L2-assets are -- " L2-assets) LOG-TO-FILE (word " New settings:")
;; Note, the amount of the loan is placed in the agent's LOG-TO-FILE (word " PO-vc-assets ----—--—--————-—————- " PO-vc-assets)
Y L1l checking account, and is moved to savings the next LOG-TO-FILE (word " PO-rr-assets ---------------—-—-—- " PO-rr-assets)
HH time the agent visits a bank, using this procedure. LOG-TO-FILE (word " PO-er-assets ----—--—--—-—-————-- " PO-er-assets)
set affected-assets (LO-assets + Ll-assets + L2-assets) Set ttl-reserves (PO-vc-assets + PO-rr-assets + PO-er-assets)
LOG-TO-FILE (word " Total affected assets --------- " affected-assets) LOG-TO-FILE (word " Total reserves --—---——-————-—-——- " ttl-reserves)
ifelse(PO-er-assets > 0)
;; End of f-prsn-visits-a-bank [
end set b-bank-can-make-loans 1
LOG-TO-FILE (word " Bank loan dept status - OPEN")
B |]
;; The CRB supervises the management of reserve deposits. ;; Else
to f-the-crb-reconciles-with-banks-daily [
;; This routine is to be executed by the observer. set b-bank-can-make-loans 0
LOG-TO-FILE (word " Bank loan dept status - CLOSED")
LOG-TO-FILE (word "") 1

LOG-TO-FILE (word "CRB RECONCILES RESERVE DEPOSITS") 1

let crb-bank (one-of crbs) ;; More efficient this way. ;; end of f-the-crb-reconciles-with-banks-daily
ask banks end

[
LOG-TO-FILE

word "BANK " who) e ittt |

LOG-TO-FILE (word " Ll-loan-assets -----———-———————-— " Ll-loan-assets) e |

LOG-TO-FILE (word " Old settings:") to do-banking

LOG-TO-FILE (word " PO-vc-assets ---—---—-—=—-————-———— " PO-vc-assets) ;; This routine is to be executed by the observer.

LOG-TO-FILE (word " PO-rr-assets ----------—--——-—--- " PO-rr-assets)

LOG-TO-FILE (word " PO-er-assets ---—-—--—-——--———--—-—— " PO-er-assets) if (gb-debug-on =1)

let ttl-reserves (PO-vc-assets + PO-rr-assets + PO-er-assets) [

LOG-TO-FILE (word " Total reserves ----------—------ " ttl-reserves) ifelse((gs-debug-step-chooser = "all") or (gs-debug-step-chooser = "banking"
))

;; This bank controls limited reserves of cash [set gb-debug-flow-on 1 LOG-TO-FILE "" LOG-TO-FILE word "Do-banking: Debug on;
tick = " ticks]

;; I am going to withdraw all CRB deposits and re-deposit the correct amounts. [set gb-debug-flow-on 0]

] This is instead of shifing cash from place to place, which gets tricky. 1

;; This handles any negatives that may have occured

H in the course of business. f-everybody-visits-their-bank

f-cbsvcs-bank-moves-er-to-vc PO-er-assets ;; The visit to the bank can set prsn or bank bankruptcy flags.

f-cbsvcs-bank-moves-rr-to-ve PO-rr-assets
;; TODO: also banks and corps, when implemented. Banks may open savings
;; Deposit the required reserves first. H accounts, as may corps-?

Orrery Software

Pg. 22

NTF Code for CmLab V1.17

;; Banks will now have odd reserves, and will need to reconcile them.
;; The government records need to be reconciled with bank records.

Y The CRB reconciles reserve deposits with each bank daily.
f-the-crb-reconciles-with-banks-daily

;; Banks may have been exhausted of their last abilities to earn Cl-assets.
;; This sets a bankruptcy flag for banks.
f-bsvcs-bank-checked-for-bankruptcy

;; Process bankruptcies of prsns.
let prsn-bankruptcies (prsns with [b-prsn-is-bankrupt = 1])
ask prsn-bankruptcies

[

f-bsvcs-process-prsn-bankruptcy

1

;; Process bankruptcies of banks.
let bank-bankruptcies (banks with [b-bank-is-bankrupt = 1])
ask bank-bankruptcies

[
f-bsvcs-process-bank-bankruptcy

1
;; TODO: Also corps, when implemented.

;; end of do-banking
end

to do-post-tick
;; This routine is to be executed by the observer.

if (gb-debug-on = 1)
[

ifelse((gs-debug-step-chooser = "all") or (gs-debug-step-chooser = "post-
tick"))

[set gb-debug-flow-on 1 LOG-TO-FILE "" LOG-TO-FILE word "Do-Post-tick: Debug
on; tick = " ticks]

[set gb-debug-flow-on 0]
1

;; This code ensures that the number of banks active in the economy
I matches the numbers implied by the sliders.
;; Missing banks are created. Overages are allowed to fall by
I attrition, through bankruptcies.
set g-no-of-prsns-max (g-no-of-prsns-per-bank * g-no-of-banks-max)
let no-of-banks (count banks)
while[no-of-banks < g-no-of-banks-max]
[
;; Create a new bank, and it as an average bank.
f-bank-is-funded-as-average
set no-of-banks (count banks)

;; This code ensures that the number of prsns active in the economy
H matches the numbers implied by the sliders.

; Missing prsns are created. Overages are allowed to fall by

H attrition, through bankruptcies.

; Recompute the expected number of prsns, given that the slider may

HA have been changed.
set g-no-of-prsns-max (g-no-of-prsns-per-bank * g-no-of-banks-max)
set g-no-of-prsns (count prsns)
while[g-no-of-prsns < g-no-of-prsns-max]
[
;; Create a new prsn, and fund him/her as an average prsn.
f-prsn-is-funded-as-average
set g-no-of-prsns (count prsns)

1

;; MANUAL CHANGE FOR DEBUG.
;; This is a call to a debug routine which could be suppressed if all is okay.
;; This is one of a group of such calls, most of which are between steps in
HY the 'Go' routine. They are suppressed there, but can be enabled again.
;; I have decided to leave this one active, for now.
;; It checks all agents, every tick.
if (frb-agents-are-all-valid = false)
[LOG-TO-FILE (word "Agents failed validity test.")]

;; Update the aggregates for display in the monitors.
f-update-aggregates

display

LOG-TO-FILE " Do-post-tick: procedure completed."
end

;; A new prsn is created and funded as an average prsn.
to f-prsn-is-funded-as-average
;; This routine is to be executed by the observer.

;; TODO: After debugging, suppress this.
;; f£-force-debug-output-on

;; TODO: Remove this if annoying.

;; beep

;; I am interested in the steady-state distribution of wealth, so I don't
Y want to bias the distribution by adding a new prsn that is either too
Y wealthy or too poor. Neither do I want to change the MS-1 money supply

Y (I.e. the physical money base). So, I have this three-step process
B to construct a new prsn.
;; Step 1 - the population is canvassed to determine total wealth.

;; Step 2 - the population is taxed to gather sufficient Ll-assets.
;; Step 3 - the prsn is fashioned as a prsn of average wealth.

;; The impact of this approach should be that Ll-assets are transferred
HH to the prsn, causing the relative distribution to remain the same,
Y but translating/shifting the distribution. I could do step 2 in two
i ways:

i - I could pro-rate the contribution from each prsn. This would have
i the effect of making the distribution more compact. Those with

Y the greatest debt or wealth would experience the greatest movement
HH towards zero wealth, while those with little wealth would not be
i affected much.

A OR

i - I could collect a standard fixed sum from each prsn. This would
Y have the effect of translating the entire population towards

Y zero wealth. All would benefit or suffer equally, depending on

Y whether the average wealth was negative or positive respectively.

;; I have implemented the pro-rated version of Step 2.

Orrery Software

Pg. 23

;; TODO: After debugging, remove this.
;; Toggle debug on.

;; let old-debug gb-debug-on

;; set gb-debug-on 0

;; f£-toggle-debug

;; set gb-debug-show-steps true

LOG-TO-FILE (word "Creating a new prsn.")
;; STEP 1 - Find the total net worth of all prsns.
ask prsns [f-compute-prsn-net-worth]
let total-net-worth (sum [net-worth-priv] of prsns)
let mean-net-worth (mean [net-worth-priv] of prsns)
let current-no-of-prsns (count prsns)
;; Adjust for intended additional prsn.
let target-net-worth
(mean-net-worth * current-no-of-prsns / (1 + current-no-of-prsns))

LOG-TO-FILE (word " Current no of prsns ----------- " current-no-of-prsns)
LOG-TO-FILE (word " Total net worth of prsns ------ " total-net-worth)
LOG-TO-FILE (word " Target net worth of new prsn -- " target-net-worth)

let total-collected 0
let donation-factor 0
let amount-due 0

create-prsns 1
[
set g-counts-p-births (g-counts-p-births + 1)
f-initialize-new-prsn
set heading 90
;; Move to a random point.
setxy random-xcor random-ycor
;; Although initialization simply adds a bank-who variable to prsn,
Y it effectively opened a checking and savings account. The
H money will be moved into its checking account.

ask other prsns

[
;; Canvass each prsn and collect the appropriate assets (debts?)
;; The signs on the numbers are important here. Either part of the
Y following ratio may be negative. The effect is that poor prsns
Y with negative net worth will be given a little, while rich prsns
H with positive net worth will have some taken.
set donation-factor (net-worth-priv / total-net-worth)
set amount-due round(target-net-worth * donation-factor)
;; A rounded figure to keep things tidy.

LOG-TO-FILE (word " Net-worth-priv ---------------- " net-worth-priv)
LOG-TO-FILE (word " Donation-factor --------------- " donation-factor)
LOG-TO-FILE (word " Amount-due -----------—-——-——-——-—- " amount-due)

;; Contact other prsn's bank.
let his-bank (bank bank-who)
;; Mark payment in his check book. Entry #1.
set Ll-assets (Ll-assets - amount-due)
;; Inform his bank that a check was written. Entries #2 and #3.
ask his-bank
[
set Ll-assets (Ll-assets - amount-due)
set Ll-debts (Ll-debts - amount-due)
]
;; The net worth of the bank does not change. The net worth of
Y the doner of the cash does change.

;; Keep a running record of the donations.
set total-collected (total-collected + amount-due)
;; Some of the amounts collected may have been negative.
HA That is OK.
] ;; end ask other prsns

;; The collection is now done. The new prsn deposits it into a
HY checking account at his/her bank.
LOG-TO-FILE (word " Total-collected -----=-=====—=——- " total-collected)
;; Enter it into the personal check book. Entry #4.
set Ll-assets (Ll-assets + total-collected)
;; Contact the bank
let my-bank (bank bank-who)
;; Deposit the aggregate check into the checking account.
A Entries #5 and #6.
ask my-bank
[
set Ll-assets (Ll-assets + total-collected)
set Ll-debts (Ll-debts + total-collected)

;; This prsn now has a large pile of money, or a large debt,
HA recorded in their checking account. They need to either
HA move some to savings and currency, or take out a bank loan
HA to cover the debt and get them back ready for action in the
HA economy. Either way, they should have average net worth.
f-prsn-visits-a-bank
;; They now have cash, and money in checking and savings accounts,
Y and possibly a bank loan that provides those funds.

1

set g-no-of-prsns (count prsns)

;; TODO: Remove this after debug.
;; f£-force-debug-output-off

;; end of f-prsn-is-funded-as-average
end

;; A new bank is created and funded as an average bank.
to f-bank-is-funded-as-average
;; This routine is to be executed by the observer.

;; TODO: After debugging, suppress this.
;; f-force-debug-output-on

;; TODO: Remove this if annoying.

;; beep

;; I am interested in the steady-state distribution of wealth, so I don't

Y want to bias the distribution by adding a new bank that is either too
Y wealthy or too poor. Neither do I want to change the MS-1 money supply
i (I.e. the physical money base). So, I have this nine-step process

i to construct a new bank:

;; Step 1 - Assemble sufficient Ll-assets;

;; Step 2 - Assemble sufficient PO-assets;

;; Step 3 - Assemble sufficient clients.

;; Each of the above steps has three sub-steps:

;; Step A - the population is canvassed to determine total assets.
;; Step B - the population is taxed to gather sufficient assets.
;; Step C - the bank is fashioned as a bank of average assets.

NTF Code for CmLab V1.17

Orrery Software Pg. 24 NTF Code for CmLab V1.17

;; The impact of this approach should be that PO and Ll-assets are transferred

;i to the bank, causing the relative distribution to remain the same,
Y but translating/shifting the distribution. I could do step 2 in two
i ways:

Y - I could pro-rate the contribution from each bank. This would have
HH] the effect of making the distribution more compact. Those with

i the greatest debt or wealth would experience the greatest movement
;i towards zero wealth, while those with little wealth would not be
;i affected much.

i OR

;i - I could collect a standard fixed sum from each bank. This would
i have the effect of translating the entire population towards

i zero wealth. All would benefit or suffer equally, depending on

i whether the average wealth was negative or positive respectively.

;; I have implemented the pro-rated version of Step 2.

; TODO: QQQ After debugging, remove this.
;; Toggle debug on.

let old-debug gb-debug-on

set gb-debug-on 0

f-toggle-debug

set gb-debug-show-steps true

LOG-TO-FILE (word "Creating a new bank.")
;; STEP 1 - Assemble Cl assets.
;; Step 1A - Canvass population for wealth.
ask banks [f-compute-bank-net-worth]
let total-net-worth (sum [net-worth-priv] of banks)
let mean-net-worth (mean [net-worth-priv] of banks)
set g-no-of-banks (count banks)
;; Adjust for intended additional bank.
let target-net-worth
(mean-net-worth * g-no-of-banks / (1 + g-no-of-banks))

LOG-TO-FILE (word " Current no of banks ----------- " g-no-of-banks)
LOG-TO-FILE (word " Total net worth of banks ------ " total-net-worth)
LOG-TO-FILE (word " Target net worth of new bank -- " target-net-worth)

;; Step 1B - Collect the Cl-assets.

let total-Cl-collected 0

let Cl-donation-factor 0

let amount-Cl-due 0

let new-bank one-of banks ;; A dummy assignment.

create-banks 1

[
set g-counts-b-births (g-counts-b-births + 1)
set new-bank (self) ;; Create a handle for the new bank.
LOG-TO-FILE (word " Bank <<<" ([who] of new-bank) ">>> created.")

f-initialize-new-bank

set heading 90

;; Move to a random point.
setxy random-xcor random-ycor

ask other banks

[

; STEP 1B - Canvass each bank and collect the appropriate Cl-assets.
; The signs on the numbers are important here. Either part of the
] following ratio may be negative. The effect is that poor prsns
H with negative net worth will be given a little, while rich prsns
H with positive net worth will have some taken.

set Cl-donation-factor (net-worth-priv / total-net-worth)
set amount-Cl-due round(target-net-worth * Cl-donation-factor)
;; Rounded figures to keep things tidy.

LOG-TO-FILE (word " Net-worth-priv -----------—--—--- " net-worth-priv)
LOG-TO-FILE (word " Cl-donation-factor - - " Cl-donation-factor)
LOG-TO-FILE (word " Amount-Cl-donated ------------- " amount-Cl-due)

;; Mark payment in this doner bank's check book. Entry #1.

set Cl-assets (Cl-assets - amount-Cl-due)

;; Inform back room that a check was written. Entries #2 and #3.
set Ll-assets (Ll-assets - amount-Cl-due)

set Ll-debts (Ll-debts - amount-Cl-due)

;; Step 1C - Install the Cl-assets in the new bank.

;; Inform recipient bank that a check was written. Entries #4, #5 and #6.

ask new-bank
[
set Cl-assets (Cl-assets + amount-Cl-due)
set Ll-assets (Ll-assets + amount-Cl-due)
set Ll-debts (Ll-debts + amount-Cl-due)
1
;; The net worth of the back room of banks does not change. The
HA net worth of the front rooms does change.

;; Keep a running record of the donations.
set total-Cl-collected (total-Cl-collected + amount-Cl-due)
;; Some of the amounts collected may have been negative.
HA That is OK.
1 ;; end ask other banks

;; The collection is now done.

LOG-TO-FILE (word " Total-Cl-donated --------—------ " total-Cl-collected)

;; This bank now has a large pile of money, or a large debt,
i recorded in their checking account.
1 ;; end of create-banks 1

;; The observer takes over again.
set g-no-of-banks (count banks)

; STEP 2 - Collect a fair share of physical money (PO).

; Step 2A - Canvass the banks to determine total PO-assets.

; This has to be a little different, because between Steps 1A and 2A
HA the new bank has been created.

ask banks [f-compute-bank-net-worth]

let total-PO 0 ;; a dummy declaration.
let mean-PO 0 ;; a dummy declaration.
let no-of-other-banks 0 ;; a dummy declaration.

ask new-bank
[
;; This excludes the data for the new-bank, which should be zero
;7 in any case.
set total-PO0 (sum [PO-all-assets] of other banks)
set mean-P0 (mean [PO-all-assets] of other banks)
set no-of-other-banks (count other banks)
;; Adjust for intended additional bank.
]
let target-PO
floor (mean-P0 * no-of-other-banks / (1 + no-of-other-banks))
LOG-TO-FILE (word " Current no of banks ----------- " g-no-of-banks)

Orrery Software Pg. 25 NTF Code for CmLab V1.17

LOG-TO-FILE (word " Total PO-assets of banks ------ " total-PO)
LOG-TO-FILE (word " Target PO-assets of new bank -- " target-PO) ;; For each bank I have to randomly select a subset of clients
i and transfer them to the new bank.
;; Step 2B - Collect physical PO-assets. let other-bank self ;; Give the bank in control an explicit handle.
let total-PO-collected 0 let other-bank-who ([who] of self)
let PO-donation-factor 0 let prsn-client-set (prsns with [bank-who = other-bank-who])
let amount-P0O-due 0 ;; Select a random subset of size clients-due.
set prsn-client-set (n-of clients-due prsn-client-set)
ask new-bank ask prsn-client-set
[[
;; This trick excludes the new-bank from making a donation. ;; Ask each prsn to transfer its accounts to the new bank.
ask other banks ;; The prsn is a client of other-bank.
[;; Each transfer requires four entries. The client's bank book does
;; Canvass each bank and collect the appropriate physical assets (PO). HY not need to be changed, but it is the reference that determines
;; The signs on the numbers are all positive here. The effect is that HY the amount of assets to be moved.
H poor banks with few physical assets will lose a little, while rich LOG-TO-FILE (word " Prsn " who " transferred.")
Y banks with large physical assets will lose a lot. let amount-to-move Ll-assets ;; From bank book.
ask other-bank
set PO-donation-factor (PO-all-assets / total-PO) [
set amount-PO-due round(target-PO * PO-donation-factor) set Ll-assets (Ll-assets - amount-to-move)
;; Rounded figures to keep things tidy. set Ll-debts (Ll-debts - amount-to-move)
LOG-TO-FILE (word " PO all assets ----—---————————-—-- " PO-all-assets) 1
LOG-TO-FILE (word " PO-donation-factor - " PO-donation-factor) ask new-bank
LOG-TO-FILE (word " Amount-PO-donated ------------- " amount-PO-due) [
set Ll-assets (Ll-assets + amount-to-move)
;; Remove from doner bank. Entry #1. set Ll-debts (Ll-debts + amount-to-move)
set PO-vc-assets (PO-vc-assets - amount-PO-due)] ;; end of ask new-bank
] ;; end of ask prsn-client-set
;; Step 2C - Add the assets to the new bank. LOG-TO-FILE (word " No of clients transferred ------ "
;; Add to recipient bank's bank vault. Entry #2. (count prsn-client-set))
ask new-bank set clients-gathered (clients-gathered + clients-due)
[] ;; end of ask other banks
set PO-vc-assets (PO-vc-assets + amount-PO-due) 1 ;; end of ask new-bank
1 LOG-TO-FILE (word " Total clients transferred ------ " clients-gathered)
;; Keep a running record of the donations.
set total-PO-collected (total-PO-collected + amount-PO-due) f-the-crb-reconciles-with-banks-daily
1 ;; end ask other banks ;; They now have cash, and assets, and clients.
] ;; end ask new-bank set g-no-of-banks (count banks)
;; The collection is now done. ;; TODO: Remove this after debug.
LOG-TO-FILE (word " Total-PO-donated --------—------ " total-PO-collected) ;; f£-force-debug-output-off
;; end of Step 2 - Collect physical assets (PO).
;; end of f-bank-is-funded-as-average
;; The observer takes over again. end
;; Step 3 - Now we have to gather some clients from other banks. R e e |
;; Step 3A - Determine how many clients there are. ;; COMPUTATION OF NET WORTH OF ALL AGENTS
set g-no-of-prsns (count prsns) ;; Probably redundant R e e
let target-no-of-clients (g-no-of-prsns / g-no-of-banks)
let clients-gathered 0 R e e L L T
;; Compute the net worth of each of the agents.
;; Steps 3B and 3C - These will be done together. to f-compute-each-net-worth
let client-factor 0 ;; a dummy declaration. ;; This routine is to be executed the observer.
let clients-due 0 ;; a dummy declaration.
LOG-TO-FILE (word "Each net worth will be computed. ")
ask new-bank ask gcras [f-compute-gcra-net-worth]
[ask crbs [f-compute-crb-net-worth]
ask other banks ask banks [f-compute-bank-net-worth]
[ask prsns [f-compute-prsn-net-worth]
set client-factor (no-of-prsn-clients / g-no-of-prsns) ask corps [f-compute-corp-net-worth]
;; Rounded to keep things tidy.
set clients-due round(target-no-of-clients * client-factor) ;; end of f-compute-each-net-worth

Orrery Software

Pg. 26

end

;; Compute the net worth of the GCRA (Government Consolidated Revenue Accounts).
to f-compute-gcra-net-worth
;; This routine is to be executed the GCRA.

set ttl-PO-assets 0 ;; aggregate of all physical assets
set ttl-publ-assets 0

set ttl-publ-assets (ttl-publ-assets + Ll-assets)

;; ss set ttl-publ-assets (ttl-publ-assets + L2-assets)
set ttl-publ-debts 0

set ttl-publ-debts (ttl-publ-debts + Ll-loan-debts)

;; ss set ttl-publ-debts (ttl-publ-debts + L3-debts)
set net-worth-publ (ttl-publ-assets - ttl-publ-debts)
set ttl-priv-assets 0

set ttl-priv-debts 0

set net-worth-priv 0

;; Money supply aggregates

set msi-assets 0 ;; Physical money supply

set msi-debts 0 ;; Physical money supply

set msii-assets ttl-publ-assets ;; Logical money supply

set msii-debts ttl-publ-debts ;; Logical money supply

set msiii-assets 0 ;; Shadow money supply

set msiii-debts (Sl-Llip-debts) ;; Shadow money supply

;; TODO: When this is non-suppressed, next line is needed instead.

;; ss set msiii-debts (S1-Llip-debts + S1-L3ip-debts) ;; Shadow money supply

;; end of f-compute-gcra-net-worth
end

;; Compute the net worth of the CRB (Central Reserve Bank).
to f-compute-crb-net-worth
;; This routine is to be executed the crb.

set ttl-PO-assets 0

set ttl-PO-assets (ttl-PO-assets + PO-assets)
set ttl-PO-assets (ttl-PO-assets + PO-rr-assets)
set ttl-PO-assets (ttl-PO-assets + PO-er-assets)

set ttl-publ-assets LO-assets
set ttl-publ-debts LO-debts
set net-worth-publ (ttl-publ-assets - ttl-publ-debts)

set ttl-priv-assets 0

set ttl-priv-assets (ttl-priv-assets + Cl-assets)

;; xXx set ttl-priv-assets (ttl-priv-assets + c2-assets)
set ttl-priv-debts 0

set ttl-priv-debts (ttl-priv-debts + Sl-rrip-debts)

set ttl-priv-debts (ttl-priv-debts + Sl-erip-debts)

set net-worth-priv (ttl-priv-assets - ttl-priv-debts)

let shadow-money (Sl-rrip-debts + Sl-erip-debts)

;; Money supply aggregates

set msi-assets ttl-P0O-assets ;; Physical money supply
set msi-debts PO-debts ;; Physical money supply
set msii-assets ttl-priv-assets ;; Logical money supply
set msii-debts 0 ;; Logical money supply
set msiii-assets 0 ;; Shadow money supply
set msiii-debts shadow-money ;; Shadow money supply

;; end of f-compute-crb-net-worth
end

;; Compute the net worth of a bank.
to f-compute-bank-net-worth
;; This routine is to be executed a bank.

set ttl-PO-assets 0
set ttl-PO-assets (ttl-PO-assets + PO-vc-assets)

;; This is totalled differently from ttl-PO-assets because this includes
HA some that are offset by PO-xx-debts. I.e. some of these assets are
HH not in the posession of the bank, and should not be counted here

H as that would cause double counting. But the variable PO-all-assets
HH is intended to include all assets under the control of this bank, and
Y not merely those in its posession. So I include those in the CRB

HH as part of the PO-all-assets variable, based on this bank's records
HA of its CRB deposits.

set PO-all-assets 0

set PO-all-assets (PO-all-assets + PO-vc-assets)

set PO-all-assets (PO-all-assets + PO-er-assets)

set PO-all-assets (PO-all-assets + PO-rr-assets)

set ttl-publ-assets 0
set ttl-publ-assets (ttl-publ-assets + Ll-assets)
set ttl-publ-assets (ttl-publ-assets + Ll-loan-assets)

set ttl-publ-debts 0

set ttl-publ-debts (ttl-publ-debts + Ll-debts)

set ttl-publ-debts (ttl-publ-debts + L2-debts)

;; ss set ttl-publ-debts (ttl-publ-debts + L3-debts)

set net-worth-publ (ttl-publ-assets - ttl-publ-debts)

set ttl-priv-assets 0

set ttl-priv-assets (ttl-priv-assets + Cl-assets)

set ttl-priv-assets (ttl-priv-assets + Sl-Llir-assets)
;; Xx set ttl-priv-assets (ttl-priv-assets + c2-assets)
set ttl-priv-assets (ttl-priv-assets + Sl-rrir-assets)
set ttl-priv-assets (ttl-priv-assets + Sl-erir-assets)

;; TODO: Run a bank like a corp.

;; Debts equal assets, excluding receivables, because it is it's
Y own bank.

set ttl-priv-debts 0

set ttl-priv-debts (ttl-priv-debts + S1-L2ip-debts)

;; Xx set ttl-priv-debts (ttl-priv-debts + c2-assets)

set net-worth-priv (ttl-priv-assets - ttl-priv-debts)
;; Money supply aggregates

set msi-assets 0 ;; Physical money supply
set msi-assets (msi-assets + PO-vc-assets)

NTF Code for CmLab V1.17

Orrery Software

Pg. 27

NTF Code for CmLab V1.17

set msi-assets (msi-assets + PO-er-assets)
set msi-assets (msi-assets + PO-rr-assets)

set msi-debts 0 ;; Physical money supply
set msi-debts (msi-debts + PO-rr-debts)
set msi-debts (msi-debts + PO-er-debts)

set msii-assets 0 ;; Logical money supply

set msii-assets (msii-assets + Ll-assets)

set msii-assets (msii-assets + Ll-loan-assets)
set msii-assets (msii-assets + Cl-assets)

;; XX set msii-assets (msii-assets + c2-assets)

set msii-debts 0 ;; Logical money supply
set msii-debts (msii-debts + Ll-debts)
set msii-debts (msii-debts + L2-debts)

set msiii-assets 0 ;; Shadow money supply

set msiii-assets (msiii-assets + Sl-Llir-assets)
set msiii-assets (msiii-assets + Sl-rrir-assets)
set msiii-assets (msiii-assets + Sl-erir-assets)

set msiii-debts 0 ;; Shadow money supply
set msiii-debts (msiii-debts + S1-L2ip-debts)

;; end of f-compute-bank-net-worth
end

;; Compute the net worth of a prsn.
to f-compute-prsn-net-worth
;; This routine is to be executed a prsn.

set ttl-PO-assets PO-assets

set msi-assets (msi-assets + PO-assets)
set msi-debts 0 ;; Physical money supply

set msii-assets 0 ;; Logical money supply
set msii-assets (msii-assets + LO-assets
set msii-assets (msii-assets + Ll-assets
set msii-assets (msii-assets + L2-assets
;; ss set msii-assets (msii-assets + L3-assets)
;; ss set msii-assets (msii-assets + L4-assets)

set msii-debts 0 ;; Logical money supply
set msii-debts (msii-debts + Ll-loan-debts)

set msiii-assets 0 ;; Shadow money supply

set msiii-assets (msiii-assets + S1-30day-total-assets)

set msiii-assets (msiii-assets + Sl-L2ir-assets)

;; ss set msiii-assets (msiii-assets + Sl-L3ir-assets)

;; ss set msiii-assets (msiii-assets + L4-dividend-receivable)

set msiii-debts 0 ;; Shadow money supply

set msiii-debts (msiii-debts + S1-30day-total-debts)

;; Somewhat arbitrarily I have decided that Ll loan debts will be
Y considered shadow money. This is so the only MS-II expansion
Y will come from the principal of the loans themselves.

set msiii-debts (msiii-debts + S1-Llip-debts)

;; end of f-compute-prsn-net-worth

end

;; Compute the net worth of a corp.

to f-compute-corp-net-worth

;; This routine is to be executed a corp.

set ttl-publ-assets 0

set ttl-publ-debts 0

set net-worth-publ 0

set ttl-PO-assets PO-assets

set ttl-priv-assets

set ttl-priv-assets ttl-priv-assets LO-assets)

set

ttl-priv-assets

ttl-priv-assets

Ll-assets)
S1-30day-total-assets)

set

set
set
set
set
set

ttl-PO-assets

ttl-priv-assets
ttl-priv-assets
ttl-priv-assets
ttl-priv-assets
ttl-priv-assets

0
(
(
(
(

set ttl-publ-assets 0
set ttl-publ-debts 0
set net-worth-publ 0

PO-assets

ttl-priv-assets
ttl-priv-assets
ttl-priv-assets
ttl-priv-assets

+
+
+
+

LO-assets)
Ll-assets)
S1-30day-total-assets)
L2-assets)

0
(+
set ttl-priv-assets (ttl-priv-assets +
(+
set ttl-priv-assets (ttl-priv-assets + L2-assets)
set ttl-priv-assets (ttl-priv-assets + Sl-L2ir-assets)
;; ss set ttl-priv-assets (ttl-priv-assets + L3-assets)
;; ss set ttl-priv-assets ttl-priv-assets + Sl-L3ir-assets)
;; ss set ttl-priv-assets ttl-priv-assets + L4-assets)
;; ss set ttl-priv-assets ttl-priv-assets + L4-dividend-receivable)

set ttl-priv-debts 0

set ttl-priv-debts (ttl-priv-debts + Ll-loan-debts)

set ttl-priv-debts (ttl-priv-debts + Sl-Llip-debts)

set ttl-priv-debts (ttl-priv-debts + S1-30day-total-debts)

set net-worth-priv (ttl-priv-assets - ttl-priv-debts)

;; Money supply aggregates
set msi-assets 0 ;; Physical money supply

set ttl-priv-assets (ttl-priv-assets + Sl-L2ir-assets)
;; ss set ttl-priv-assets (ttl-priv-assets + L3-assets)
;; ss set ttl-priv-assets (ttl-priv-assets + L4-assets)

set ttl-priv-debts 0

set ttl-priv-debts (ttl-priv-debts + Ll-loan-debts)

set ttl-priv-debts (ttl-priv-debts + S1l-Llip-debts)

set ttl-priv-debts (ttl-priv-debts + S1-30day-total-debts)
;; ss set ttl-priv-debts (ttl-priv-debts + L3-debts)

;; ss set ttl-priv-debts (ttl-priv-debts + S1-L3ip-debts)
;; ss set ttl-priv-debts (ttl-priv-debts + L4-debts)

;; ss set ttl-priv-debts (ttl-priv-debts + S1-L4dp-debts)

set net-worth-priv (ttl-priv-assets - ttl-priv-debts)

;; Money supply aggregates

Orrery Software Pg. 28 NTF Code for CmLab V1.17

set msi-assets 0 ;; Physical money supply
set msi-assets (msi-assets + PO-assets) ;; Remove cash from prsn's wallet.
set LO-assets (LO-assets - amount-to-deposit)
set msi-debts 0 ;; Physical money supply set PO-assets (PO-assets - amount-to-deposit)
set msii-assets 0 ;; Logical money supply ;; Put the cash into the bank's books (L0O) and vault (PO).
set msii-assets (msii-assets + PO-assets) ask my-bank
set msii-assets (msii-assets + Ll-assets) [
set msii-assets (msii-assets + L2-assets) set Ll-assets (Ll-assets + amount-to-deposit)
;; ss set msii-assets (msii-assets + L3-assets) set PO-vc-assets (PO-vc-assets + amount-to-deposit)
;; ss set msii-assets (msii-assets + L4-assets) 1
set msii-debts 0 ;; Logical money supply ;; Now, adjust the bank's aggregate checking account to reflect
set msii-debts (msii-debts + Ll-loan-debts) H the increase in the checkable deposits.
;; ss set msii-debts (msii-debts + L3-debts) ask my-bank [set Ll-debts (Ll-debts + amount-to-deposit)]
;; ss set msii-debts (msii-debts + L4-debts) ;; Finally, adjust the prsn's bankbook to indicate the amount of checkable
HY money available to this prsn, and also to lay a claim on a portion
set msiii-assets 0 ;; Shadow money supply HY of the aggregate of checkable money in the bank.
set msiii-assets (msiii-assets + S1-30day-total-assets) set Ll-assets (Ll-assets + amount-to-deposit)
set msiii-assets (msiii-assets + S1-L2ir-assets)
LOG-TO-FILE (word " BSvcs: Amount of PO deposited - " amount-to-deposit)
set msiii-debts 0 ;; Shadow money supply
set msiii-assets (msiii-debts + S1-30day-total-debts) ;; end of f-bsvcs-prsn-deposits-cash
;; ss set msiii-assets (msiii-assets + S1-L3ip-debts) end
;; ss set msiii-assets (msiii-assets + S1-L4dp-debts)
T T T e e e e e e e e e ————————— - |
;; end of f-compute-corp-net-worth ;; A prsn has checkable funds in the bank and withdraws cash (PO, LO).
end to f-bsvcs-prsn-withdraws-cash [amount-to-withdraw]

;; This routine is to be executed a prsn.

;; BANKING SERVICES ;; TODO: this routine may work for corps as well.

2 e |

;; THEORY: In this section of the code all of the patterns for types of banking ;; Contact the bank.

Y services have been pulled together in a single place. This is to enable let my-bank (bank bank-who)

Y consistency in the means of implmenting each type of service, with

Y the hope that it will make coding, debugging, and maintenance easier, at ;; This is the reversal of a deposit.

H a possible cost of performance. ;; Put cash into prsn's wallet.

;; Note that it is intentional that none of these routine do range error set LO-assets (LO-assets + amount-to-withdraw)

Y checking on the variables affected. So, for example, a prsn with no money set PO-assets (PO-assets + amount-to-withdraw)

Y in a savings account may still move money from there to a checking account.

;; The creation of negatives and their ultimate removal again all gets ;; Get the cash from the bank's books (LO) and vault (PO).
Y resolved in the daily visit to the bank by each agent. Loans are usually ask my-bank

Y available to cover net negatives, and, when they are not, bankruptcy [

HY routines sort it all out. set Ll-assets (Ll-assets - amount-to-withdraw)

;; The real purpose of these routines is to defend the public trust that set PO-vc-assets (PO-vc-assets - amount-to-withdraw)

i money is properly conserved unless explicitly indicated otherwise. 1
;; Rather that implementing the complicated issue of linking bank accounts

] directly to clients, the clients keep track of the details of their own ;; Now, adjust the bank's aggregate checking account to reflect

] accounts, and the banks only keep track of aggregate amounts. This Y the decrease in the checkable deposits.

i simplifies the coding dramatically, and so reduces the chances of coding ask my-bank [set Ll-debts (Ll-debts - amount-to-withdraw)]

] error, but it puts the onus on the clients to have their books in order. ;; Finally, adjust the prsn's bankbook to indicate the amount of checkable
] These banking routines look after that. Y money no longer available to this prsn, and also to release the

Y claim on a portion of the aggregate of checkable money in the bank.
T - | set Ll-assets (Ll-assets - amount-to-withdraw)

;; A prsn has cash (PO, LO) and deposits into its bank.
to f-bsvcs-prsn-deposits-cash [amount-to-deposit] LOG-TO-FILE (word " BSvcs: Amount of PO withdrawn - " amount-to-withdraw)
;; This routine is to be executed a prsn.
;; end of f-bsvcs-prsn-withdraws-cash
;; TODO: this routine may work for corps as well. end

;; Contact the bank. R i |
let my-bank (bank bank-who) ;; A prsn moves money from a checking acct (Ll) to a savings acct (L2).

Orrery Software

Pg. 29

to f-bsvcs-prsn-moves-Ll-to-L2 [amount-to-move]
;; This routine is to be executed a prsn.

;; TODO: this routine may work for corps as well.

;; Contact the bank.
let my-bank (bank bank-who)

ask my-bank

[
;; The bank decreases the
set Ll-debts (Ll-debts -
;; The bank increases the
set L2-debts (L2-debts +

1

aggregator for checkable funds.
amount-to-move)

aggregator for savings funds.
amount-to-move)

claim on checkable funds, in its check book.
- amount-to-move)
claim on savings,

+ amount-to-move)

;; The prsn decreases its
set Ll-assets (Ll-assets
;; The prsn increases its
set L2-assets (L2-assets

in its savings book.

LOG-TO-FILE (word " BSvcs: Moved from L1 to L2 ---- " amount-to-move)
;; end of f-bsvcs-prsn-moves-Ll-to-L2

end

;; A prsn moves money from a savings acct (L2) to a checking acct (L1).
to f-bsvcs-prsn-moves-L2-to-Ll1 [amount-to-move]
;; This routine is to be executed a prsn.

;; TODO: this routine may work for corps as well.

;; Contact the bank.

let my-bank (bank bank-who)

;; This is the reversal of a move of L1 to L2.

ask my-bank

[

aggregator for checkable funds.
amount-to-move)

aggregator for savings funds.
amount-to-move)

;; The bank increases the

set Ll-debts (Ll-debts +

;; The bank decreases the

set L2-debts (L2-debts -
1

claim on checkable funds, in its check book.
+ amount-to-move)
claim on savings,

- amount-to-move)

;; The prsn increases its
set Ll-assets (Ll-assets
;; The prsn decreases its
set L2-assets (L2-assets

in its savings book.

LOG-TO-FILE (word " BSvcs: Moved from L2 to Ll ---- " amount-to-move)
;; end of f-bsvcs-prsn-moves-L2-to-L1

end

;; A bank is checked to determine if it is bankrupt.
to f-bsvcs-bank-checked-for-bankruptcy
;; This routine is to be executed by the observer.

;; Determine whether the bank is,
ask banks

itself, bankrupt.

;; THEORY: If the bank has no means of earning money, it must trust to
HA luck to have its clients deposit more vault cash, which could

HH then be deposited in the CRB to earn interest for its Cl-assets.

HA But there will be a steady drain on its Cl-assets as its clients

;i go bankrupt for lack of Ll-loans. So this bank is doomed.

;; Ensure the net worth data is up-to-date.
f-compute-bank-net-worth

;; Assume bankrupt as the default, then switch it back if there is
HY some potential to earn interest.
set b-bank-is-bankrupt 1 ;; The default assumption.
if(PO-all-assets > g-minimum-vault-cash)

[set b-bank-is-bankrupt 0] ;; Can earn money on ER and RR.
if(Ll-loan-assets > 0)

[set b-bank-is-bankrupt 0] ;; Can earn money on Ll loans.

1

;; end of f-bsvcs-bank-checked-for-bankruptcy
end

;; A prsn negotiates to take out a bank loan.
to f-bsvcs-prsn-negotiates-an-Ll-loan
;; This routine is to be executed by a prsn.

;; Contact the bank.
let my-bank (bank bank-who)

;; Loans are given only if savings account is negative.
;; This means the agent had insufficient funds to address daily needs for
i LO and Ll types of funds. I.e. all assets have been moved to checking
i or cash for daily use.
ifelse(L2-assets < 0)
[

;; This agent needs to take out a loan.

LOG-TO-FILE (word " Prsn " who " requires a bank loan.")

;; Is the bank elligible to provide more loans?
let bank-loan-flag ([b-bank-can-make-loans] of my-bank)
;; The bank may not have any remaining excess reserves to support a loan.
ifelse(bank-loan-flag = 0)
[
;; Case of bank cannot make loans.
;; Mark the prsn as bankrupt.
set b-prsn-is-bankrupt 1
LOG-TO-FILE (word " Bank " bank-who " cannot provide loan.")
LOG-TO-FILE (word " Prsn " who " is now bankrupt.")
1
;; else
[
;; Case of the prsn needs a loan and the bank can offer one.
;; Is the prsn elligible to receive a loan.

ifelse(Ll-loan-debts < (g-bankruptcy-factor * g-p-standard-loan))
[

;; The loan is approved!

set g-counts-loans (g-counts-loans + 1)

;; NOTE: a loan requires four entries - two offsetting double-entries
HA such that the net worth of neither participant changes.

NTF Code for CmLab V1.17

Orrery Software Pg. 30 NTF Code for CmLab V1.17

i

;; The amount of the loan will be sufficient for two months ;; The loan is signed in duplicate, and the size recorded by both parties.
Y of daily living. ;; First, the bank registers the loan in an aggregator. Entry #1.
LOG-TO-FILE (word " Prsn L2-assets ---------- " L2-assets) ask the-bank [set Ll-loan-assets (Ll-loan-assets + amount-to-borrow)]
LOG-TO-FILE (word " Prsn Ll-assets ---- - " Ll-assets) ;; Then the client stores the copy of the loan in their own records.
LOG-TO-FILE (word " Prsn Ll-loan-debts -- - " Ll-loan-debts) HA Entry #2.
let amount-of-loan g-p-standard-loan set Ll-loan-debts (Ll-loan-debts + amount-to-borrow)
ask my-bank ;; Now, the bank makes checkable money available to its client. Entry #3.
[ask the-bank [set Ll-debts (Ll-debts + amount-to-borrow)]

LOG-TO-FILE (word " Bank Ll-assets --—-------- " Ll-assets) ;; And the client records the claim to the money in its own check book.

LOG-TO-FILE (word " Bank Ll-loan-assets - " Ll-loan-assets) H Entry #4.

LOG-TO-FILE (word " Bank Ll-debts ----------- " Ll-debts) set Ll-assets (Ll-assets + amount-to-borrow)

;; Register the loan as a bank asset. Entry #l of 4.

set Ll-loan-assets (Ll-loan-assets + amount-of-loan) LOG-TO-FILE (word " BSvecs: L1 loan taken ----—------ " amount-to-borrow)

LOG-TO-FILE (word " Amount of loan ---------- " amount-of-loan)

;; Put money into the prsn's loan-related checking account. ;; As a result of this, the bank will need to move some of its reserves

Y Entry #2 of 4. HY from excess reserves to required reserves. This is handled when the

set Ll-debts (Ll-debts + amount-of-loan) i bank and CRB reconcile their books daily.

LOG-TO-FILE (word " Bank Ll-assets ---------- " Ll-assets)

LOG-TO-FILE (word " Bank Ll-loan-assets - " Ll-loan-assets) ;; end of f-bsvcs-client-takes-out-Ll-loan

LOG-TO-FILE (word " Bank Ll-debts ----------- " Ll-debts) end

1

;; Prsn records the loan in his checkbook. Entry #3 of 4. T T T e e e e e e e - |

set Ll-assets (Ll-assets + amount-of-loan) ;; Good as is. ;; A client makes a payment on an L1 loan from its checkable (Ll) account.
;; Prsn files the loan agreement. Entry #4 of 4. to f-bsvecs-client-makes-Ll-loan-payment [amount-to-pay]
set Ll-loan-debts (Ll-loan-debts + amount-of-loan) ;; This routine is to be executed a prsn, a corp or the GCRA.
LOG-TO-FILE (word " Prsn Ll-assets ---------- " Ll-assets)
LOG-TO-FILE (word " Prsn Ll-loan-debts " Ll-loan-debts) ;; Contact the bank.
1 ;; end of ifelse(Ll-loan-debts > (2 * g-p-standard-loan)) let the-bank (bank bank-who)
;; Else prsn is inellible.
[;; This is a partial reversal of the routine to take out a loan.
;; Case of prsn is inelligible. ;; First, the bank decreases the size of the loan in its aggregator.
;; Mark the prsn as bankrupt. ask the-bank [set Ll-loan-assets (Ll-loan-assets - amount-to-pay)]
set b-prsn-is-bankrupt 1 ;; Then the client decreases the size of the loan in its own records.
LOG-TO-FILE (word " Prsn " who " is inelligible due to debt.") set Ll-loan-debts (Ll-loan-debts - amount-to-pay)
LOG-TO-FILE (word " Prsn Ll-loan-debts ------ " Ll-loan-debts)
LOG-TO-FILE (word " Prsn " who " is now bankrupt.") ;; Now, the bank reduces the checkable money available to its clients.
1 ;; end of case of prsn is inelligible. ask the-bank [set Ll-debts (Ll-debts - amount-to-pay)]
] ;; end of Bank can make loans. ;; And the client reduces its claim to the money in its own check book.
1] ;; end prsn needs a loan. set Ll-assets (Ll-assets - amount-to-pay)
;; Else
[LOG-TO-FILE (word " BSvecs: Ll loan paid ----------- " amount-to-pay)
LOG-TO-FILE (word " A loan is not required!")
1 ;; end of f-bsvcs-client-makes-Ll-loan-payment
end
;; End of f-bsvcs-prsn-negotiates-an-Ll-loan
end T e e - |
;; A client is charged daily interest on outstanding amount of L1 loan(s).
I et et e L e T | to f-bsvcs-client-accrues-daily-interest-on-Ll-loan
;; A client takes out a loan and places the money in its checkable (Ll) account. ;; This routine is to be executed a prsn, a corp or the GCRA.
to f-bsvcs-client-takes-out-Ll-loan [amount-to-borrow]
;; This routine is to be executed a prsn, a corp, or the GCRA. ;; THEORY: -ptbfs- This causes a flow of money from the real
I economy to the banking sector because the interest on L1 bank
;; This version is not used. See f-bsvcs-prsn-negotiates-an-Ll-loan. Y loans is paid by Prsns directly to the Banks. As such, it is part
i of the "Prsns to Banks Flows" (ptbfs). It can be turned off
;; The client and the bank sign a loan agreement in duplicate, and the funds Y by setting g-iobl to zero.
H are deposited into the client's checkable (Ll) account. This requires
] four entries - two of which are segregated in Ll-loan variables. if(g-iobl > 0)
[
;; Contact the bank. ;; THEORY: Interest on Ll loans is to be paid by the prsn to the bank.

let the-bank (bank bank-who) H The size of the loan may vary due to new amounts taken out or payments

Orrery Software

Pg. 31

NTF Code for CmLab V1.17

;i made, so interest is charged and accrued on a daily basis, but only

Y paid on a monthly basis. This interest is a debt which expands the

HH] shadow money supply, as it is basically a loan from the bank to the

HH prsn until it is paid. There is a hair to be split, here, and I am

Y splitting it this way. Because this debt is visible to the banks,

HH and really amounts to a bank loan, it should be considered part of the
i logical money supply (Ll) instead of the shadow money supply (S1).

i But, because I want to focus on Ll loan tracking in this application,
H I have chosen, somewhat arbitrarily, to include it in S1 until it

i is paid.

;; Contact the bank.
let the-bank (bank bank-who)

;; The bank only has an aggregate variable for all of the Ll loans of all
Y of its clients. Only the client's record indicates the size of the
Y loan associated with this client.

let loan-size Ll-loan-debts

;; The annual interest on bank loans is in slider g-iobl.

let annual-interest-due (loan-size * g-iobl / 100)

;; Prorate this to a daily rate (12 months; 30 days per month).

let daily-interest-due (annual-interest-due / (12 * 30))

;; The bank records the increase in its S1 aggregator for

HY Ll loan interest receivable.

ask the-bank [set Sl-Llir-assets (Sl-Llir-assets + daily-interest-due)]
;; The client records the increase in its S1 record for interest payable.
set S1-Llip-debts (S1-Llip-debts + daily-interest-due)

LOG-TO-FILE (word " BSvecs: Ll interest accrued ---- " daily-interest-due)
1

;; end of f-bsvecs-client-accrues-daily-interest-on-Ll-loan
end

;; A client pays outstanding interest on L1l loan(s) monthly.
to f-bsvecs-client-pays-monthly-interest-on-Ll-loan
;; This routine is to be executed a prsn, a corp or the GCRA.

;; THEORY: Interest on Ll loans is to be paid by the prsn to the bank.

Y It accrues daily, but is paid in aggregate monthly.

;; When interest is accrued, it is stored with 16 (or so) digits after
Y the decimal, but it is paid in dollar units. I don't want to round
HY away all of the accuracy of the interest payments, since I accrue
] it daily. So, I determine the floor of the amount due, pay that,
i and leave a residual amount to be paid the next month. By doing it
] this way, the shadow money supply holds the (not-absolutely precise)
] fractional debts, but the logical money supply is always accurate
i with infinite precision to the dollar.

;; This may affect the way I compare total interest payments, over time,
HH with total write-offs, over time, but I don't think it will.

;; TODO: I need to watch that.

;; Interest collected by the bank represents a change in its corporate
] net worth. This income is outside of its role as the guardian of
H the rule of conservation of money, its public trust, and so must be
] put into its own corporate checking account (a Cl account) as if

H it is a client of itself.

;; So this payment is a peculiar client-to-client payment mediated by

] the bank's back room that manages the public trust. This payment
Y requires a total of six accounting entries, two of which counter-act
Y each other and are suppressed.

;; Contact the bank.
let the-bank (bank bank-who)

;; The bank only has an aggregate variable for all of the interest payable
HY on all loans to its clients. Only the client's records indicate the
i size of the accrued interest associated with this client.

;; Determine the largest integral dollar amount payable.

let monthly-interest-paid floor(Sl-Llip-debts)

;; Settle the records for the shadow money supply first.

;; The client notes the payment, subtracting it from dues accrued,

HY and leaving a residual.

set Sl-Llip-debts (S1-Llip-debts - monthly-interest-paid)

;; The bank decreases its aggregator by the same amount.

ask the-bank [set Sl-Llir-assets (Sl-Llir-assets - monthly-interest-paid)]

;; Now, the client has to actually pay the bill with real money.

;; The payment is noted in the client's check book.

set Ll-assets (Ll-assets - monthly-interest-paid)

ask the-bank

[
;; The front-room corporate comptroller notes the payment in its check book.
set Cl-assets (Cl-assets + monthly-interest-paid)

;; The bank's back-room staff who manage the public trust note the payment.
;; Two entries are required to note the decreased liability for one client
Y and the increased liability for the other client. These all happen in
HA an aggregator that is used to track all clients. So, they cancel each
Y other out, and are suppressed for performance purposes.

;; set Ll-debts (Ll-debts - monthly-interest-paid)

;; set Ll-debts (Ll-debts + monthly-interest-paid)

1

LOG-TO-FILE (word " BSvcs: Ll interest paid ------- " monthly-interest-paid)

;; end of f-bsvcs-client-pays-monthly-interest-on-Ll-loan
end

;; A bank is charged daily interest on outstanding amounts of L2 savings.
to f-bsvcs-client-accrues-daily-interest-on-L2-savings
;; This routine is to be executed a prsn, a corp or the GCRA.

if(g-iosd > 0)

[

; THEORY: Interest on L2 savings is to be paid by the bank to the client.
Y The size of the savings may vary daily due to commercial activity,

Y so interest is charged and accrued on a daily basis, but only

Y paid on a monthly basis. This interest is a debt which expands the
i shadow money supply, as it is basically a loan from the client to the
I bank until it is paid.

;; The same as for L1 loans, there is a hair to be split, here, and I am

Y splitting it this way. Because this debt is visible to the banks,

5 and really amounts to a reverse bank loan, it should be considered

Y part of the logical money supply (Ll) instead of the shadow money

Y supply (S1).

;; But, because I want to focus on Ll loan tracking in this application, I have
H chosen, somewhat arbitrarily, to include it in S1 until it is paid.

Orrery Software

Pg. 32 NTF Code for CmLab V1.17

;; Contact the bank.
let the-bank (bank bank-who)

;; The bank only has an aggregate variable for all of the savings of all
HH] of its clients. Only the client's records indicate the size of the
i savings deposit associated with this client.

let savings-account-size L2-assets

;; The annual interest on bank deposits is in slider g-iosd.

let annual-interest-due (savings-account-size * g-iosd / 100)

;; Prorate this to a daily rate (12 months; 30 days per month).

let daily-interest-due (annual-interest-due / (12 * 30))

;; The bank records the increase in its S1 aggregator for
i savings (L2) interest payable.
ask the-bank [set S1-L2ip-debts (S1-L2ip-debts + daily-interest-due)]

;; The client records the increase in its S1 record for interest receivable.

set Sl-L2ir-assets (Sl-L2ir-assets + daily-interest-due)

LOG-TO-FILE (word " BSvcs: L2 interest accrued ---- " daily-interest-due)

1

;; end of f-bsvcs-client-accrues-daily-interest-on-L2-savings
end

;; A client pays outstanding interest on savings deposits monthly.
to f-bsvcs-client-paid-monthly-interest-on-L2-savings
;; This routine is to be executed a prsn, a corp or the GCRA.

; THEORY: Interest on L2 savings is to be paid by the bank to the client.
Y It accrues daily, but is paid in aggregate monthly.

;; When interest is accrued, it is stored with 17 (or so) digits after

H the decimal, but it is paid in dollar units. I don't want to round
Y away all of the accuracy of the interest payments, since I accrue

Y it daily. So, I determine the floor of the amount due, pay that,

Y and leave a residual amount to be paid the next month. By doing it
Y this way, the shadow money supply holds the (not-absolutely precise)
Y fractional debts, but the logical money supply is always accurate

H with infinite precision to the dollar.

;; This may affect the way I compare total interest payments, over time,
H with total write-offs, over time, but I don't think it will.

;; TODO: I need to watch that.

;; Interest paid by the bank represents a change in its corporate

Y net worth. This expense is outside of its role as the guardian of
HH the rule of conservation of money, its public trust, and so must be
] put into its own corporate checking account (a Cl account) as if

] it is a client of itself.

;; So this payment is a peculiar client-to-client payment mediated by

; the bank's back room that manages the public trust. This payment

HH requires a total of six accounting entries, two of which counter-act
; each other and are suppressed.

;; Contact the bank.
let the-bank (bank bank-who)

;; The bank only has an aggregate variable for all of the interest payable
] on all savings deposits of its clients. Only the client's records

H indicate the size of the accrued interest associated with this client.
;; Determine the largest integral dollar amount payable.

let monthly-interest-paid floor(Sl-L2ir-assets)

;; Settle the records for the shadow money supply first.

;; The client notes the payment, subtracting it from dues accrued,

HA and leaving a residual.

set Sl-L2ir-assets (Sl-L2ir-assets - monthly-interest-paid)

;; The bank decreases its aggregator by the same amount.

ask the-bank [set S1-L2ip-debts (S1-L2ip-debts - monthly-interest-paid)]

;; Now, the bank has to actually pay the bill with real money.

;; The payment is noted in the client's check book.

set Ll-assets (Ll-assets + monthly-interest-paid)

ask the-bank

[
;; The front-room corporate comptroller notes the payment in its check book.
set Cl-assets (Cl-assets - monthly-interest-paid)

;; The bank's back-room staff who manage the public trust note the payment.
;; Two entries are required to note the decreased liability for one client
HY and the increased liability for the other client. These all happen in
HA an aggregator that is used to track all clients. So, they cancel each
HA other out, and are suppressed for performance purposes.

;; set Ll-debts (Ll-debts - monthly-interest-paid)

;; set Ll-debts (Ll-debts + monthly-interest-paid)

1

LOG-TO-FILE (word " BSvcs: L2 interest received --- " monthly-interest-paid)

;; end of f-bsvecs-client-paid-monthly-interest-on-L2-savings
end

;; A prsn pays another prsn for something. This is a capital exchange.
to

f-bsvecs-prsnl-pays-prsn2-by-cash [prsn2who amount-to-pay]
This routine is to be executed a prsn.

;; THEORY: This is the most simple capital exchange possible, in the

Y real world, but has its minor complications in this program due to
Y the separation of physical and logical money. The exchange requires
i four entries.

;; Due to the fact that this model does not pay any regard to the goods
Y and services exchanged in reciprocity for the cash exchanged, the
Y money is simply moved from prsn to prsn. Because this is a cash

i only transaction, no bank is involved. As such, the bank has no

i real visibility into this volume of economic activity, and so it is
HA in some sense part of the shadow economy, but it definitely affects
Y only the physical and logical money, and not shadow money.

;; TODO: this routine may also work for corps, as long as the recipient
I is a prsn.

;; Contact prsn2.
let prsn2 (prsn prsn2who)

;; prsnl takes the cash out of its wallet.
set PO-assets (PO-assets - amount-to-pay)
set LO-assets (LO-assets - amount-to-pay)

;; prsn2 puts the cash into its wallet.

ask prsn2

[
set PO-assets (PO-assets + amount-to-pay)
set LO-assets (LO-assets + amount-to-pay)

1

Orrery Software Pg. 33 NTF Code for CmLab V1.17

LOG-TO-FILE (word " BSvcs: Prsn " who " paid Prsn " ask prsn2-bank [set Ll-assets (Ll-assets + amount-to-pay)]
prsn2who " ----------- " amount-to-pay) ask prsn2-bank [set Ll-debts (Ll-debts + amount-to-pay)]
;; end of f-bsvcs-prsnl-pays-prsn2-by-cash LOG-TO-FILE (word " BSvcs: Prsn " who " paid Prsn "
end prsn2who " --- " amount-to-pay)

R e i | ;; end of f-bsvcs-prsnl-pays-prsn2-by-check
;; A prsn pays another prsn for something. This is a capital exchange. end

to f-bsvcs-prsnl-pays-prsn2-by-check [prsn2who amount-to-pay]
;; This routine is to be executed a prsn. e e L L e T |

; THEORY: This is a simple capital exchange using a check. 1In this e ettt bl |

Y program due to the involvement of two banks there are some minor ;; All of the routines that perform banking services start with f-cbsvcs-xxx or
Y wrinkles to be managed. The exchange requires four entries if it HY or f-bsvcs-xxx or f-bnkrpt-xxx. They address the activities of the

H is within a single bank, but six for bank-to-bank exchange. Only H central reserve bank (the CRB), the chartered banks (front and back room
Y the net worth of the prsns change. HY activities), and all bankruptcy processing.

;; Due to the fact that this model does not pay any regard to the goods ;; The routines are all gathered here to enable consistency and easy scrutiny.

HY and services exchanged in reciprocity for the cash exchanged, the HA
Y money is simply moved from prsn to prsn. Because this is a check
HH only transaction, two banks are involved. As such, the bank has ;; START OF -BSVCS- SUBSECTION.
Y real visibility into this volume of economic activity and functions
HY entirely within the logical money supply. T T T e e e e e e e e e e e e e e e e e - |
;; The Gov't finds a suitable bank to do business.

;; TODO: this routine may also work for corps, as long as the recipient to f-bsves-gcra-find-bank

H is a prsn. ;; This routine is to be executed by a GCRA.

;; This GCRA does not yet have a bank assigned.

;; Contact my bank.

let my-bank (bank bank-who) ;; Does this GCRA already have a bank?
;; Contact prsn2. ifelse(bank-who = -1)

let prsn2 (prsn prsn2who) [

;; Contact bank of prsn2. ;; It does not have a bank.

let prsn2-bank (bank ([bank-who] of prsn2)) ; Establish a list of potential banks.
; Potential bank must need clients.
;; THEORY: A payment by check requires three double-entry actions, or ;; A dummy let statement.

H six entries in total: let bank-list []

H -- The check books of the two parties in the transactions need to ;; Bank must need GCRA clients.
H be changed to reflect the transfer of money. I.e. their Ll-assets set bank-list (banks with
H variables need to be altered. This changes the net worth of each [(no-of-gcra-clients < 1)])
Y party to the transaction, which is as expected.
H -- To match the transfer, the Ll-debts variables of the associated if(any? bank-list)
H banks need to be altered. But this changes the net worth of the [
H back room of each chartered bank, which is not good. The assets let this-bank one-of bank-list
Y of each bank need to be altered to match the liabilities of each ;; The search is successful.
HH bank. set bank-who ([who] of this-bank)
HH -- To balance the books within each bank (back room) the Ll-assets ask this-bank [set no-of-gcra-clients (no-of-gcra-clients + 1)]
HH variables must also be adjusted. 1In effect, one bank transfers its LOG-TO-FILE (word " Found - " this-bank)
HH obligations to the other bank. 1
;; If both prsns use the same bank, since the Ll-assets and Ll-debts variables 1 ;; End of if(bank-who = -1)
] are aggregators for all clients of the bank, the above four actions ;; Else
i counter-act each other. So this works whether the prsns are [
HH clients of the same or different banks. LOG-TO-FILE (word " Bank not needed! Not searching.")
1
;; End Else
;; prsnl writes the check, recording it in its check book. ;; End of f-bsvcs-gcra-find-bank
set Ll-assets (Ll-assets - amount-to-pay) end

;; prsn2 accepts the check and indicates an Ll deposit in its check book.
ask prsn2 [set Ll-assets (Ll-assets + amount-to-pay) 1] e il |
;; The CRB finds a suitable chartered bank for its Cl account.

;; Now the back rooms of the two banks reconcile their books. to f-bsves-crb-find-bank

ask my-bank [set Ll-assets (Ll-assets - amount-to-pay)] ;; This routine is to be executed by a CRB.

ask my-bank [set Ll-debts (Ll-debts - amount-to-pay)] ;; This CRB does not yet have a bank assigned.

Orrery Software

NTF Code for CmLab V1.17

;; Does this CRB already have a bank?
ifelse(bank-who = -1)
[
;; It does not have a bank.
;; Establish a list of potential banks.
;; Potential bank must need clients.
;; A dummy let statement.
let bank-list []
;; Bank must need CRB clients.
set bank-list (banks with
[(no-of-crb-clients < 1)])

if (any? bank-list)
[
let this-bank one-of bank-list
;; The search is successful.
set bank-who ([who] of this-bank)
ask this-bank [set no-of-crb-clients (no-of-crb-clients + 1)]

LOG-TO-FILE (word " Found - " this-bank)

1
1 ;; End of if(bank-who = -1)
;; Else
[

LOG-TO-FILE (word " Bank not needed! Not searching.")
1
;; End Else

;; End of f-bsvecs-crb-find-bank

end

;; Prsns find a suitable bank to do business.
to f-bsves-prsn-find-bank
;; This routine is to be executed by a prsn.
;; This prsn may have a bank already assigned. Then a new one is assigned.

LOG-TO-FILE (word "Prsn " who " finding a bank.")
;; Establish a list of potential banks.

;; Potential bank must need clients.

;; A dummy let statement.

let bank-list []

;; Bank should have available P0-ER-assets.

set bank-list (banks with [PO-ER-assets > 0])

ifelse(any? bank-list)
[
let this-bank one-of bank-list
;; The search is successful.
set bank-who ([who] of this-bank)
ask this-bank [set no-of-prsn-clients (no-of-prsn-clients + 1)]
LOG-TO-FILE (word " Found - " this-bank)
1
;; else none have ER available.
[
;; Choose any bank.
let this-bank one-of banks
set bank-who ([who] of this-bank)
ask this-bank [set no-of-prsn-clients (no-of-prsn-clients + 1)]

1

;; End of f-bsvcs-prsn-find-bank
end

;; Corps find a suitable bank to do business.
to f-bsves-corp-find-bank
;; This routine is to be executed by a corp.
;; This corp does not yet have a bank assigned.

;; Does this corp already have a bank?
ifelse(bank-who = -1)
[

;; It does not have a bank.

;; Establish a list of potential banks.

;; Potential bank must need clients.

;; A dummy let statement.

let bank-list []

;; Bank must need corp clients.

set bank-list (banks with

[(no-of-corp-clients < g-no-of-corps-per-bank)])

if(any? bank-list)
[
let this-bank one-of bank-list
;; The search is successful.
set bank-who ([who] of this-bank)
ask this-bank [set no-of-corp-clients (no-of-corp-clients + 1)]

LOG-TO-FILE (word " Found - " this-bank)

1
1 ;; End of if(bank-who = -1)
;; Else
[

LOG-TO-FILE (word " Bank not needed! Not searching.")
1
;; End Else

;; End of f-bsvcs-corp-find-bank
end

;; Any of GCRA, prsn or corp makes a payment on a loan.

to f-bsvcs-agent-makes-a-payment-on-loan

;; This routine is to be executed by a GCRA, prsn or corp.
;; Pre-requisite: Ll-assets exist, and Ll-loan-debts > 0.

ASSERT (Ll-loan-debts > 0) ("Improper debts.") who

LOG-TO-FILE (word " Borrower Ll assets --------------- " Ll-assets)
LOG-TO-FILE (word " Borrower Ll loan debts ----------- " Ll-loan-debts)

;; Determine the payment size.

;; Pay the least of standard payment, or remaining principal.
let amount-to-pay g-p-standard-loan-payment

if (amount-to-pay > Ll-loan-debts)

[

1

set amount-to-pay Ll-loan-debts

;; Contact the bank.
let mybank (bank bank-who)

ask mybank

[
LOG-TO-FILE (word " Bank Ll loan assets - -- " Ll-loan-assets)
LOG-TO-FILE (word " Bank Ll debts ---------—-—-————- " Ll-debts)

Orrery Software

Pg. 35

NTF Code for CmLab V1.17

LOG-TO-FILE (word " Loan payment —------=—-——————————- " amount-to-pay)
set Ll-loan-assets (Ll-loan-assets - amount-to-pay)

set Ll-debts (Ll-debts - amount-to-pay)

LOG-TO-FILE (word " Bank Ll loan assets ------------ " Ll-loan-assets)
LOG-TO-FILE (word " Bank Ll debts ----------—————-—-—- " Ll-debts)

1

;; Note the payment in the agent's checkbook.

set Ll-assets (Ll-assets - amount-to-pay)

;; Note that the principal on the loan has been reduced.
set Ll-loan-debts (Ll-loan-debts - amount-to-pay)

LOG-TO-FILE (word "Borrower Ll assets ----——--=———=——————— " Ll-assets)
LOG-TO-FILE (word "Borrower L1l loan debts " Ll-loan-debts)

;; end of f-bsvcs-agent-makes-a-payment-on-loan
end

;; Process a prsn that is bankrupt.
to f-bsvcs-process-prsn-bankruptcy
;; This routine is to be executed by a prsn.

;; TODO: After debugging, suppress this.
;; f-force-debug-output-on

;; TODO: Remove this if annoying.

;; beep

;; PART A - I need to collapse the assets and declare bankruptcy.

;; Prsns are bankrupt when they have insufficient funds to get through

H a standard day, their savings are <= zero and they are unable

H to take a loan because their bank does not have any excess reserves.
;; When they last attempted to get a loan, the bank would have marked a
failed loan request as a bankruptcy.

;; So, I need to collapse the assets and debts of this prsn, pay off

Y the loan as well as possible, and effect bankruptcy.

ASSERT (b-prsn-is-bankrupt = 1) "Prsn not bankrupt" who

; This prsn is bankrupt. I need to address the following:

H - deposit any cash into the checking account;

H - withdraw all savings (+ or -) and put into checking account;
H - resolve all 30-day receivables;

H - resolve all 30-day payables;

HY - pay all interest payable;

Y - collect all interest receivable;

] - pay off what can be paid on outstanding loan;

] - petition for a restart.

LOG-TO-FILE(word "PRSN " who " is bankrupt.")

;; First, deposit cash, and move savings to checking.
f-bnkrpt-prsn-collapses-cash-and-savings

;; Collect all 30-day receivables.
f-bnkrpt-prsn-collects-all-30day-receivables

;; Collect all interest receivable.
f-bnkrpt-prsn-collects-all-interest-receivable

;; Pay all 30-day payables. Even if there is not enough money.
] This might run up a negative in Ll-assets.
f-bnkrpt-prsn-pays-all-30day-payables

;; Pay all interest payable.
f-bnkrpt-prsn-pays-all-interest-payable

;; Use what assets remain to pay down the loan.

f-bnkrpt-prsn-pays-down-loan

;; Due to the program structure, the prsn must initiate action
HH to retire the loan, instead of the bank.
f-bnkrpt-prsn-has-loan-written-off

;; TODO: Remove this after debug.
;; f-force-debug-output-off

set g-counts-p-deaths (g-counts-p-deaths + 1)

;; The prsn has been removed from the model.

;; A replacement prsn may be added in the "do-post-tick" routine.
set g-no-of-prsns (count prsns)

;; The prsn now has zero assets of any kind, and can be removed.
;; Die MUST be the last command.
die

;; end of f-bsvcs-process-prsn-bankruptcy

end

;; A prsn collapses cash and savings account into checking account.
to f-bnkrpt-prsn-collapses-cash-and-savings
;; This routine is to be executed by a prsn.

;; This is done as part of bankruptcy proceedings.

;; Contact the bank.

let my-bank (bank bank-who)

;; PART A - Disbursement of assets and debts.

;; All of their assets are returned to the bank as Ll-assets.
;; Then the residual of debts, after assets are cancelled, are
i written off.

;; LO and PO assets are deposited into the checking account.

let my-PO-cash PO-assets ;; note the amount.

let my-LO-cash LO-assets ;; note the amount.

LOG-TO-FILE (WORD " Depositing cash assets")

LOG-TO-FILE (word " Checking account was ---------- " Ll-assets)
LOG-TO-FILE (word " Cash assets deposited -- - " my-LO-cash)
LOG-TO-FILE (word " Physical cash deposited ------- " my-PO-cash)
f-bsves-prsn-deposits-cash LO-assets

LOG-TO-FILE (word " Checking account is now ------- " Ll-assets)

;; There should be no savings, but things may have happened.
;; Savings may be positive or negative.
;; L2 assets are deposited into the checking account.

LOG-TO-FILE (word " Savings transferred ----------- " L2-assets)
f-bsvcs-prsn-moves-L2-to-L1 L2-assets
LOG-TO-FILE (word " Checking account is now ------- " Ll-assets)

;; end of f-bnkrpt-prsn-collapses-cash-and-savings
end

;; A prsn collects ALL of the outstanding 30-day receivables.
to f-bnkrpt-prsn-collects-all-30day-receivables
;; This routine is to be executed by a prsn.

;; Contact my bank
let my-bank (bank bank-who)

;; Collect from everybody except myself.

Orrery Software

;; The problem to be resolved is this. The prsn has kept track of who
Y it owes payment to, but not who owes payment to it. This is

Y for reasons of computer performance in daily activities, but it
;i causes a problem during bankruptcy processing. I need to canvass
Y all other prsns, ask them what they owe me, then get them to

Y pay now, in advance of the due date.

LOG-TO-FILE (word " Collecting 30-day receivables")
let mywho who

;; Initialize an aggregator.
let total-collected 0

ask other prsns

[
let my-receivables (filter [mywho = (item 0 ?)] payables-30day)
set payables-30day (filter [mywho !'= (item 0 ?)] payables-30day)

;; Initialize an aggregator.
let amount-collected 0

;; Inter-bank payements by check require six entries.

if ((length my-receivables) > 0)
[

;; Contact his bank.

let his-bank (bank bank-who)

;; Process all of his payables that are due to the bankrupt prsn.
foreach my-receivables
[

let amount-due (item 2 ?)

LOG-TO-FILE (word " Amount collected --------—------ " amount-due)

;; Remove from payor's check-book. Entry #1.
set Ll-assets (Ll-assets - amount-due)
;; Remove from bank of payor. Entries #s 2 & 3.
ask his-bank [set Ll-debts (Ll-debts - amount-due)]
ask his-bank [set Ll-assets (Ll-assets - amount-due)]
;; Remove from his tally of total debts.
set S1-30day-total-debts (S1-30day-total-debts - amount-due)
;; Add to payor's tally of debts paid off under duress.
set amount-collected (amount-collected + amount-due)
1 ;; end of foreach receivable
set total-collected (total-collected + amount-collected)
LOG-TO-FILE (word " Total collected - this prsn --- " amount-collected)
1 ;; end of if ((length my-receivables) > 0)
1 ;; end of ask other prsns

;; Enter the total collected into the payee's check book. Entry #4.
set Ll-assets (Ll-assets + total-collected)

;; Update the bank's records. Entries #5 & #6.

ask my-bank [set Ll-debts (Ll-debts + total-collected)]

ask my-bank [set Ll-assets (Ll-assets + total-collected)]

;; Update the aggregator.

set S1-30day-total-assets (S1-30day-total-assets - total-collected)

LOG-TO-FILE (word " Total collected - all prsns --- " total-collected)
LOG-TO-FILE (word " 30day-assets are now ---------- " S1-30day-total-assets)
LOG-TO-FILE (word " Checking account is now ------- " Ll-assets)

;; end of f-bnkrpt-prsn-collects-all-30day-receivables
end

;; A prsn collects ALL of the outstanding interest receivable.
to f-bnkrpt-prsn-collects-all-interest-receivable
;; This routine is to be executed by a prsn.

;; This would include interest on savings deposits.
;; TODO: Also includes interest on bonds, and stocks. (Not yet implemented.)

;; Contact my bank
let my-bank (bank bank-who)

;; I want to paid an integral amount, but reduce the bank's

HY records by the precise amount.

let amount-due S1l-L2ir-assets

let amount-paid floor(Sl-L2ir-assets)

LOG-TO-FILE (word " Interest due on L2 savings ---- " amount-due)
LOG-TO-FILE (word " Interest rec'd on L2 savings -- " amount-paid)
let residual (amount-due - amount-paid)

ask my-bank
[
;; Take the money from the bank's corporate funds. Entry #1.
set Cl-assets (Cl-assets - amount-paid)
;; Reduce the off-books record of debt by the full amount due. This
Y effectively discards the fractional residual due.
set S1-L2ip-debts (S1-L2ip-debts - amount-due)
;; Two counteracting entries suppressed, for performance purposes.
;; set Ll-debts (Ll-debts - amount-paid) ;; Remove from bank. Entry #2.
;; set Ll-debts (Ll-debts + amount-paid) ;; Insert to bank. Entry #3.
1
;; Record the payment in bank book. Entry #4.
set Ll-assets (Ll-assets + amount-paid)
LOG-TO-FILE (word " Checking account is now ------- " Ll-assets)
LOG-TO-FILE (word " Residual ignored by both ------ " residual)
set Sl-L2ir-assets 0

;; end of f-bnkrpt-prsn-collects-all-interest-receivable
end

;; A prsn pays all of the owed payables as part of bankruptcy processing.
to f-bnkrpt-prsn-pays-all-30day-payables
;; This routine is to be executed by a prsn.

;; As part of bankruptcy processing, pay all payables.
LOG-TO-FILE (word " Paying 30-day payables")

;; Contact my bank
let my-bank (bank bank-who)

;; Inter-bank payments by check require six entries.
let total-paid 0 ;; Initialize an aggregator.

if ((length payables-30day) > 0)
[
foreach payables-30day
[
let payee (prsn (item 0 ?))
let amount-due item 2 ?
;; Aggregate the total for reporting purposes.

NTF Code for CmLab V1.17

Orrery Software

Pg. 37

NTF Code for CmLab V1.17

set total-paid (total-paid + amount-due)

ask payee
[
;; Contact his bank.
let his-bank (bank bank-who)

;; Put the money into his bank book. Entry #1.

set Ll-assets (Ll-assets + amount-due)

;; Record it in his bank records. Entries #2 & #3.

ask his-bank [set Ll-debts (Ll-debts + amount-due)]
ask his-bank [set Ll-assets (Ll-assets + amount-due)]

;; Reduce his record of receivables.
set S1-30day-total-assets (S1-30day-total-assets - amount-due)
LOG-TO-FILE (word " Amount paid ------------------- " amount-due)
1
;; Mark the payment in bankruptee's bank book. Entry #4.
set Ll-assets (Ll-assets - amount-due)

;; Inform the bank of the bankruptee. Entries #5 & #6.
ask my-bank [set Ll-debts (Ll-debts - amount-due)]
ask my-bank [set Ll-assets (Ll-assets - amount-due)]

;; Reduce his record of payables.
set S1-30day-total-debts (S1-30day-total-debts - amount-due)

1 ;; end of foreach payable

set S1-30day-total-debts 0 ;; All cleared.

set payables-30day [1 ;; All cleared.
1 ;; end of if ((length payables-30day) > 0)
LOG-TO-FILE (word " Total of all 30day paydowns --- " total-paid)
LOG-TO-FILE (word " Ll-assets post 30day paydowns - " Ll-assets)

;; end of f-bnkrpt-prsn-pays-all-30day-payables
end

;; A prsn pays all interest payable.
to f-bnkrpt-prsn-pays-all-interest-payable
;; This routine is to be executed by a prsn.

;; This would include interest on bank loans deposits.
;; TODO: add log-to-file here and in all

;; Contact my bank
let my-bank (bank bank-who)

;; Note the amount due.

let amount-due S1-Llip-debts

;; I want to pay an integral amount, but reduce the bank's

] records by the precise amount.

let amount-paid floor(S1l-Llip-debts)

LOG-TO-FILE (word " Interest on bank loan --------—---- " amount-paid)
let residual (amount-due - amount-paid)

;; An intra-bank payment requires only 4 entries, two of which are suppressed.

ask my-bank
[

;; Put money into the bank's corporate funds. Entry #1.

set Cl-assets (Cl-assets + amount-paid)
;; Change the off-book record by the precise amount, discarding residual.
set Sl-Llir-assets (Sl-Llir-assets - amount-due)
;; Two counteracting entries suppressed, for performance purposes.
;; set Ll-debts (Ll-debts + amount-paid) ;; Insert to bank. Entry #2.
;; set Ll-debts (Ll-debts - amount-paid) ;; Remove from bank. Entry #3.
1
;; Record the payment in bankrupt prsn's bank book. Entry #4.
set Ll-assets (Ll-assets - amount-paid)
;; Change the off-book record by the precise amount, discarding the residual.
set S1-Llip-debts (S1-Llip-debts - amount-due)
LOG-TO-FILE (word " Ll-assets after interest paydown - " Ll-assets)
LOG-TO-FILE (word " Residual discarded --------—--—-——--- " residual)

;; end of f-bnkrpt-prsn-pays-all-interest-payable
end

;; A prsn pays down the loan as far as possible.
to f-bnkrpt-prsn-pays-down-loan
;; This routine is to be executed by a prsn.

;; This is part of bankruptcy processing.

;; The prsn uses whatever resources remain to pay down the loan.
;; Note that those resources (in Ll-assets) may be positive or
Y negative, and may reduce the loan or add to it.

;; Such a payment is within one bank/client relationship, and

H can be completed with four entries.

;; Contact my bank
let my-bank (bank bank-who)

let amount-paid Ll-assets

ask my-bank

[
;; Pay money against the loan. This brings down the value of
i the loan. Entry #1.
set Ll-loan-assets (Ll-loan-assets - amount-paid)
;; Debts follow assets. The net value of the funds in public
i trust must not change. So the amount of Ll-funds made
i available to the client must be removed from the client's
i checking account. Entry #2.
set Ll-debts (Ll-debts - amount-paid) ;; Insert to bank.
;; The net worth of the bank's books has not changed.

1

;; Record a reduction in the principal of the loan. Entry #3.

set Ll-loan-debts (Ll-loan-debts - amount-paid)

;; Record the payment in bankrupt prsn's bank book. Entry #4.

set Ll-assets (Ll-assets - amount-paid)

;; The net worth of the client has not changed.

LOG-TO-FILE (word " Ll-assets after loan paydown ----- " Ll-assets)

;; end of f-bnkrpt-prsn-pays-down-loan
end

;; A prsn requests the loan be written off. The bank agrees.
to f-bnkrpt-prsn-has-loan-written-off
;; This routine is to be executed by a prsn.

Orrery Software Pg. 38 NTF Code for CmLab V1.17

;; This is part of bankruptcy processing. HH cancelling its debt. Entry #4.

;; The prsn asks the bank to forgive the debt. LOG-TO-FILE (word " Bank's Cl assets were --- " Cl-assets)
set Cl-assets (Cl-assets - amount-written-off)

;; The size of the loan is determined by the client's loan record. LOG-TO-FILE (word " Bank's Cl assets are ---- " Cl-assets)

;; This is because the bank's loan record is an aggregate for all 1
i of its loans.

let amount-written-off Ll-loan-debts ;; Prsn takes over again.
;; THEORY: This can be handled two different ways. Either the bank that ;; Only invoke insurance if there is a clear loss.
Y has serviced the bankruptee up until now can bear the brunt of the HY Sometimes a prsn goes bankrupt with a minor positive net worth.
H bankruptcy, or the loss can be spread across all banks. I call this if (amount-written-off > 0)
H control bank insurance. [
if (gb-bank-insurance = true)
;; Contact my bank [
let my-bank (bank bank-who) LOG-TO-FILE (word " Banking insurance is on.")
;; Bank insurance is turned on. All banks share the loss.

;; THEORY: Cancel the debt. This is tricky. At this point all of the ;; At this point, my-bank has born the whole cost. Now, refund it.
H assets and debts of the bankrupt person have been converted to LOG-TO-FILE (word " Amount refunded --------- " amount-written-off)
HY be part of the loan. There are no S1, L1, or L2 assets or ask my-bank [set Cl-assets (Cl-assets + amount-written-off)]
HH liabilities other than the Ll-loan. For a single-bank transaction ask my-bank [LOG-TO-FILE (word " Bank's Cl assets are ---- " Cl-assets)]
HH the net change in the back room must be zero, and transactional
HY conservation of money requires that two other offsetting entries ;; Determine the status before the write-off.
HY must be made. The client will have the loan written-off, but let total-Cl-assets (sum [Cl-assets] of banks)
HY has no assets for the required offset. The bank must provide those let donation-factor 0 ;; a dummy declaration.
Y assets, and so it takes a loss on the loan. let donation 0 ;; a dummy declaration.
;; In double-entry bookkeeping terms: let total-donation 0 ;; a dummy declaration.
HH The bank's loan-asset offsets the prsn's loan-debt. ;; My bank will also make a donation, and receive the donation, to cover
HY The bank's Ll-debt should be offset by the prsn's Ll-asset. HA its portion of the cost. This makes the code more simple.
HY But the prsn has no Ll-asset. It has been stripped away. ask banks
H So, the bank's corporate Cl-asset "eats the loss" and is [
H used to settle the loan. 1In this option, that loss is spread across set donation-factor (Cl-assets / total-Cl-assets)
H all banks. set donation floor(amount-written-off * donation-factor)

LOG-TO-FILE (word " Bank " who " donated ------- " donation)
LOG-TO-FILE (word "Loan is being written off.") ;; This is an intra-bank cost. It requires three entries.
;; Cancelling a loan requires four entries. ;; Mark in corporate check books. Entry #1.
;; So, the client is informed that the loan is written off. Entry #1. set Cl-assets (Cl-assets - donation)
LOG-TO-FILE (word " Checking account is now - " Ll-assets) ;; Make the back room entries. Entries #2 and #3.
LOG-TO-FILE (word " Outstanding loan debt --- " Ll-loan-debts) set Ll-assets (Ll-assets - donation)
set Ll-loan-debts (Ll-loan-debts - amount-written-off) set Ll-debts (Ll-debts - donation)
LOG-TO-FILE (word " Amount written off ------ " amount-written-off) ;; Keep an aggregate tally. Includes a self-donation.
LOG-TO-FILE (word " Remaining loan debt ----- " Ll-loan-debts) set total-donation (total-donation + donation)

;; Note that there are no client Ll assets remaining to be co-cancelled. 1
;; They have wandered off to the Ll-asset accounts of some other prsns.
;; Due to rounding, the total donated (and written off, in each

ask my-bank i case) may not equal the amount to be written off. My bank
[i has already taken its share of the lumps given, but it must

;; Bank cancels the loan to this client by reducing its aggregator. Y also handle the residual.

i Entry #2. ask my-bank

LOG-TO-FILE (word " Bank's loan assets were - " Ll-loan-assets) [

set Ll-loan-assets (Ll-loan-assets - amount-written-off) let residual (amount-written-off - total-donation)

LOG-TO-FILE (word " Bank's loan assets are -- " Ll-loan-assets) ;; Mark in corporate check book. Entry #1.

;; To maintain the back room net worth, an equivalent amount of Ll set Cl-assets (Cl-assets - residual)

i funds available to the economy must be withdrawn from action ;; Make back room entries. Entries #2 and #3.

i effectively shrinking the MS-II money supply. Entry #3. set Ll-assets (Ll-assets - residual)

set Ll-debts (Ll-debts - amount-written-off) set Ll-debts (Ll-debts - residual)

1
;; Finally, someone active in the economy needs to cough up the money 1 ;; end if (gb-bank-insurance = true)

H that has been withdrawn. The bankrupt client cannot provide it. 1
H That money has wandered off to who-knows-where. So the front room
H of the bank must provide it out of its Cl corporate accounts. ;; end of f-bnkrpt-prsn-has-loan-written-off
H The front room of the bank is a customer of its own back room. So end

Y this amounts to a payment from the corporate bank to the client

Orrery Software

Pg. 39 NTF Code for CmLab V1.17

;; Process a bank that is bankrupt.
to f-bsvcs-process-bank-bankruptcy
;; This routine is to be executed by a bank.

;; TODO: After debugging, suppress this.
;; f-force-debug-output-on

;; TODO: Remove this if annoying.

;; beep

;; PART A - I need to collapse the assets and declare bankruptcy.

;; Banks are bankrupt when they have insufficient PO-assets to make loans
i or earn interest from the CRB, and they have no existing L1 loans.
;; When they last attempted to issue a loan, the bank would have marked a
i failed loan request as its own bankruptcy.

;; So, I need to collapse the assets and debts of this bank.

ASSERT (b-bank-is-bankrupt = 1) "Bank not bankrupt" who

; This bank is bankrupt. I need to address the following:

HH - send GCRA account, if there is one, to another bank;

HY - disperse all client accounts to other banks;

HY - disperse all PO assets to other banks;

HH - disperse all -tve Cl assets to other banks, who must share the losses;

LOG-TO-FILE(word "BANK " who " is bankrupt.")

;; Send the GCRA to another bank.
if (no-of-gcra-clients > 0)
[
let new-bank one-of other banks
let new-bank-who [who] of new-bank
ask gcras [set bank-who new-bank-who]
LOG-TO-FILE (word " GCRA has a new bank -----—-—---——-- " new-bank-who)
set no-of-gcra-clients 0
ask new-bank [set no-of-gcra-clients (no-of-gcra-clients + 1)]

;; Send the CRB to another bank.
if (no-of-crb-clients > 0)
[
let new-bank one-of other banks
let new-bank-who [who] of new-bank
ask crbs [set bank-who new-bank-who]
LOG-TO-FILE (word " CRB has a new bank ------—----——--- " new-bank-who)
set no-of-crb-clients 0
ask new-bank [set no-of-crb-clients (no-of-crb-clients + 1)]

1

;; Disperse other clients to new banks.
ifelse(no-of-prsn-clients > 0)
[
;; Get a list of prsns that use this bank.
let client-list (prsns with [bank-who = who])
LOG-TO-FILE(word " Client list: " [who] of client-list)
;; Get a list of suitable banks.
let bank-list (other banks)
LOG-TO-FILE(word " Alternate bank list: " [who] of bank-list)
ask client-list
[
;; Each prsn moves accounts to a new bank.
;; PO assets (currency) does not need to be moved. It is not in

i the bank.

;; Ll-loans do not need to be moved. A condition of bankruptcy is
HA this bank has no outstanding loans, and no RR or ER deposits.
let old-bank (bank bank-who) ;; who of bankrupt bank.

let old-bank-who ([who] of old-bank)

let new-bank (one-of bank-list) ;; who of some other bank.
set bank-who ([who] of new-bank) ;; bank-to-bank client transfer
LOG-TO-FILE(word " Prsn " who " moves from bank "

old-bank-who " to " bank-who ".")

;; Move the assets. This requires 6 entries.
;; No entry is needed in the client's checkbook.
let Ll-to-move Ll-assets
let L2-to-move L2-assets
LOG-TO-FILE(word " Ll-assets moved ------—-——=——-— " Ll-assets)
LOG-TO-FILE(word " L2-assets moved ------—-—-—-——-- " L2-assets)
ask old-bank
[
;; Entries #1, #2 and #3.
set Ll-assets (Ll-assets - Ll-to-move
set Ll-debts (Ll-debts - Ll-to-move
set L2-debts (L2-debts - L2-to-move
1
ask new-bank

[

~—~—

;; Entries #4, #5 and #6.

set Ll-assets (Ll-assets + Ll-to-move

set Ll-debts (Ll-debts + Ll-to-move

set L2-debts (L2-debts + L2-to-move
1

~——

;; Cancel any shadow debts.
ask old-bank
[
;; Remove this client's interest payable on Ll-loans.
set Sl-Llir-assets (Sl-Llir-assets - Sl-Llip-debts)
LOG-TO-FILE(word " Sl-Llip-debts cancelled ------ " Sl-Llip-debts)
;; Remove this client's interest receivable on L2 savings.
set S1-L2ip-debts (S1-L2ip-debts - Sl-L2ir-assets)
LOG-TO-FILE(word " Sl-L2ir-assets cancelled ----- " Sl-L2ir-assets)
1
set Sl1-Llip-debts 0
set Sl-L2ir-assets 0
1 ;; end of ask client-list
1 ;; end of ifelse(no-of-prsn-clients > 0)
;; else
[
LOG-TO-FILE(word " No clients affected.")
1

;; Distribute any Cl-assets (whether +ve or -ve).
;; Distribute any PO-assets.

;; So, first, pack up the PO assets.
f-cbsves-bank-moves-rr-to-vc PO-rr-assets
f-cbsves-bank-moves-er-to-vc PO-er-assets

let PO-assets-to-move P0O-vc-assets

ifelse(PO-assets-to-move > 0)

[
LOG-TO-FILE(word " PO-assets to move ---—-—---—-—--—-—- " PO-assets-to-move)
let no-of-banks (count banks)
let one-Cl-share floor(Cl-assets / (no-of-banks - 1))

Orrery Software

Pg. 40

let Cl-residual (Cl-assets - (one-Cl-share * (no-of-banks - 1)))
let one-PO-share floor(PO-vc-assets / (no-of-banks - 1))
let PO-residual (PO-vc-assets - (one-PO-share * (no-of-banks - 1)))

;; Give every bank one share of asset/debt of each kind.
ask other banks
[
;; This is a bank-to-bank check. It requires six entries.
;; Mark in the bank's checkbook. Entry #1.
set Cl-assets (Cl-assets + one-Cl-share)
;; Mark in the back room records. Entries #2 and #3.
set Ll-assets (Ll-assets + one-Cl-share)
set Ll-debts (Ll-debts + one-Cl-share)
;; Add the physical cash to the vault.
set PO-vc-assets (PO-vc-assets + one-PO-share)
LOG-TO-FILE(word " PO-assets moved to bank " who " - " one-PO-share)
1
;; Mark in the back room books. Entries #4 and #5.
set Ll-assets (Ll-assets - Cl-assets)
set Ll-debts (Ll-debts - Cl-assets)
;; Mark in this bank's check book. Entry #6. Assets are gone.
set Cl-assets 0
set PO-vc-assets 0

;; One bank paid a full share when it should only have paid the
Y residual, which may not be a full share. Correct this.
ask one-of other banks
[

;; It requires six entries.

;; Mark in the bank's checkbook. Entry #1.

set Cl-assets (Cl-assets - one-Cl-share)

;; Mark in the back room records. Entries #2 and #3.

set Ll-assets (Ll-assets - one-Cl-share)

set Ll-debts (Ll-debts - one-Cl-share)

;; Mark in the bank's checkbook. Entry #4.

set Cl-assets (Cl-assets + Cl-residual)

;; Mark in the back room records. Entries #5 and #6.

set Ll-assets (Ll-assets + Cl-residual)

set Ll-debts (Ll-debts + Cl-residual)

;; Adjust the physical cash.

set PO-vc-assets (PO-vc-assets - one-PO-share)

set PO-vc-assets (PO-vc-assets + PO-residual)

LOG-TO-FILE(word " PO-assets change at bank " who " - "

(PO-residual - one-PO-share))

1

] ;; end ifelse(PO-assets-to-move > 0)

;; else
[
LOG-TO-FILE(word " No PO-assets need to move. ")
1
ifelse((Sl-rrir-assets > 0) or (Sl-rrir-assets > 0))

[

;; Cancel any interest receivable on ER and RR. Probably none.

let crb-bank one-of crbs

let rrir-to-cancel Sl-rrir-assets

let erir-to-cancel Sl-erir-assets

ask crb-bank

[
set Sl-rrip-debts (Sl-rrip-debts - rrir-to-cancel)
LOG-TO-FILE(word " Sl-rrir-assets cancelled -------- " rrir-to-cancel)
set Sl-erip-debts (Sl-erip-debts - erir-to-cancel)
LOG-TO-FILE(word " Sl-erir-assets cancelled -------- " erir-to-cancel)

]

set Sl-rrir-assets 0

set Sl-erir-assets 0
] ;; end ifelse((Sl-rrir-assets> 0) or (Sl-rrir-assets > 0))
;; else

LOG-TO-FILE(word " No interest receivables need be cancelled. ")

1

;; The bank has been removed from the model.
;; A replacement bank may be added in the "do-post-tick" routine.
set g-no-of-banks (count banks)

;; TODO: Remove this after debug.
;; f£-force-debug-output-off

;; This bank has now been stripped of all assets and debts, and
HY all connections to clients of all kinds.

set g-counts-b-deaths (g-counts-b-deaths + 1)

;; Die MUST be the last command.

die

;; end of f-bsvcs-process-bank-bankruptcy
end

;; These routines involve the Central Reserve Bank (CRB) and its services.

;; THEORY: In this section of the code all of the patterns for types of central
Y bank services have been pulled together in a single place. This is to

Y enable consistency in the means of implmenting each type of service, with
Y the hope that it will make coding, debugging, and maintenance easier, at
i a possible cost of performance.

;; Note that it is intentional that none of these routine do range error

i checking on the variables affected. So, for example, a bank with no cash
i in an excess reserve account may still move cash from there to its vault.
;; The creation of negatives and their ultimate removal again all gets

i resolved in the daily visit to the CRB by each bank. If a bank becomes

Y overextended, a boolian switch is flipped that prevents further action

Y until clients pay down their loans and the bank is no longer over-extended.
;; The real purpose of these routines is to defend the public trust that

Y physical money is properly conserved unless explicitly indicated otherwise.
;; Rather that implementing the complicated issue of linking CRB accounts

HA directly to banks, the banks keep track of the details of their own

I accounts, and the CRB only keeps track of aggregate amounts. This

i simplifies the coding dramatically, and so reduces the chances of coding
HH error, but it puts the onus on the banks to have their books in order.

Y These central bank routines look after that.

;; Distribute the initial endowment of assigned assets to prsns.
to f-cbsvcs-distribute-assets-to-prsns
;; This routine is to be executed by the CRB.

LOG-TO-FILE (word "")
LOG-TO-FILE (word "Distribution of Money Base by CRB")

;; Establish CRB endowment by fiat.
;; Physical dollars
set PO-assets (g-no-of-prsns-max * g-crb-assets-per-prsn)

NTF Code for CmLab V1.17

Orrery Software

Pg. 41

;; Logical dollars

set LO-assets PO-assets

;; THEORY: On start, assets must just appear to imply fiat creation.
;; When it is handed out as wages, or, if you wish, as a share

HH] of ownership in the society and economy, a liability is created
HH for the government, in the person of the CRB.

;; BEach cash dollar held, as a personal asset, implies a government-backed

i promise to pay in legal tender (gold, or replacement dollars,
H or ??).

set PO-debts 0

set LO-debts 0

;7 I use the code word "debts" to mean "liabilities" Jjust because it
H is shorter. Note that, for banks, these words have somewhat

i counter-intituitive meanings.

;; Store the who of the CRB for access by prsns.
let crbwho who

;; Create a handle for the CRB.

let the-crb (crb crbwho)

ask prsns

[
;; Determine how much to give to each prsn.
let per-person-endowment g-crb-assets-per-prsn

;; Put cash into the hands of the prsn.
;; 81 cash = ($1 logical + $1 physical)
set PO-assets per-person-endowment

set LO-assets per-person-endowment

ask the-crb
[
;; THEORY: Adjust CRB's records for each prsn.
;; The associated liability is created at the CRB.
;; It does not move. This is part of the "fiat" process of
Y creating valued currency in the economy.
;; The ultimate result is currency in the economy that has value
Y because the government guarantees that it can be exchanged
H for value (in kind, in gold, or in replacement dollars).

; Remove physical and logical $ from CRB assets.

;; Logical money is treated as an increase in logical liability.
set LO-debts (LO-debts + per-person-endowment)

;; Physical money is actually removed from CRB vaults.

set PO-assets (PO-assets - per-person-endowment)

1

;; The prsns deposit some cash, creating checking and savings accounts.

ask prsns [f-prsn-visits-a-bank]

;; The currency assets are now all out in the economy, while the
;i currency liabilities are all in the CRB.

LOG-TO-FILE (word " After CRB distribution")

LOG-TO-FILE (word " CRB PO-assets --—----—------—-—-—-——— " PO-assets)
LOG-TO-FILE (word " CRB LO-assets --—----—----—=-—-———- " LO-assets)
LOG-TO-FILE (word " CRB PO-debts ------------———---—-- " PO-debts)
LOG-TO-FILE (word " CRB LO-debts -------------——-—-——- " LO-debts)
LOG-TO-FILE (word " CRB PO-rr-assets -- " PO-rr-assets
LOG-TO-FILE (word " CRB PO-er-assets " PO-er-assets

)
)

en

let sum-of-PO0 (sum [PO-assets] of prsns)
let sum-of-LO0 (sum [LO-assets] of prsns)
LOG-TO-FILE (word " All Prsns PO-assets ------------ " sum-of-P0)
LOG-TO-FILE (word " All Prsns LO-assets ------------ " sum-of-LO0)

;; End of f-cbsves-distribute-assets-to-prsns
d

The GCRA (Govt Consolidated Revenue Accts) are reconciled with banks.
f-cbsvces-gcra-reconciles-with-crb-monthly
This routine is to be executed by the observer.

;; THEORY: The GCRA might deal with a bank for a couple of reasons.

;; 1. The CRB must pay interest on reserve deposits, and this must come out
H of the government consolidated revenue accounts (GCRA). So interest
HY on both ER deposits and RR deposits must be accounted for.

] TODO: The CRB might loan out reserves to banks that need them, and so
HH may collect interest on those loans, which would go into GCRA.

HH TODO: Expenses from gov't buying may exceed income from taxes, and so
; the government may want to address the budget deficit with a normal

HA L1l bank loan from a chartered bank.

;; TODO: Only item #1 is implemented so far.

; In all cases, the positive and negative changes in the corporate assets
HA and liabilities of the CRB are reflected in the variable Cl-assets.

;; Contact the CRB.
let the-crb (one-of crbs) ;; There is only one CRB.

;; Contact the chartered bank that holds the CRB's Cl account.
let bank-of-crb (bank ([bank-who] of the-crb))

ask gcras
[
;; Contact the chartered bank used by the GCRA.
let gcra-bank (bank bank-who)

;; There is only one GCRA.

;; Move the private (i.e. "corporate") assets and debts from the CRB
i into the government consolidated revenue accounts.
let amount-to-transfer ([Cl-assets] of the-crb)

LOG-TO-FILE (word "")

LOG-TO-FILE (word "GCRA visits CRB.")

LOG-TO-FILE (word "TRANSFER CRB CORP ACCTS TO GCRA")

LOG-TO-FILE (word " GCRA Ll assets prior to xfer ---- " Ll-assets)
LOG-TO-FILE (word "

;; NOTE: I use negative assets to record debts.
;; This inter-bank payment requires six entries.
;; The amount-to-transfer moves from CRB assets to GCRA assets.

;; Entry #1. Add the assets to the check book of the GCRA.

set Ll-assets (Ll-assets + amount-to-transfer)

;; Entry #2. Add the liability to the bank of the GCRA.

ask gcra-bank [set Ll-debts (Ll-debts + amount-to-transfer)]

;; Entry #3. Assets must follow debts.

ask gcra-bank [set Ll-assets (Ll-assets + amount-to-transfer)]
LOG-TO-FILE (word " GCRA L1 assets after xfer ------- " Ll-assets)
;; At this point the GCRA has the assets, and the net worth of

;; the chartered bank that deals with the GCRA has not changed.

NTF Code for CmLab V1.17

CRB Cl assets prior to xfer ----- " amount-to-transfer)

Orrery Software Pg. 42 NTF Code for CmLab V1.17

;; Remove from the CRB account. ;; Contact the bank.
ask the-crb let the-crb (crb crb-who)
[
;; Entry #4. Remove the assets from the CRB's check book. ;; This is the reversal of a move vc-to-er.
set Cl-assets (Cl-assets - amount-to-transfer)
;; A payment usually requires six entries. Two into the bank ;; Get the physical cash from the CRB's vault as ER (PO-er).
i books of the participants, and four back-room entries by the ask the-crb
Y banks recording the change in assets/liability for the banks. [
Y This exchange involves three banks: the CRB and two chartered ;; Subract it from the aggregate ER amount in the CRB.
H banks in which the GCRA stores its funds. set PO-er-assets (PO-er-assets - amount-to-move)
1
LOG-TO-FILE (word " CRB Cl assets after xfer -------- " Cl-assets)

1 ;; Move the physical cash within the bank's records.
set PO-vc-assets (PO-vc-assets + amount-to-move)

ask bank-of-crb ;; Adjust the phantom account in which assets = liabilities.
[set PO-er-assets (PO-er-assets - amount-to-move)
;; Entry #5. Record the change in liabilities. set PO-er-debts (PO-er-debts - amount-to-move)
set Ll-debts (Ll-debts - amount-to-transfer)
;; Entry #6. Assets follow liabilities. LOG-TO-FILE (word " CBSvcs: Amount of ER withdrawn -- " amount-to-move)

set Ll-assets (Ll-assets - amount-to-transfer)
1 ;; end of f-cbsvecs-bank-moves-er-to-vc
end
;; The transaction is completed. The net worth of both chartered bank's
H back room records has not changed, but the assets have moved from et ekt ittt B e |
HY the CRB's Cl account to the GCRA's Ll account. ;; A bank has vault cash (vc) and deposits into its required reserve (RR)
1 ;i account at the CRB.
to f-cbsvcs-bank-moves-vc-to-rr [amount-to-move]
;; end of f-cbsvecs-gcra-reconciles-with-crb-monthly ;; This routine is to be executed a bank.
end
;; Contact the CRB.
——— | let the-crb (crb crb-who)
;; A bank has vault cash (vc) and deposits into its excess reserve (ER)

H account at the CRB. ;; Move the physical cash within the bank's records.
to f-cbsvcs-bank-moves-vc-to-er [amount-to-move] set PO-vc-assets (PO-vc-assets - amount-to-move)
;; This routine is to be executed a bank. ;; Adjust the phantom account in which assets = liabilities.
set PO-rr-assets (PO-rr-assets + amount-to-move)
;; Contact the CRB. set PO-rr-debts (PO-rr-debts + amount-to-move)

let the-crb (crb crb-who)
;; Put the physical cash into the CRB's vault as RR (PO-er).

;; Move the physical cash within the bank's records. ask the-crb

set PO-vc-assets (PO-vc-assets - amount-to-move) [

;; Adjust the phantom account in which assets = liabilities. ;; Add it to the aggregate ER amount in the CRB.
set PO-er-assets (PO-er-assets + amount-to-move) set PO-rr-assets (PO-rr-assets + amount-to-move)

set PO-er-debts (PO-er-debts + amount-to-move) 1

;; Put the physical cash into the CRB's vault as ER (PO-er). LOG-TO-FILE (word " CBSvcs: Amount of RR deposited -- " amount-to-move)
ask the-crb
[;; end of f-cbsvcs-bank-moves-vc-to-rr

;; Add it to the aggregate ER amount in the CRB. end

set PO-er-assets (PO-er-assets + amount-to-move)
1 T T oo |
;; A bank has RR funds in the CRB and withdraws physical cash (PO).
LOG-TO-FILE (word " CBSvcs: Amount of ER deposited -- " amount-to-move) to f-cbsvcs-bank-moves-rr-to-vc [amount-to-move]
;; This routine is to be executed a bank.
;; end of f-cbsvcs-bank-moves-vc-to-er
end ;; Contact the bank.
let the-crb (crb crb-who)

;; A bank has ER funds in the CRB and withdraws physical cash (PO). ;; This is the reversal of a move vc-to-rr.
to f-cbsvcs-bank-moves-er-to-ve [amount-to-move]
;; This routine is to be executed a bank. ;; Get the physical cash from the CRB's vault as RR (PO-rr).

ask the-crb

Orrery Software Pg. 43 NTF Code for CmLab V1.17

[let annual-interest-due (er-account-size * g-ioer / 100)
;; Subract it from the aggregate RR amount in the CRB. ;; Prorate this to a daily rate (12 months; 30 days per month).
set PO-rr-assets (PO-rr-assets - amount-to-move) let daily-interest-due (annual-interest-due / (12 * 30))

1

;; The CRB records the increase in its S1 aggregator for

;; Move the physical cash within the bank's records. HA ER deposits (PO-er) interest payable.
set PO-vc-assets (PO-vc-assets + amount-to-move) ask the-crb [set Sl-erip-debts (Sl-erip-debts + daily-interest-due)]
;; Adjust the phantom account in which assets = liabilities. ;; The bank records the increase in its S1 record for interest receivable.
set PO-rr-assets (PO-rr-assets - amount-to-move) set Sl-erir-assets (Sl-erir-assets + daily-interest-due)
set PO-rr-debts (PO-rr-debts - amount-to-move)
LOG-TO-FILE (word " CBSvcs: ER interest accrued ----- " daily-interest-due)
LOG-TO-FILE (word " CBSvcs: Amount of RR withdrawn -- " amount-to-move)

1
;; end of f-cbsvcs-bank-moves-rr-to-vc
end ;; end of f-cbsvcs-bank-accrues-daily-interest-on-ER-deposits
end

;; The CRB is charged daily interest on outstanding amounts of ER deposits. 2 oo |
to f-cbsvcs-bank-accrues-daily-interest-on-ER-deposits ;; The CRB is charged daily interest on outstanding amounts of RR deposits.

;; This routine is to be executed a bank. to f-cbsvcs-bank-accrues-daily-interest-on-RR-deposits

;; This routine is to be executed a bank.

;; THEORY: -ptbfs- This causes a flow of money from the real

HY economy to the banking sector because the interest on excess ;; THEORY: -ptbfs- This causes a flow of money from the real

Y reserves is paid by the government to the banks out of the Y economy to the banking sector because the interest on required

Y Consolidated Revenue Accounts of the government, which comes out Y reserves is paid by the government to the banks out of the

Y of personal taxes. As such, it is part of the "Prsns to Banks Y Consolidated Revenue Accounts of the government, which comes out

HY Flows" (ptbfs). It can be turned off by setting g-iocer to zero. HA of personal taxes. As such, it is part of the "Prsns to Banks

HA Flows" (ptbfs). It can be turned off by setting g-iorr to zero.

if(g-iocer > 0)

[if(g-iorr > 0)
;; THEORY: Interest on ER deposits is to be paid by the CRB to the bank. [
Y The size of the deposits may vary daily due to commercial activity, ;; THEORY: Interest on RR deposits is to be paid by the CRB to the bank.
Y so interest is charged and accrued on a daily basis, but only Y The size of the deposits may vary daily due to commercial activity,
Y paid on a monthly basis. This interest is a debt which expands the Y so interest is charged and accrued on a daily basis, but only
Y shadow money supply, as it is basically a loan from the bank to the Y paid on a monthly basis. This interest is a debt which expands the
Y CRB until it is paid. Y shadow money supply, as it is basically a loan from the bank to the

H i CRB until it is paid.
;; I note that this makes sense only if the CRB can then loan out i

Y any excess physical cash (P0) held in ER deposits to other banks, in ;; I note that this makes sense only if the CRB can then loan out

Y place of using fiat powers to create more physical cash (PO, LO) when Y any excess physical cash (P0) held in ER deposits to other banks, in

Y needed. In this way the CRB can expand the physical money supply in a Y place of using fiat powers to create more physical cash (PO, LO) when

Y fashion similar to the way a chartered bank can expand the logical money Y needed. In this way the CRB can expand the physical money supply in a
Y supply. I have NOT implemented this. In this model, the physical money Y fashion similar to the way a chartered bank can expand the logical money
HY supply is not expandable by that technique, though it would be easy to HA supply. I have NOT implemented this. In this model, the physical money
;i add. ;7 supply is not expandable by that technique, though it would be easy to
i i add.

;; The same as for Ll loans, there is a hair to be split, here, and I am HH

] splitting it this way. Because this debt is visible to the banks, ;; The same as for L1 loans, there is a hair to be split, here, and I am

] and really amounts to a bank loan of sorts, it should be considered Y splitting it this way. Because this debt is visible to the banks,

] part of the logical money supply (Ll) instead of the shadow money Y and really amounts to a bank loan of sorts, it should be considered

] supply (S1). Y part of the logical money supply (Ll) instead of the shadow money

; But, because I want to focus on Ll loan tracking in this application, I have
HH chosen, somewhat arbitrarily, to include it in S1 until it is paid.

; supply (S1).
; But, because I want to focus on Ll loan tracking in this application, I have
HH chosen, somewhat arbitrarily, to include it in S1 until it is paid.

;; Contact the CRB.
let the-crb (crb crb-who) ;; Contact the CRB.

let the-crb (crb crb-who)
;; The CRB only has an aggregate variable for all of the ER deposits of all

] of its client banks. Only the bank's records indicate the size of the ;; The CRB only has an aggregate variable for all of the RR deposits of all
H ER deposit associated with this bank. 5 of its client banks. Only the bank's records indicate the size of the
let er-account-size PO-er-assets HY] RR deposit associated with this bank.

;; The annual interest on ER deposits is in slider g-ioer. let rr-account-size PO-rr-assets

Orrery Software

Pg. 44

;; The annual interest on RR deposits is in slider g-iorr.

let annual-interest-due (rr-account-size * g-iorr / 100)

;; Prorate this to a daily rate (12 months; 30 days per month).
let daily-interest-due (annual-interest-due / (12 * 30))

;; The CRB records the increase in its S1 aggregator for

i RR deposits (PO-rr) interest payable.

ask the-crb [set Sl-rrip-debts (Sl-rrip-debts + daily-interest-due)]
;; The bank records the increase in its S1 record for interest receivable.
set Sl-rrir-assets (Sl-rrir-assets + daily-interest-due)

LOG-TO-FILE (word " CBSvcs: RR interest accrued ----- " daily-interest-due)

1

;; end of f-cbsvcs-bank-accrues-daily-interest-on-RR-deposits
end

;; A client pays outstanding interest on er deposits monthly.
to f-cbsvcs-bank-paid-monthly-interest-on-er-deposits
;; This routine is to be executed by a bank.

; THEORY: Interest on ER deposits is to be paid by the CRB to the bank.
HY It accrues daily, but is paid in aggregate monthly.

;; When interest is accrued, it is stored with 17 (or so) digits after
Y the decimal, but it is paid in dollar units. I don't want to round
HY away all of the accuracy of the interest payments, since I accrue
HY it daily. So, I determine the floor of the amount due, pay that,
Y and leave a residual amount to be paid the next month. By doing it
Y this way, the shadow money supply holds the (not-absolutely precise)
Y fractional debts, but the logical money supply is always accurate
H with infinite precision to the dollar.

;; This may affect the way I compare total interest payments, over time,
H with total write-offs, over time, but I don't think it will.

;; TODO: I need to watch that.

;; Interest paid by the CRB represents a change in its corporate

H net worth. This expense is outside of its role as the guardian of
H the rule of conservation of money, its public trust, and so must be
Y put into its own corporate checking account (a Cl account) as if

H it is a client of itself.

;; So this payment is a peculiar client-to-client payment mediated by

H the two banks' own back rooms that manage the public trust. This
HH payment requires a total of six accounting entries, one of which is
HY redundant and is suppressed.

;; Contact the CRB.
let the-crb (crb crb-who)

;; Contact the bank that holds the Cl assets of the CRB
let bank-of-crb (bank ([bank-who] of the-crb))

;; The CRB only has an aggregate variable for all of the interest payable
i on all ER deposits of its client banks. Only this bank's records

i indicate the size of the accrued interest associated with this bank.
;; Determine the largest integral dollar amount payable.

let monthly-interest-paid floor(Sl-erir-assets)

;; Settle the records for the shadow money supply first.

;; The bank notes the payment, subtracting it from dues accrued,
Y and leaving a residual.

set Sl-erir-assets (Sl-erir-assets - monthly-interest-paid)

;; The CRB decreases its aggregator by the same amount.
ask the-crb [set Sl-erip-debts (Sl-erip-debts - monthly-interest-paid)]

; Now, the CRB has to actually pay the bill with real money.

A payment is normally a six-entry event. Two entries are in the

HA check books of the participating agents, and four are back-room

HY changes in banker's assets/debts. 1In this case two banks are involved
HY so it gets confusing. The two banks must each separate their

HY corporate "check books" from their back-room role to protect the
HY public trust. The corporate assets are Cl-assets. The back-room
HY banking records are Ll-assets/Ll-debts.

; The payment is noted in this bank's corporate check book. Entry #1.
set Cl-assets (Cl-assets + monthly-interest-paid)

;; And the money enters the logical money supply in the bank's

HY L1 aggregator by its back room staff. Entry #2.

set Ll-debts (Ll-debts + monthly-interest-paid)

;; Assets must follow debts. Entry #3.

set Ll-assets (Ll-assets + monthly-interest-paid)

ask the-crb
[
;; The front-room corporate comptroller notes the payment in its check book.
;; Entry #4.
set Cl-assets (Cl-assets - monthly-interest-paid)
ask bank-of-crb
[
;; Entry #5.
set Ll-debts (Ll-debts - monthly-interest-paid)
;; Entry #6. Assets must follow debts.
set Ll-assets (Ll-assets - monthly-interest-paid)
1
;; The CRB's assets will be quickly transferred to the GCRA.
1

LOG-TO-FILE (word " BSvcs: ER interest received --- " monthly-interest-paid)

;; end of f-cbsvcs-bank-paid-monthly-interest-on-er-deposits
end

;; A client pays outstanding interest on rr deposits monthly.
to f-cbsvcs-bank-paid-monthly-interest-on-rr-deposits
;; This routine is to be executed by a bank.

;; THEORY: Interest on RR deposits is to be paid by the CRB to the bank.
Y It accrues daily, but is paid in aggregate monthly.

;; When interest is accrued, it is stored with 17 (or so) digits after
i the decimal, but it is paid in dollar units. I don't want to round
Y away all of the accuracy of the interest payments, since I accrue
Y it daily. So, I determine the floor of the amount due, pay that,
i and leave a residual amount to be paid the next month. By doing it
Y this way, the shadow money supply holds the (not-absolutely precise)
Y fractional debts, but the logical money supply is always accurate
i with infinite precision to the dollar.

;; This may affect the way I compare total interest payments, over time,
i with total write-offs, over time, but I don't think it will.

;; TODO: I need to watch that.

;; Interest paid by the CRB represents a change in its corporate

5 net worth. This expense is outside of its role as the guardian of
5 the rule of conservation of money, its public trust, and so must be
H put into its own corporate checking account (a Cl account) as if

;i it is a client of itself.

NTF Code for CmLab V1.17

Orrery Software

NTF Code for CmLab V1.17

;; So this payment is a peculiar client-to-client payment mediated by

HH] the two banks' own back rooms that manage the public trust. This
Y payment requires a total of six accounting entries, one of which is
Y redundant and is suppressed.

;; Contact the CRB.
let the-crb (crb crb-who)

;; Contact the bank that holds the Cl assets of the CRB
let bank-of-crb (bank ([bank-who] of the-crb))

;; The CRB only has an aggregate variable for all of the interest payable
i on all RR deposits of its client banks. Only this bank's records

i indicate the size of the accrued interest associated with this bank.
;; Determine the largest integral dollar amount payable.

let monthly-interest-paid floor(Sl-rrir-assets)

;; Settle the records for the shadow money supply first.

;; The bank notes the payment, subtracting it from dues accrued,

HY and leaving a residual.

set Sl-rrir-assets (Sl-rrir-assets - monthly-interest-paid)

;; The CRB decreases its aggregator by the same amount.

ask the-crb [set Sl-rrip-debts (Sl-rrip-debts - monthly-interest-paid)]

; Now, the CRB has to actually pay the bill with real money.

; A payment is normally a four-entry event. Two entries are in the
HY bank books of the participating agents, and two are back-room

HY changes in banker's debts. 1In this case two banks are involved
;i so it gets confusing. The two banks must each separate their

H corporate "bank books" from their back-room role to protect the
H public trust. The corporate assets are Cl-assets. The back-room
H banking records are Ll-debts. It requires six entries.
;; The payment is noted in the bank's corporate check book.
set Cl-assets (Cl-assets + monthly-interest-paid)

;; And the money enters the logical money supply in the bank's
Y L1 aggregator by its back room staff. Entry #2
set Ll-debts (Ll-debts + monthly-interest-paid)

;; And assets follow debts, in the bank back room.
set Ll-assets (Ll-assets + monthly-interest-paid)

Entry #1.

Entry #3.

ask the-crb
[
;; The front-room corporate comptroller notes the payment in its check book.
;; Entry #4.
set Cl-assets (Cl-assets - monthly-interest-paid)
ask bank-of-crb
[
;; Entry #5.
set Ll-debts (Ll-debts - monthly-interest-paid)
;; Entry #6. Assets must follow debts.
set Ll-assets (Ll-assets - monthly-interest-paid)
1
;; The CRB's assets will be quickly transferred to the GCRA.
1

LOG-TO-FILE (word " BSvcs: RR interest received --- " monthly-interest-paid)

;; end of f-cbsvcs-bank-paid-monthly-interest-on-rr-deposits
end

;

7

END OF -CBSVCS- SUBSECTION.

;; START OF THE -BTPFS- SUBSECTION

;; THEORY: This is a special part of the banking services section which is not
HH really about banking services, so much, as it is about flows of money

HA from the banking sector to the non-banking sector. In general money flows
HY to the banking sector through interest on ER and RR deposits, and through
HY interest on Ll loans. It flows from the banking sector through

HY bankruptcies and interest on savings deposits. Bankruptcies are a very
HY difficult thing to manage. They cause great instability, and public

HY policy governing bankruptcies is a key source of bias in all wealth

HY distributions. 1In particular, the debts of failed agents must be covered
HY by one bank or many banks, and assets for replacement agents must be

HY gathered from many agents. The way this is done may bias the wealth

HY distributions of both prsns and banks.

;; The routines that start with f-btpfs-xxx are "banks-to-prsn-flows" special
HY routines that can be toggled on to provide additional flows from the

HA banking sector to the non-banking sector, in addition to the

HA default "bankruptcies" channel.

;; Government collects a tax from banks, distributes to prsns.
to f-btpfs-government-special-monthly-transfer
;; This routine is to be executed by the observer.

;; THIS ROUTINE IS PART OF THE BANKS-TO-PRSNS-FLOWS (-btpfs-) REGIME.

;; As such, it is an adjunct to the standard -bnkrpt- regime.

;; THEORY: In basic mode there is a flow of money from prsns to banks, and

i the only means for money to return to the non-financial sector is

Y via over-extended loans causing prsns to go bankrupt, and the bank

B must cover the costs.

;; This causes a problem because I then need to find funds to re-constitute
Y the bankrupt prsn as a prsn of average net worth, and there is nowhere
i to obtain the cash. So, this routine is one way in which some cash

i can be returned to the non-banking sector.

;; It is controlled by the switch in the User Interface

Y gb-btpfs-monthly-taxes.

;; The government collects a tax from each bank removing all remaining
Y Cl assets and distributes it directly and evenly to all prsns.
i Excess goes into the GCRA.

if(gb-btpfs-monthly-taxes = true)
[
ask gcras
[
;; Identify the bank of the GCRA.
;; The GCRA is not a bank. It keeps its accounts in a commercial bank.
let gcra-bank (bank bank-who)

let taxes-due 0 I
let all-taxes-paid 0 P

Initialize a working variable.
initialize an aggregate to collect all taxes paid.

;; This routine proceeds in two steps:
Y STEP 1 - all banks are stripped of all Cl assets, going into the GCRA.
Y STEP 2 - the proceeds are distributed evenly to all prsns.

; STEP 1 - COLLECT THE TAXES.
; This functions like a prsn-to-prsn check, and requires six entries.
H Two in client's check books. Four in bank back room records.

Orrery Software Pg. 46 NTF Code for CmLab V1.17

ask banks LOG-TO-FILE (word " Prsn Ll assets after payment ------ " Ll-assets)
[1 ;; end of ask banks
LOG-TO-FILE (word "BANK " who " PAYS TAXES")
LOG-TO-FILE (word " Bank Cl-assets ---------——————————- " Cl-assets) LOG-TO-FILE (word " GCRA Ll assets before payments ---- " Ll-assets)
set taxes-due Cl-assets LOG-TO-FILE (word " Total of all dole paid ------------ " total-dole-paid)
;; Taxes are paid by bank-to-bank check. ;; Government adjusts its own bankbook. Entry #4.
;; Remove taxes from bank's bankbook. Entry #1. set Ll-assets (Ll-assets - total-dole-paid)
set Cl-assets (Cl-assets - taxes-due) ;; Add the money to the gov't checking account. Entry #5.
;; Remove the taxes from the bank's checking account. Entry #2. ask gcra-bank [set Ll-debts (Ll-debts - total-dole-paid)]
set Ll-debts (Ll-debts - taxes-due) ;; Assets follow debts. Entry #6.
;; Assets follow debts. Entry #3. ask gcra-bank [set Ll-assets (Ll-assets - total-dole-paid)]
set Ll-assets (Ll-assets - taxes-due) ;; At this point the net change in gcra-bank is zero.
;; Record the amount as paid, for later entry to GCRA bankbook. LOG-TO-FILE (word " GCRA Ll assets after payments ----- " Ll-assets)
;; At this point the net change in prsn-bank is zero. 1 ;; end of ask gcras
set all-taxes-paid (all-taxes-paid + taxes-due) 1 ;; end of if (gb-btpfs-monthly-taxes = true)
LOG-TO-FILE (word " Taxes paid -------------------————- " taxes-due) ;; end of f-btpfs-government-special-monthly-transfer
LOG-TO-FILE (word " Bank Cl assets after payment ------ " Cl-assets) end

1 ;; end of ask banks
LOG-TO-FILE (word " GCRA Ll assets before collection -- " Ll-assets) ;; Banks buy using checks.

LOG-TO-FILE (word " Total of all taxes collected ------ " all-taxes-paid) to f-btpfs-banks-buy-using-checks

;; This routine is to be executed by the observer.

;; Government adjusts its own bankbook. Entry #4.

set Ll-assets (Ll-assets + all-taxes-paid) ;; THIS ROUTINE IS PART OF THE BANKS-TO-PRSNS-FLOWS (-btpfs-) REGIME.
;; Add the money to the gov't checking account. Entry #5. ;; As such, it is an adjunct to the standard -bnkrpt- regime.
ask gcra-bank [set Ll-debts (Ll-debts + all-taxes-paid)]
;; Assets follow debts. Entry #6. ;; THEORY: In basic mode there is a flow of money from prsns to banks, and
ask gcra-bank [set Ll-assets (Ll-assets + all-taxes-paid)] HA the only means for money to return to the non-financial sector is
;; At this point the net change in gcra-bank is zero. HA via over-extended loans causing prsns to go bankrupt, and the bank
LOG-TO-FILE (word " GCRA L1 assets after collection --- " Ll-assets) i must cover the costs.
;; This causes a problem because I then need to find funds to re-fashion
;; STEP 2 - PAY TO PRSNS. i the bankrupt prsn as a prsn of average net worth, and there is nowhere
;; Determine the payment to each prsn. i to obtain the cash. So, this routine is one way in which some cash
let payout floor(all-taxes-paid / g-no-of-prsns) Y can be returned to the non-banking sector.
;; So, due to the use of 'floor' the entire payout will be less than ;; It is controlled by the switch in the User Interface
Y or equal to all-taxes-paid. The residual will remain in the GCRA. Y gb-btpfs-daily-purchases.
;; Initialize an aggregator. ;; Each prsn canvasses its own bank for a $1 purchase per prsn per tick,
let total-dole-paid 0 Y coming out of its corporate funds, unless those Cl funds are drained.
Y You might think of this as administrative costs for building, personnel

;; This functions like a prsn-to-prsn check, and requires six entries. Y and supplies.
H Two in client's check books. Four in bank back room records.
ask prsns if (gb-btpfs-daily-purchases = true)
[[

;; Contact prsn's bank ;; Initialize a grand aggregator.

let prsns-bank (bank bank-who) let grand-total-spent 0

LOG-TO-FILE (word "Prsn " who " RECEIVES DOLE") LOG-TO-FILE (word " ")

LOG-TO-FILE (word " Prsn Ll-assets before dole -------- " Ll-assets) LOG-TO-FILE (word "Do-buy-sell: Banks purchase daily supplies")

;; Dole is paid by bank-to-bank check. ask prsns

;; Add dole to prsn's bankbook. Entry #1. [

set Ll-assets (Ll-assets + payout) let amount-to-spend 1

;; Adjust checking account. Entry #2.

ask prsns-bank [set Ll-debts (Ll-debts + payout)] ;; Contact the prsn's bank so money can be sent.

;; Assets follow debts. Entry #3. let prsns-bank (bank bank-who)

ask prsns-bank [set Ll-assets (Ll-assets + payout)]

;; Record the amount as paid, for later entry to GCRA bankbook. ;; Payment by inter-bank check requires six entries.

;; At this point the net change in prsn-bank is zero.

set total-dole-paid (total-dole-paid + payout) let go-flag ([Cl-assets] of prsns-bank)

LOG-TO-FILE (word " Taxes paid ----------——-—————-c——--- " taxes-due) if(go-flag > 0)

Orrery Software

NTF Code for CmLab V1.17

;; Bank records the aggregate of all payments in its own corporate

i check book. Entry #1.

ask prsns-bank [set Cl-assets (Cl-assets - amount-to-spend)]

;; The bank settles all check in it back-room records. Entries #2 and #3.
;; ask prsns-bank [set Ll-assets (Ll-assets - amount-to-spend)]

;; ask prsns-bank [set Ll-debts (Ll-debts - amount-to-spend)]

;; Prsn receives the money and enters it in their own check book.
set Ll-assets (Ll-assets + amount-to-spend)

;; Their bank records the check with two entries - #5 and #6.

;; ask prsns-bank [set Ll-assets (Ll-assets + amount-to-spend)]
;; ask prsns-bank [set Ll-debts (Ll-debts + amount-to-spend)]

Entry #4.

;; Increment the aggregator.
set grand-total-spent (grand-total-spent + amount-to-spend)

;; The private net worth of the bank has been reduced by total-spent.
;; The private net worth of each prsn has increased by amount-to-spend.
;; The net worth of public funds in trust (in the bank's back rooms)
i has not changed.
1] ;; end of if(go-flag > 0)
] ;; end ask prsns

LOG-TO-FILE (word " All banks have spent this tick -- " grand-total-spent)
] ;; end if (gb-btpfs-daily-purchases = true)
;; end of f-btpfs-banks-buy-using-checks

end

;; Dump all of the data to debug file, or to control centre.
to f-dump-all-agent-data
;; This routine is to be executed by the observer.

;; Dump the GCRA data
f-dump-gcras-data
f-dump-crbS-data
f-dump-bankS-data
f-dump-prsnS-data

;; TODO: Corps not implemented yet.
;; f-dump-corpS-data

;; End of f-dump-all-agent-data
end

;; Dump all GCRA data to debug file, or to control centre.
to f-dump-gcras-data
;; This routine is to be executed by the observer.

;; Dump the GCRA data
ask gcras
[
f-dump-gcra-data
1

;; End of f-dump-gcras-data
end

;; Dump the data of one calling GCRA to debug file, or to control centre.
to f-dump-gcra-data
;; This routine is to be executed by the GCRA.

LOG-TO-FILE (word " ")
LOG-TO-FILE (word "DUMP GCRA who# <<< " who " >>>")

LOG-TO-FILE (word "bank-who -----——==————————- " bank-who)
LOG-TO-FILE (word "Ll-assets -—---——-=———=—————= " Ll-assets)
;; LOG-TO-FILE (word "Ll-debts ---------—-——-—-—--—- " Ll-debts)

LOG-TO-FILE (word "Ll-loan-debts -
LOG-TO-FILE (word "Sl-Llip-debts -

" Ll-loan-debts)
" Sl-Llip-debts)

LOG-TO-FILE
LOG-TO-FILE

word "net-worth-publ -- - " net-worth-publ)
word "net-worth-priv ------------ " net-worth-priv)

;; ss LOG-TO-FILE (word "L3-debts --------==——————-—= " L3-debts)
;; ss LOG-TO-FILE (word "Sl-L3ip-debts ------------- " S1-L3ip-debts)
LOG-TO-FILE (word "ttl-PO-assets -----—--—-——---- " ttl-PO-assets)
LOG-TO-FILE (word "ttl-publ-assets ----------- " ttl-publ-assets)
LOG-TO-FILE (word "ttl-publ-debts ------------ " ttl-publ-debts)
LOG-TO-FILE (word "ttl-priv-assets ----------- " ttl-priv-assets)
LOG-TO-FILE (word "ttl-priv-debts ------------ " ttl-priv-debts)

(

(

;; End of f-dump-gcra-data
end

;; Dump all the CRB data to debug file, or to control centre.
to f-dump-crbs-data
;; This routine is to be executed by the observer.

;; Dump the CRB data
ask crbs
[
f-dump-crb-data
1

;; End of f-dump-crbs-data
end

;; Dump the data of the calling CRB to debug file, or to control centre.
to f-dump-crb-data
;; This routine is to be executed by the CRB.

LOG-TO-FILE
LOG-TO-FILE
LOG-TO-FILE

word "PO-er-assets --
word "Sl-rrip-debts -
word "Sl-erip-debts -

" PO-er-assets)
" Sl-rrip-debts)
" Sl-erip-debts)

LOG-TO-FILE (word " ")
LOG-TO-FILE (word "DUMP CRB who# <<< " who " >>>")
LOG-TO-FILE (word "LO-assets ----------——-——---- " LO-assets)
LOG-TO-FILE (word "PO-assets ---------—-—-—-——-—--- " PO-assets)
LOG-TO-FILE (word "LO-debts -----------—--——---- " LO-debts)
LOG-TO-FILE (word "PO-debts -------------——---- " PO-debts)
LOG-TO-FILE (word "PO-rr-assets ----------—---- " PO-rr-assets)
(
(
(

LOG-TO-FILE (word "Cl-assets ----—-—--—-——-—=——--= " Cl-assets)
;; xx LOG-TO-FILE (word "c2-assets -------—-——-———-—= " c2-assets)
LOG-TO-FILE (word "ttl-PO-assets -----——----——---- " ttl-PO-assets)

LOG-TO-FILE
LOG-TO-FILE
LOG-TO-FILE
LOG-TO-FILE

word "ttl-publ-assets ----------- " ttl-publ-assets)
word "ttl-publ-debts --- " ttl-publ-debts)
word "ttl-priv-assets -- " ttl-priv-assets)
word "ttl-priv-debts ------------ " ttl-priv-debts)

(
(
(
(

Orrery Software

Pg. 48

NTF Code for CmLab V1.17

LOG-TO-FILE (word "net-worth-publ ------------ " net-worth-publ)
LOG-TO-FILE (word "net-worth-priv ------------ " net-worth-priv)

;; End of f-dump-crb-data
end

;; Dump all bank data to debug file, or to control centre.
to f-dump-banks-data
;; This routine is to be executed by the observer.

;; Dump the bank data
ask banks
[
f-dump-bank-data
1

;; End of f-dump-banks-data
end

;; Dump the data of the calling bank to debug file, or to control centre.
to f-dump-bank-data
;; This routine is to be executed by a bank.

LOG-TO-FILE (word " ")

LOG-TO-FILE (word "DUMP BANK who# <<< " who " >>>")

LOG-TO-FILE (word "b-bank-can-make-loans ----- " b-bank-can-make-loans)
LOG-TO-FILE (word "b-bank-is-bankrupt -- -- " b-bank-is-bankrupt)
LOG-TO-FILE (word "Ll-assets --------- -- " Ll-assets)
LOG-TO-FILE (word "Ll-loan-assets --------—---- " Ll-loan-assets)
LOG-TO-FILE (word "Ll-debts -----—---——=-————-—= " Ll-debts)
LOG-TO-FILE (word "Sl-Llir-assets --------—---- " Sl-Llir-assets)
LOG-TO-FILE (word "L2-debts -----—---—===————-—= " L2-debts)
LOG-TO-FILE (word "S1-L2ip-debts ------------- " S1l-L2ip-debts)

;; ss LOG-TO-FILE (word "L3-assets ----—---——=-————-—= " L3-assets)
LOG-TO-FILE (word "PO-vc-assets ---- -- " PO-vc-assets)
LOG-TO-FILE (word "PO-rr-assets -- -- " PO-rr-assets)
LOG-TO-FILE (word "PO-er-assets ------——--—-——---- " PO-er-assets)
LOG-TO-FILE (word " ")

LOG-TO-FILE (word "no-of-prsn-clients -------- " no-of-prsn-clients)
LOG-TO-FILE (word "no-of-corp-clients -------- " no-of-corp-clients)
LOG-TO-FILE (word "no-of-gcra-clients -------- " no-of-gcra-clients)
LOG-TO-FILE (word "no-of-crb-clients - -- " no-of-crb-clients)
LOG-TO-FILE (word "Sl-rrir-assets -- -- " Sl-rrir-assets)
LOG-TO-FILE (word "Sl-erir-assets -- -- " Sl-erir-assets)
LOG-TO-FILE (word "Cl-assets ---------—-—--—-—-- " Cl-assets)

;; xx LOG-TO-FILE (word "c2-assets -----------—----- " c2-assets)
LOG-TO-FILE (word "ttl-PO-assets ------------- " ttl-PO-assets)
LOG-TO-FILE word "ttl-publ-assets ----------- " ttl-publ-assets)
LOG-TO-FILE word "ttl-publ-debts ------------ " ttl-publ-debts)
LOG-TO-FILE word "ttl-priv-assets ----------- " ttl-priv-assets)

LOG-TO-FILE
LOG-TO-FILE
LOG-TO-FILE

word "ttl-priv-debts -- -- " ttl-priv-debts)
word "net-worth-publ -- -- " net-worth-publ)
word "net-worth-priv ------------ " net-worth-priv)

(
(
(
(
(
(

;; End of f-dump-bank-data
end

;; Dump all prns data to debug file, or to control centre.
to f-dump-prsns-data

;; This routine is to be executed by the observer.

;; Dump the prsn data
ask prsns
[
f-dump-prsn-data
1

;; End of f-dump-prsns-data
end

;; Dump all one prns's data to debug file, or to control centre.
to f-dump-prsn-data
;; This routine is to be executed by a prsn.

LOG-TO-FILE word " ")

LOG-TO-FILE word "DUMP PRSN who# <<< " who " >>>")

LOG-TO-FILE word "b-prsn-is-bankrupt -------- " b-prsn-is-bankrupt)
LOG-TO-FILE word "Bank-who -------—----——-—-——- " bank-who)

word "PO-assets -
word "LO-assets -

LOG-TO-FILE
LOG-TO-FILE

" PO-assets)
" LO-assets)

(
(
(
(
(
(
(
(
(
(

LOG-TO-FILE word "Ll-assets ----- " Ll-assets)

LOG-TO-FILE word "Ll-loan-debts ------------- " Ll-loan-debts)
LOG-TO-FILE word "S1l-Llip-debts ------------- " Sl-Llip-debts)
LOG-TO-FILE word "30day payables total ------ " S1-30day-total-debts)
LOG-TO-FILE (word "30day receivables total --- " S1-30day-total-assets)

foreach payables-30day
[

LOG-TO-FILE ?
]

LOG-TO-FILE (word "L2-assets ----——--————=————-—= " L2-assets)
LOG-TO-FILE (word "Sl-L2ir-assets ----—----——---- " Sl1-L2ir-assets)
;; ss LOG-TO-FILE (word "L3-corpwho ----------—------ " L3-corpwho)
;; ss LOG-TO-FILE (word "L3-assets ----—---———=-————-—= " L3-assets)
;; ss LOG-TO-FILE (word "Sl-L3ir-assets ---- " Sl-L3ir-assets)

;; ss LOG-TO-FILE (word "L4-corpwho ---------------- " L4-corpwho)
;; ss LOG-TO-FILE (word "L4-assets -- - " L4-assets)
;; ss LOG-TO-FILE (word "L4-dividend-receivable ---- " L4-dividend-receivable)
LOG-TO-FILE (word "ttl-PO-assets -----——---——---- " ttl-PO-assets)
LOG-TO-FILE word "ttl-publ-assets ----------- " ttl-publ-assets)
LOG-TO-FILE word "ttl-publ-debts ------------ " ttl-publ-debts)
LOG-TO-FILE word "ttl-priv-assets ----------- " ttl-priv-assets)

LOG-TO-FILE
LOG-TO-FILE
LOG-TO-FILE

(
(
(
(word "ttl-priv-debts -- - " ttl-priv-debts)
(word "net-worth-publ -- - " net-worth-publ)
(word "net-worth-priv ------------ " net-worth-priv)
;; End of f-dump-prsn-data
end

;; Dump all corp data to debug file, or to control centre.
to f-dump-corps-data
;; This routine is to be executed by the observer.

;; Dump the corp data
ask corps
[
f-dump-corp-data
]

;; End of f-dump-corps-data

Orrery Software

Pg. 49 NTF Code for CmLab V1.17

end

;; Dump all one corp's data to debug file, or to control centre.
to f-dump-corp-data
;; This routine is to be executed by a corp.

LOG-TO-FILE (word " ")
LOG-TO-FILE (word "DUMP CORP who# <<< " who " >>>")
LOG-TO-FILE (word "b-corp-is-bankrupt -------- " b-corp-is-bankrupt)
LOG-TO-FILE (word "Bank-who " bank-who)
LOG-TO-FILE (word "PO-assets -- " PO-assets)
LOG-TO-FILE (word "LO-assets -- " LO-assets)
LOG-TO-FILE (word "Ll-assets -- " Ll-assets)
LOG-TO-FILE (word "Ll-debts " Ll-debts)
LOG-TO-FILE (word "Ll-loan-debts --------—---- " Ll-loan-debts)
LOG-TO-FILE (word "Sl-Llip-debts ------------- " Sl-Llip-debts)
LOG-TO-FILE (word "30day payables total ------ " S1-30day-total-debts)
LOG-TO-FILE (word "30day receivables total --- " S1-30day-total-assets)
foreach payables-30day
[

LOG-TO-FILE ?
1
LOG-TO-FILE (word "L2-assets ----------------- " L2-assets)
LOG-TO-FILE (word "Sl-L2ir-assets ------------ " Sl-L2ir-assets)
;; ss LOG-TO-FILE word "no-of-bond-clients -------- " no-of-bond-clients)
;; ss LOG-TO-FILE word "L3-assets ---------—-——-——--- " L3-assets)
;; ss LOG-TO-FILE word "L3-debts ------ - " L3-debts)
;; ss LOG-TO-FILE word "S1-L3ip-debts ------- - " S1-L3ip-debts)

(
(
(
(
(
(
(
(

;; ss LOG-TO-FILE word "no-of-stock-clients - - " no-of-stock-clients)
;; ss LOG-TO-FILE word "L4-assets ---------—-—————- " L4-assets)

;; ss LOG-TO-FILE word "L4-debts ----------—-————-- " L4-debts)

;; ss LOG-TO-FILE word "Sl-L4dp-debts ------- " Sl-L4dp-debts)

LOG-TO-FILE (word " ")

LOG-TO-FILE (word "ttl-PO-assets -----—---—---- " ttl-PO-assets)
LOG-TO-FILE (word "ttl-publ-assets ------- " ttl-publ-assets)
LOG-TO-FILE (word "ttl-publ-debts -- " ttl-publ-debts)
LOG-TO-FILE (word "ttl-priv-assets ------ " ttl-priv-assets)
LOG-TO-FILE (word "ttl-priv-debts - " ttl-priv-debts)
LOG-TO-FILE (word "net-worth-publ ---------- " net-worth-publ)
LOG-TO-FILE (word "net-worth-priv --------- " net-worth-priv)

;; End of f-dump-corp-data
end

;; Update the values of global aggregate numbers.
to f-update-aggregates
;; This routine is to be executed by the observer.

;; Although this is a display-only routine, it may implicitly call the PRNG and
] so may have an effect on the trajectory of the model. 1In a standard 'go’
] run it is called only once per tick, before graphs are updated. If you

I use the one-step debug buttons, it is called once after each step, so

I debug runs that use those buttons will not replicate a real run.

;; Re-calculate all net worth statements.
f-compute-each-net-worth

;; Update all aggregates.
;; In the following I use "debts" to mean "liabilities".
;; Money supplies

set g-msi-ttl-assets (sum [msi-assets] of turtles) ;; Money supply I, Physical
money supply.

set g-msii-ttl-assets (sum [msii-assets] of turtles) ;; Money supply II, Logical
money supply.

set g-msiii-ttl-assets (sum [msiii-assets] of turtles) ;; Money supply III, Shadow
money supply.

set g-msi-ttl-debts (sum [msi-debts] of turtles) ;; Money supply I, Physical money
supply.

set g-msii-ttl-debts (sum [msii-debts] of turtles) ;; Money supply II, Logical
money supply.

set g-msiii-ttl-debts (sum [msiii-debts] of turtles) ;; Money supply III, Shadow

money supply.
set g-msi-net (g-msi-ttl-assets - g-msi-ttl-debts)
set g-msii-net (g-msii-ttl-assets - g-msii-ttl-debts)
set g-msiii-net (g-msiii-ttl-assets - g-msiii-ttl-debts)

;; Money Categories - by money supply.
;; MS-I - The money base - Physical money supply.

set g-msi-prsn-PO-cash (sum [PO-assets] of prsns) ;; cash in circulation - assets

set g-msi-corp-PO-cash (sum [PO-assets] of corps) ;; cash in circulation - assets

set g-msi-bank-vc (sum [PO-vc-assets] of banks) ;; bank vault cash - assets

set g-msi-bank-rr-assets (sum [PO-rr-assets] of banks) ;; bank required reserves -
debts

set g-msi-bank-er-assets (sum [PO-er-assets] of banks) ;; bank excess reserves -
debts

set g-msi-bank-rr-debts (sum [PO-rr-debts] of banks) ;; bank required reserves -
debts

set g-msi-bank-er-debts (sum [PO-er-debts] of banks) ;; bank excess reserves -
debts

set g-msi-crb-LO-assets (sum [LO-assets] of crbs) ;; money base endowment

set g-msi-crb-PO-assets (sum [PO-assets] of crbs) ;; money base endowment

set g-msi-crb-L0-debts (sum [LO-debts] of crbs) ;; money base endowment

set g-msi-crb-P0-debts (sum [PO-debts] of crbs) ;; money base endowment

set g-msi-crb-rr (sum [PO-rr-assets] of crbs) ;; CRB required reserves - assets

set g-msi-crb-er (sum [PO-er-assets] of crbs) ;; CRB excess reserves - assets

;; MS-II - The logical money supply.

set g-msii-prsn-L0O-cash (sum [LO-assets] of prsns) ;; cash in circulation,
overlaps with MS-I.

set g-msii-corp-L0O-cash (sum [LO-assets] of corps) ;; cash in circulation,
overlaps with MS-I.

set g-msii-crb-Cl-assets (sum [Cl-assets] of crbs) ;; privatecorp level assets

;; Xx set g-msii-crb-c2-assets (sum [c2-assets] of crbs) ;; private corp level
assets

set g-msii-gcra-Ll-assets (sum [Ll-assets] of gcras) ;; govt checking assets

;; set g-msii-gcra-Ll-debts (sum [Ll-debts] of gcras) ;; govt checking debts

set g-msii-gcra-Ll-loan-debts (sum [Ll-loan-debts] of gcras) ;; govt loan debts

;; Xx set g-msii-gcra-L2-assets (sum [L2-assets] of gcras) ;; govt savings assets

;; ss set g-msii-gcra-L3-debts (sum [L3-debts] of gcras) ;; govt bond debts

set g-msii-bank-Ll-assets (sum [Ll-assets] of banks) ;; bank checking assets

set g-msii-bank-Ll-loan-assets (sum [Ll-loan-assets] of banks) ;; bank checking
assets

set g-msii-bank-Ll-debts (sum [Ll-debts] of banks) ;; bank checking debts

set g-msii-bank-L2-assets (sum [L2-assets] of banks) ;; bank savings assets

set g-msii-bank-L2-debts (sum [L2-debts] of banks) ;; bank savings debts

;; ss set g-msii-bank-L3-assets (sum [L3-assets] of banks) ;; bank bond assets

set g-msii-bank-Cl-assets (sum [Cl-assets] of banks) ;; private L1l checking assets

;; Xx set g-msii-bank-c2-assets (sum [Cl-assets] of banks) ;; private L2 savings
assets

Orrery Software

Pg. 50

NTF Code for CmLab V1.17

set g-msii-prsn-Ll-assets (sum [Ll-assets] of prsns) ;; prsn checking assets
set g-msii-prsn-Ll-loan-debts (sum [Ll-loan-debts] of prsns) ;; prsn loan debts
set g-msii-prsn-L2-assets (sum [L2-assets] of prsns) ;; prsn savings assets
;; ss set g-msii-prsn-L3-assets (sum [L3-assets] of prsns) ;; prsn bond assets
;; ss set g-msii-prsn-L4-assets (sum [L4-assets] of prsns) ;; prsn bond assets

set g-msii-corp-Ll-assets (sum [Ll-assets] of corps) ;; corp checking assets
set g-msii-corp-Ll-loan-debts (sum [Ll-loan-debts] of corps) ;; corp loan debts
set g-msii-corp-L2-assets (sum [L2-assets] of corps) ;; corp savings assets

;; ss set g-msii-corp-L3-assets (sum [L3-assets] of corps) ;; corp bond assets
;; ss set g-msii-corp-L3-debts (sum [L3-debts] of corps) ;; corp bond debts

;; ss set g-msii-corp-L4-assets (sum [L4-assets] of corps) ;; corp bond assets
;; ss set g-msii-corp-L4-debts (sum [L4-debts] of corps) ;; corp bond debts

;; MS-III - The shadow money supply.

set g-msiii-crb-Sl-rrip-debts (sum [Sl-rrip-debts] of crbs) ;;
payable on rr - debts

set g-msiii-crb-Sl-erip-debts (sum [Sl-erip-debts] of crbs) ;;
payable on er - debts

set g-msiii-gcra-Sl-Llip-debts (sum [S1-Llip-debts] of gcras) ;;
payable on loan - debts

CRB interest
CRB interest

govt interest

;; ss set g-msiii-gcra-S1-L3ip-debts (sum [S1-L3ip-debts] of gcras) ;; govt
interest payable on bonds - debts

set g-msiii-bank-Sl-Llir-assets (sum [Sl-Llir-assets] of banks) ;; bank interest
receivable on loans - assets

set g-msiii-bank-S1-L2ip-debts (sum [S1-L2ip-debts] of banks) ;; bank interest
payable on savings - debts

set g-msiii-bank-Sl-rrir-assets (sum [Sl-rrir-assets] of banks) ;; bank interest
receivable on rr - assets

set g-msiii-bank-Sl-erir-assets (sum [Sl-erir-assets] of banks) ;; bank interest

receivable on er - assets
set g-msiii-prsn-Sl-Llip-debts
payables - debts

(sum [S1-Llip-debts] of prsns) ;; prsn total 30day

set g-msiii-prsn-S1-Lltp-debts (sum [S1-30day-total-debts] of prsns) ;; prsn
total 30day payables - debts
set g-msiii-prsn-Sl-Lltr-assets (sum [S1-30day-total-assets] of prsns) ;; prsn

total 30day receivables - assets

set g-msiii-prsn-Sl-L2ir-assets
receivable on savings - assets

;; ss set g-msiii-prsn-Sl-L3ir-assets (sum [S1-L3ir-assets] of prsns)
interest receivable on bonds - assets

;; ss set g-msiii-prsn-Sl-L4dr-assets (sum [L4-dividend-receivable] of prsns) ;;
prsn dividend receivable on stocks - assets

(sum [S1-L2ir-assets] of prsns) ;; prsn interest

;; prsn

set g-msiii-corp-S1-Lltp-debts (sum [S1-30day-total-debts] of corps) ;; corp total
30day payables - debts
set g-msiii-corp-Sl-Lltr-assets (sum [S1-30day-total-assets] of corps) ;; corp

total 30day receivables - assets
set g-msiii-corp-Sl-L2ir-assets (sum [S1-L2ir-assets] of corps) ;;
receivable on savings - assets

corp interest

;; ss set g-msiii-corp-Sl-L3ip-assets (sum [S1-L3ip-debts] of corps) ;; corp
interest payable on bonds - debts
;; ss set g-msiii-corp-Sl-L4dp-assets (sum [S1-L4dp-debts] of corps) ;; corp

dividend payable on stocks - debts

;; Public funds in trust vs Private funds

set g-crb-PO-assets (sum [ttl-PO-assets] of crbs) ;; In public trust

set g-crb-publ-assets (sum [ttl-publ-assets] of crbs) ;; In public trust

set g-crb-priv-assets (sum [ttl-priv-assets] of crbs) ;; Profit/Loss related
set g-crb-publ-debts (sum [ttl-publ-debts] of crbs) ;; In public trust

set g-crb-priv-debts (sum [ttl-priv-debts] of crbs) ;; Profit/Loss related

set g-crb-publ-net-worth (sum [net-worth-publ] of crbs) ;; In public trust

set g-crb-priv-net-worth (sum [net-worth-priv] of crbs) ;; Profit/Loss related

set g-gcra-PO-assets (sum [ttl-PO-assets] of gcras) ;; In public trust

set g-gcra-publ-assets (sum [ttl-publ-assets] of gcras) ;; In public trust

set g-gcra-priv-assets (sum [ttl-priv-assets] of gcras) ;; Profit/Loss related
set g-gcra-publ-debts (sum [ttl-publ-debts] of gcras) ;; In public trust

set g-gcra-priv-debts (sum [ttl-priv-debts] of gcras) ;; Profit/Loss related

set g-gcra-publ-net-worth (sum [net-worth-publ] of gcras) ;; In public trust

set g-gcra-priv-net-worth (sum [net-worth-priv] of gcras) ;; Profit/Loss related

set g-bank-PO-assets (sum [ttl-PO-assets] of banks) ;; In public trust

set g-bank-publ-assets (sum [ttl-publ-assets] of banks) ;; In public trust

set g-bank-priv-assets (sum [ttl-priv-assets] of banks) ;; Profit/Loss related
set g-bank-publ-debts (sum [ttl-publ-debts] of banks) ;; In public trust

set g-bank-priv-debts (sum [ttl-priv-debts] of banks) ;; Profit/Loss related

set g-bank-publ-net-worth (sum [net-worth-publ] of banks) ;; In public trust

set g-bank-priv-net-worth (sum [net-worth-priv] of banks) ;; Profit/Loss related

set g-prsn-PO-assets (sum [ttl-PO-assets] of prsns) ;; In public trust

set g-prsn-publ-assets (sum [ttl-publ-assets] of prsns) ;; In public trust

set g-prsn-priv-assets (sum [ttl-priv-assets] of prsns) ;; Profit/Loss related
set g-prsn-publ-debts (sum [ttl-publ-debts] of prsns) ;; In public trust

set g-prsn-priv-debts (sum [ttl-priv-debts] of prsns) ;; Profit/Loss related

set g-prsn-publ-net-worth (sum [net-worth-publ] of prsns) ;; In public trust

set g-prsn-priv-net-worth (sum [net-worth-priv] of prsns) ;; Profit/Loss related

set g-corp-PO-assets (sum [ttl-PO-assets] of corps) ;; In public trust

set g-corp-publ-assets (sum [ttl-publ-assets] of corps) ;; In public trust

set g-corp-priv-assets (sum [ttl-priv-assets] of corps) ;; Profit/Loss related
set g-corp-publ-debts (sum [ttl-publ-debts] of corps) ;; In public trust

set g-corp-priv-debts (sum [ttl-priv-debts] of corps) ;; Profit/Loss related

set g-corp-publ-net-worth (sum [net-worth-publ] of corps) ;; In public trust

set g-corp-priv-net-worth (sum [net-worth-priv] of corps) ;; Profit/Loss related

;; To ensure that the PRNG is called whether or not plots are displayed, the
i calculations needed for the histogram plots which invoke the PRNG
Y implicitly should be carried out here where they will happen every tick.

; Setup for Histograms "Net Worth of Agents" in Panel 01 and

i "Net Worth of Prsns and Banks" in Panel 05.

let prsn-nws ([net-worth-priv] of prsns) ;; a list

let bank-nws ([net-worth-priv] of banks) ;; a list

set g-agents-nw-xaxis-min (min sentence prsn-nws bank-nws) ;; a number
set g-agents-nw-xaxis-min (1000 * floor(g-agents-nw-xaxis-min / 1000))
if (g-agents-nw-xaxis-min > 0) [set g-agents-nw-xaxis-min 0]

set g-agents-nw-xaxis-max
set g-agents-nw-xaxis-max

(max sentence prsn-nws bank-nws) ;; a number
(1000 * ceiling(g-agents-nw-xaxis-max / 1000))

if (g-agents-nw-xaxis-max < (g-agents-nw-xaxis-min + 1000))
[
set g-agents-nw-xaxis-max (g-agents-nw-xaxis-max + 1000)

1

;; Setup for histogram "Net Worth of Prsns" in Panel 06.

set g-prsns-nw-xaxis-min (min prsn-nws) ;; a number

set g-prsns-nw-xaxis-min (1000 * floor(g-prsns-nw-xaxis-min / 1000)) ;; a
number

set g-prsns-nw-xaxis-max (max prsn-nws) ;; a number

set g-prsns-nw-xaxis-max (1000 * ceiling(g-prsns-nw-xaxis-max / 1000)) ;; a
number

Orrery Software

Pg. 51

NTF Code for CmLab V1.17

if (g-prsns-nw-xaxis-max < (g-prsns-nw-xaxis-min + 1000))

[
set g-prsns-nw-xaxis-max (g-prsns-nw-xaxis-min + 1000)

1

;; Setup for histogram "Net Worth of Banks" in Panel 06.

set g-banks-nw-xaxis-min (min bank-nws) ;; a number

set g-banks-nw-xaxis-min (1000 * floor(g-banks-nw-xaxis-min / 1000)) ;; a
number

set g-banks-nw-xaxis-max (max bank-nws) ;; a number

set g-banks-nw-xaxis-max (1000 * ceiling(g-banks-nw-xaxis-max / 1000)) ;;
number
if (g-banks-nw-xaxis-max < (g-banks-nw-xaxis-min + 1000))
[
set g-banks-nw-xaxis-max (g-banks-nw-xaxis-min + 1000)
1
in Panel 06.

;; Setup for histogram "PO Assets of Banks"

set g-banks-PO-xaxis-min (min [PO-all-assets] of banks) ;; a number

set g-banks-P0O0-xaxis-min (1000 * floor(g-banks-PO-xaxis-min / 1000)) ;; a
number

set g-banks-PO-xaxis-max (max [PO-all-assets] of banks) ;; a number

—

set g-banks-PO-xaxis-max
number

if (g-banks-P0O-xaxis-max < (g-banks-PO-xaxis-min + 1000))

[

set g-banks-PO-xaxis-max (g-banks-PO-xaxis-min + 1000)

1000 * ceiling(g-banks-PO-xaxis-max / 1000)) ;;

1

;; Setup for line graph "Bank PO Assets - (Min, Mean, Max)" in Panel 07.

set g-banks-PO-all-assets-min (min [PO-all-assets] of banks) ;; a number

set g-banks-PO-all-assets-mean (mean [PO-all-assets] of banks) ;; a number

set g-banks-PO-all-assets-max (max [PO-all-assets] of banks) ;; a number

;; Setup for line graph "Mean Net Worth" in Panel 07.

set g-max-net-worth-priv-prsns (max [net-worth-priv] of prsns) ;; What it
says.

set g-mean-net-worth-priv-prsns (mean [net-worth-priv] of prsns) ;; What it
says.

set g-min-net-worth-priv-prsns (min [net-worth-priv] of prsns) ;; What it
says.

set g-max-net-worth-priv-banks (max [net-worth-priv] of banks) ;; What it
says.

set g-mean-net-worth-priv-banks (mean [net-worth-priv] of banks) ;; What it
says.

set g-min-net-worth-priv-banks (min [net-worth-priv] of banks) ;; What it

says.
;; Setup for Plot "AAAAAA"
;; This log entry may come from any step during debug operations.

LOG-TO-FILE " Do-aaa: All aggregates updated."
end

a

a

;; Construct a CSV data file name.

to-report fr-construct-file-name [type-string]
;; This routine is to be executed by the observer.
;; Date-string format "01:19:36.685 PM 19-Sep-2002"
let date-string date-and-time
let file-name (word "CmLab_ " type-string "_")

;; Append the year as yy.

set file-name word file-name (substring date-string 25 27)

;; Append the month as Mmm.

set file-name word file-name fr-convert-mmm-mm (substring date-string 19 22)

;; Append the
set file-name

day as dd.
word file-name

;; Append a dash.

set file-name

;; Append the
set file-name

word file-name

hour as hh.
word file-name

substring date-string 13 15)

;; Append the
set file-name
;; Append the
set file-name
;; Append the
set file-name

minute as mm.
word file-name
second as ss.
word file-name

.csv extension.

word file-name

report file-name

(substring date-string 16 18)

fr-convertl224 (substring date-string 0 2) (

(substring date-string 3 5)
(substring date-string 6 8)

".csv"

end

;; Open a log file for debug output.
to f-open-log-file
;; This routine is to be executed by the observer.

;; Ensure previous log file is closed.
if (is-string? gs-log-file-name)
[
if (file-exists? gs-log-file-name)
[
file-close-all
1
1

;; Date-string format "01:19:36.685 PM 19-Sep-2002"
let date-string date-and-time
set gs-log-file-name "CmLab_Log_ "

;; Append the

set gs-log-file-name word gs-log-file-name

;; Append the

set gs-log-file-name

string 19 22)
;; Append the

set gs-log-file-name

year as yy.

month as Mmm.

day as dd.

;; Append a dash.

set gs-log-file-name

;; Append the

set gs-log-file-name word gs-log-file-name
(substring date-string 13 15)

02)
;; Append the

set gs-log-file-name word gs-log-file-name

;; Append the

hour as hh.

minute as mm.

second as ss.

word gs-

word gs-

word gs-

(substring date-string 25 27)

log-file-name fr-convert-mmm-mm (substring date-

log-file-name (substring date-string 16 18)

log-file-name "_"

fr-convertl224 (substring date-string

(substring date-string 3 5)

Orrery Software

Pg. 52

NTF Code for CmLab V1.17

set gs-log-file-name word gs-log-file-name (substring date-string 6 8)
;; Append the .txt extension.
set gs-log-file-name word gs-log-file-name ".txt"

file-open gs-log-file-name

file-show "Log File for a CmLab (NetLogo) Model."
file-show word "File Name: " gs-log-file-name
file-show word "File opened at:" date-and-time
file-show ""

;; Send a message directly to the command centre.
ifelse (file-exists? gs-log-file-name)
[
show word gs-log-file-name " opened."
1
[

show word gs-log-file-name " not opened."

;; Convert month in text form to digital form.
to-report fr-convert-mmm-mm [mmm]
;; This routine is to be executed by the observer.
;; It converts a string in the form mmm (alpha text) to the form mm (digit-text

let mm "0O"

if(mmm = "Jan") [set mm "01"]
if(mmm = "Feb") [set mm "02"]
if(mmm = "Mar") [set mm "03"]
if(mmm = "Apr") [set mm "04"]
if(mmm = "May") [set mm "05"]
if(mmm = "Jun") [set mm "06"]
if(mmm = "Jul") [set mm "07"]
if(mmm = "Aug") [set mm "08"]
if(mmm = "SeP") [set mm "09"]
if(mmm = "Oct") [set mm "10"]
if(mmm = "Nov") [set mm "11"]
if(mmm = "Dec") [set mm "12"]
report mm

end

;; Convert hour in 12 format to 24 hour format.
to-report fr-convertl224 [hh ampm]
;; This routine is to be executed by the observer.
;; It converts a string in 12 hour format to 24 hour format.

let hour read-from-string hh
if(ampm = "PM") [set hour (hour + 12)]

let dd (word "00" hour)
let d2 last dd
set dd but-last dd
let dl last dd
set dd (word dl d2)
report dd

end

;; Close a log file for debug output.

to f-close-log-file
;; This routine is to be executed by the observer.

let b-filename-exists 0
if (is-string? gs-log-file-name)
[
if (file-exists? gs-log-file-name)
[
set b-filename-exists 1
1
1

ifelse(b-filename-exists = 1)

[
;; Ensure the file is selected.
file-open gs-log-file-name

;; Stanp it.

LOG-TO-FILE word "File closed at: " date-and-time
;; Flush the buffers.

file-flush

;; Close it.
file-close-all

;; Note sent to command centre.
show word gs-log-file-name " closed."

;; Revert to dummy name.
set gs-log-file-name "dummyname"

if(gs-log-file-name = "dummyname")
[show "No log file is open. Cannot close it."]

;; Select an already opened log file.
to f-select-log-file
;; This routine is to be executed by the observer.

ifelse (file-exists? gs-log-file-name)
[
;; Ensure the file is selected.
file-open gs-log-file-name

;; Ensure it is open for writing.
LOG-TO-FILE ""
LOG-TO-FILE "SELECTED"

show word gs-log-file-name " is not open. Cannot select it."

;; Change the debug mode from on to off, or vice versa.
to f-toggle-debug
;; This routine is to be executed by the observer,
;i button.

and is activated by a

Orrery Software

Pg. 53

NTF Code for CmLab V1.17

ifelse(gb-debug-on =1)
[
;; Debug is On, turn it Off.
;; Close the file before turning debug logging off.
f-close-log-file
set gs-debug-status "0 (Off)" ;; This appears in the monitor.
set gb-debug-on 0 ;; But this controls the debug feature.

;; Debug is Off, turn it On.
set gs-debug-status "1 (On)" ;; This appears in the monitor.
set gb-debug-on 1 ;; But this controls the debug feature.
;; The switches, if needed, are reset manually by the user.
;; Open the log file after turning debug logging on.
f-open-log-file

1

;; end of f-toggle-debug

end

;; Toggles debug on. Used as a sieve.
to f-force-debug-output-on
;; This routine can be executed by anybody.

if(gb-debug-on =1)
[

f-toggle-debug ;; Turn it off.

1

if (gb-debug-on = 0) ;; A certainty, now!

[
f-toggle-debug ;; Set flag on, opens debug file.
set gs-debug-step-chooser "all" ;; Opens for all steps.
set gb-debug-flow-on 1 ;; Turns on LOG-TO-FILE flows.
set gb-debug-show-steps true ;; Directs flows to screen also.

1
;; end of f-force-debug-output-on
end

;; Toggles debug off.
to f-force-debug-output-off
;; This routine can be executed by anybody.

if (gb-debug-on =1)
[

f-toggle-debug ;; Turn it off.
1

;; end of f-force-debug-output-off
end

to f-regulate-debug-switches
;; This routine is to be performed by the observer.

;; There are certain combinations of debug switch settings which are meaning-
] less when in debug mode. Rather than placing this logic here and there
] throughout the application, this routine has the logic to ensure that

HY) the debug switches remain in a meaningful configuration.

if (gb-debug-on = 0)

[
;; The debug feature is turned off. All switches should be set to default
HH positions, which is 'Off', or zero, or false.
set gb-debug-show-steps false

;; 'Show' a string in a debug log.

to LOG-TO-FILE [log-this-string]
;; This routine may be executed by any agent.
;; It should be invoked as a debug routine only, and would not be used for
HY normal output. It sends output to the debug log file, or, optionally,
i also to the command centre.

f-regulate-debug-switches

;; gb-debug-on is a global Boolean and has value 1 (true) or 0 (false).
if (gb-debug-on =1)
[
;; gb-debug-flow-on is declared as a global Boolean variable, and its value
Y is 0 (false) or 1 (true) and is set on or off at the beginning of each
HA function (each do-step). It is controlled by the chooser that selects
'all'
;i or a specific do-function.
;; When it is 'on' you can assume the debug log file exists and is open for
Y write.

if (gb-debug-flow-on =1)
[
file-show log-this-string
if (gb-debug-show-steps = true)

show log-this-string

;; This replicates the effect of an 'ASSERTION' in C++
to ASSERT [error-test error-string error-who]
;; This routine can be run by any agent.

if (error-test = false)

[
show (word error-test " " error-string " " error-who)
;; Cause a run-time error and display a message.
error (word "Agent: " error-who " - " error-string)

1

end

;; Check whether the agents are all valid.
to-report frb-agents-are-all-valid
;; This routine can be run by the observer.

Orrery Software

NTF Code for CmLab V1.17

let b-agents-are-all-valid true

;; TODO: fix this.
if (gb-debug-on =1)
[
;; Do the check only if debug is on.

;; Check the GCRAs.
ask gcras

if (frb-gcra-is-valid = false) [set b-agents-are-all-valid false]

1

;; Check the crbs.
ask crbs

if (frb-crb-is-valid = false) [set b-agents-are-all-valid false]

;; Check the banks.
ask banks

if (frb-bank-is-valid = false) [set b-agents-are-all-valid false]

1

;; Check the prsns.
ask prsns

if(frb-prsn-is-valid = false) [set b-agents-are-all-valid false]

1

;; Check the corps.
ask corps

if (frb-corp-is-valid = false) [set b-agents-are-all-valid false]
1
1

report b-agents-are-all-valid
end

;; Check whether a GCRA is valid.
to-report frb-gcra-is-valid
;; This routine can be run by a GCRA.

let b-gcra-is-valid true

report b-gcra-is-valid
end

;; Check whether a crb is valid.
to-report frb-crb-is-valid
;; This routine can be run by a crb.

let b-crb-is-valid true

report b-crb-is-valid
end

;; Check whether a bank is valid.
to-report frb-bank-is-valid
;; This routine can be run by a bank.

let b-bank-is-valid true

report b-bank-is-valid
end

;; Check whether a prsn is valid.
to-report frb-prsn-is-valid
;; This routine can be run by a prsn.

let b-prsn-is-valid true

report b-prsn-is-valid
end

;; Check whether a corp is valid.
to-report frb-corp-is-valid
;; This routine can be run by a corp.

let b-corp-is-valid true
report b-corp-is-valid

end

;; END OF all CODE

