
 

 

ATHABASCA UNIVERSITY 

 

 

MULTI-AGENT SYSTEMS (MAS) MODELLING ENVIRONMENT FOR 

HUNTING AND EVASION ALGORITHMS 

BY 

MARC PRINCE 

  

 

A project submitted in partial fulfillment 

Of the requirements for the degree of 

MASTER OF SCIENCE in INFORMATION SYSTEMS 

 

 

Athabasca, Alberta 

September 2017 

 

 

 

 

© Marc Prince, 2017 

 

 

  



ii 

APPROVAL PAGE 

This Master’s thesis essay is approved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



iii 

DEDICATION 

This research is dedicated to the NetLogo Community which may assist future generations of 

researchers in evolving our understanding of Autonomous Agents and Multi-Agent Systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



iv 

ACKNOWLEDGEMENTS 

The author would like to acknowledge Dr. Fuhua (Oscar) Lin of Athabasca University for his 

guidance in the research and to the author’s family for their support throughout its completion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



v 

ABSTRACT 

While new hunting algorithms are being developed to model pack animal hunting behaviours, 

these are being assessed with statistical methods rather than with simulation methods. The 

deficiency with statistical methods is that they represent a centralized approach to evaluating 

hunting algorithms rather than the decentralized method that exists in reality with real hunting 

agents (such as wolves and lionesses). Put another way, there is no central agent that controls the 

behaviour of real hunters (they independently collaborate towards common goals), thus any 

attempt to simulate these through a centrally controlled algorithm is artificial. To address this 

deficiency, this research proposed, designed, and developed a Hunting Algorithm Performance 

Evaluation Environment (HAPEE) using Multi-Agent System (MAS). Based on the Belief, 

Desire, and Intent architecture, the MAS were developed with the Netlogo agent-based 

modelling environment which includes the World Agent. The World Agent was customized to a 

limited number of two-dimensional scenarios with both Hunting Agents (HA) and Prey Agents 

(PA) interacting with each other and with the obstacles within the scenarios. The Hunting Agents 

and Prey Agents were developed with the flexibility to instantiate many types of hunters and 

prey. The differences in both the HAs and PAs was with their skills (communications, 

perception, speed, etc.) and their cognitive abilities. Finally, the HAPEE was used to evaluate 

two hunting algorithms: the Lion Optimization Algorithm (LOA) and the Grey Wolf 

Optimazation (GWO) algorithm. The experimental results show that the LOA is more resilient to 

obstacles than is the GWO. In the presence of obstacles, the lionesses were more reliable in 

completing joint convergence onto the prey (with the Alpha attacking first followed by the Beta). 

While the wolves had a lower convergence rate, they displayed an ability to recover from the 

confusion caused by obstacles to finally complete convergence (though it took much longer). 

Thus the lionesses either succeeded or failed to converge, whereas the wolves could initially fail 



vi 

to converge, but then re-engage and succeed to converge at a later attempt. So while the lionesses 

were fairly binary in success or failure to converge on the prey, the wolves displayed a broader 

tolerance to recover from failure to finally converge onto the prey.      

 

 

 

 

 

 

 

 

 

  



vii 

PREFACE 

This research was conducted to determine the feasibility of developing a comprehensive hunting 

environment within which to test search, hunt, and evasion algorithms. The NetLogo Agent-

Based-Modelling environment was chosen as it is open-source and very widely used by the 

academic community. By restructuring the NetLogo code into the Belief, Desire, Intent (BDI) 

framework, it is hoped that this research will enable future academics to develop increasingly 

complex hunting environments and help learn and test hunting algorithms.  

This thesis paper should be read in conjunction with the NetLogo model which was programmed 

using NetLogo version 6.0. The NetLogo model can be downloaded from the NetLogo 

Modelling Commons at http://modelingcommons.org/account/login under the title of Hunting 

Algorithm Performance Evaluation Environment (HAPEE).  

 

 

 

 

 

 

 

 

 

 

 

 

  

http://modelingcommons.org/account/login


viii 

TABLE OF CONTENTS 

         Page 

Approval Page..................................................................................................................... ii 

Dedication........................................................................................................................... iii 

Acknowledgements............................................................................................................. iv 

Abstract................................................................................................................................ v 

Preface................................................................................................................................. vii 

Table of Contents................................................................................................................. viii 

List of Tables......................................................................................................................... xi 

List of Figures and Illustrations............................................................................................ xii 

List of Symbols, Abbreviations and Nomenclature.............................................................. xiii 

 

CHAPTER I – INTRODUCTION ....................................................................................... 1 

Research Problem...................................................................................................... 1 

Research Uniqueness................................................................................................. 2 

The Purpose of Research........................................................................................... 2 

Hypothesis................................................................................................................. 3  

Organization of the remaining chapters..................................................................... 3 

CHAPTER II – REVIEW OF RELATED LITERATURE................................................... 4 

Related Work............................................................................................................ 4 

 Autonomous Agent Design Theory and Architectures................................. 4 

 MAS Design Environment............................................................................ 5 

 Search, Hunting and Evasion Algorithms..................................................... 6 

Current Research ............................................................................................... 7 

 Autonomous Agent Design Theory and Architectures.................................. 7 



ix 

 MAS Design Environment............................................................................ 8 

 Search, Hunting and Evasion Algorithms..................................................... 9 

Definition of Terms....................................................................................................11 

Summary.................................................................................................................... 12 

CHAPTER III – METHODOLOGY ................................................................................... 14 

BDI Architecture for NetLogo.................................................................................. 14 

NetLogo Design Environment................................................................................... 16 

 Perceptions..................................................................................................... 16 

 World Agent................................................................................................. 21 

 Generic Agent............................................................................................... 23 

 Prey Agent.................................................................................................... 23 

Hunter Agent................................................................................................. 24 

Algorithms................................................................................................................. 26 

 Pack Leader Hunting Techniques.................................................................. 26 

 Lion Optimization Algorithm........................................................................ 27 

 Grey Wolf Optimizer Algorithm................................................................... 27 

CHAPTER IV – RESULTS ............................................................................................... 29 

BDI Architecture for NetLogo.................................................................................. 29 

NetLogo MAS Design Environment......................................................................... 30 

Algorithms Evaluation............................................................................................... 30 

 Lion Optimization Algorithm........................................................................ 30 

 Grey Wolf Optimizer Algorithm................................................................... 31 

CHAPTER V – DISCUSSION   .......................................................................................... 32 

BDI Architecture for NetLogo MAS Design Environment....................................... 32 

 Beliefs and Desires........................................................................................ 32 



x 

 Perceptions and Beliefs................................................................................. 33 

 Intentions, Plans, and Actions....................................................................... 34 

 Actions, States, and Perceptions.................................................................... 35 

 State Based Function Cycles......................................................................... 35 

 State Based Hunting, Task Focusing, and Hunting Algorithm Resilience.... 36 

Deliberate Cycle Timing and Persistent Memory......................................... 37 

Algorithms Evaluation............................................................................................... 37 

 Lion Optimization Algorithm........................................................................ 38 

 Grey Wolf Optimizer Algorithm................................................................... 38 

 Perception and Search Algorithms................................................................ 39 

CHAPTER VI – CONCLUSIONS AND RECOMMENDATIONS ................................... 41 

Conclusions ........................................................................................................... 41 

Suggestions for Further Research ....................................................................... 42 

REFERENCES ........................................................................................................... 45 

APPENDIX A – Algorithm Test Results Code..................................................................... 47 

APPENDIX B – HAPEE NetLogo Code.............................................................................. 49 

  



xi 

LIST OF TABLES 

         Page 

1. Procedures Summary for the HAPEE....................................................................... 30 

2. Summary of LOA evaluation results......................................................................... 31 

3. Summary of GWO evaluation results........................................................................ 31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



xii 

LIST OF FIGURES AND ILLUSTRATIONS 

         Page 

1. Concept Map of the Literature ................................................................................. 4 

2. Search Patterns........................................................................................................... 6 

3. BDI Architecture for NetLogo.................................................................................. 14 

4. Visual Scanning Algorithm........................................................................................18 

5. Graph of Sound Level vs. Distance.......................................................................... 19 

6. Hunting Agent Olfactory Sense............................................................................... 20 

7. World Agent Interface.............................................................................................. 21 

8. World Agent – Setup................................................................................................ 22 

9. World Agent Deliberation Cycle............................................................................... 23 

10. PA Activity Cycle...................................................................................................... 23 

11. HA Activity Cycle.................................................................................................... 24 

12. HA State-Based Hunting Cycle............................................................................... 25 

13. Functional Cycles within the Overall Life Cycle...................................................... 36 

14. LOA fitted with a Linear Curve................................................................................ 38 

15. GWO fitted with Linear Curve................................................................................. 38 

 

 

  



xiii 

LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE 

 

AA   Autonomous Agent 

BDI  Belief, Desire, Intent 

GA  Generic Agent 

GWO  Grey Wolf Optimization 

HA  Hunting Agent 

HAPEE Hunting Algorithm Performance Evaluation Environment  

LOA  Lion Optimization Algorithm 

MAS  Multi-Agent Systems 

NetLogo MAS development environment 

PA  Prey Agent 

WA  World Agent 

 

 

 

 

 

 

 

 

 

 

 



1 

CHAPTER 1 

INTRODUCTION 

Research Problem 

The study of hunting techniques has long been the pre-occupation of mankind. Fundamental to 

its survival, humanity’s skill in this field has distinguished it above all other life on Earth. The 

study of these techniques over the millennia has evolved into well-defined techniques for 

searching, hunting, and evasion. Examples of these techniques have been captured in literature 

such as The SAS Handbook of Tracking & Navigation (Wilson, 2002). Employed in various 

environmental conditions, each corresponding algorithm offers strengths and weaknesses 

depending on both the skills of the hunter and that of the prey being hunted.  

Though humanity has evolved hunting techniques well beyond melee weapons, the essence of all 

hunting in the animal kingdom remains that of hand-to-hand combat. While modelling the attack 

of one hunter on one prey is straight forward, the modelling becomes quite complicated once 

there is more than one hunter and they are cooperating in the hunt for the prey. The same is true 

if there are more than one prey cooperating to defeat the hunters. And while many hunting 

algorithms are being proposed to model pack animals (wolves, lions, etc.), the evaluation of their 

effectiveness is being determined by computational (i.e. mathematical) methods only. These 

computational methods are also difficult to adapt to consider complex hunting environments 

(involving obstacles) which have an impact on the effectiveness of the hunting algorithm under 

evaluation. 

Of real benefit would be a Multi-Agent system (MAS) simulation environment which would 

provide a cost-effective alternative to the existing centralized computing methods to further 

evaluate these search, hunting, and evasion algorithms. Also, a MAS simulation environment 



2 

would more accurately represent the decentralized thinking and communication that occurs with 

pack animals in a hunting scenario. In addition, this MAS environment could be more easily 

adapted to include physical obstacles which interfere with hunting, thus provide a better 

understanding of the performance of the hunting algorithms under various environmental 

conditions. 

 

Research Uniqueness  

This research is unique because it proposes to develop a customizable multi-agent environment 

which can be dynamically expanded (i.e., scaled) to include a variety of collaborative agent 

types, each skilled at various search, hunting, and evasion algorithms.  As well, obstacles can be 

included in the hunting environment to test the effectiveness of these algorithms under less than 

ideal conditions; these ideal conditions form the basis of the current computational research. In 

addition, this research proposes to adapt the NetLogo – Agent Oriented Programming 

environment to a Belief, Desire, and Intent (BDI) architecture, which currently does not exist in 

the NetLogo community.  

 

The Purpose of Research 

The purpose of this research is to explore the feasibility of developing a simulation environment 

with MAS which can be used to assess the effectiveness of search, hunting, and evasion 

algorithms. This development environment, known as the MAS Hunting Algorithm Performance 

Evaluation Environment (HAPEE), would consist of a World Agent (WA), Hunter Agents (HA) 

and Prey Agents (PA), where the last two agent types would have access to search, hunting, and 

evasion algorithms. The Hunter Agents and the Prey Agents would interact with each other and 



3 

with the environment itself (i.e., the World Agent). The World Agent would be a dynamic 

environment that can be adapted to represent the conditions that exist in real world hunting 

environments. The HAPEE would be programmed in NetLogo and thus provide the tools to 

evaluate the performance of search, hunting, and evasion algorithms. The hunting algorithms 

will consist of the Grey Wolf Optimizer algorithm (Mirjalili, Mirjalili, & Lewis, 2014) and the 

Lion Optimizer Algorithm (Yazdani & Jolai, 2015). All three of the agents (WA, PA, and HA) 

will be structured as closely as possible to the Belief-Desire-Intent (BDI) architecture as detailed 

in Intelligent Agents (Wooldridge, 1999).  The completed HAPEE model would then be 

submitted to the Netlogo development group for inclusion in the Models Library. 

 

Hypothesis 

The hypothesis postulates that NetLogo MAS Development Environment, structured in a 

modified BDI framework, provides a feasible MAS Hunting Algorithm Performance Evaluation 

Environment thus providing an alternative means to test Hunting Algorithms. 

 

Organization of the Remaining Chapters 

The remaining chapters are organized as follows. Chapter II reviews the existing literature and 

current related research. Chapter III describes the methodology of implementing the simulation 

environment with NetLogo and using it to evaluate the effectiveness of the various search, hunt, 

and evasion algorithms. Chapter IV examines the test results of the Grey Wolf Optimizer 

algorithm and the Lion Optimizer Algorithm. Chapter V discusses the findings of the research 

and the results of the algorithm testing. The last chapter concludes the research effort and 

proposes recommendations for further research within this field. 



4 

CHAPTER II 

REVIEW OF RELATED LITERATURE 

Related Work 

The related work in this field can be divided into three main groups as displayed in the Concept 

Map of the Literature in Figure 1 below: 

a. Autonomous Agent Design Theory (denoted by Green Bubbles). 

b. Hunting and Prey Behavioural Algorithms (denoted by Blue Bubbles).  

c. Autonomous Agent and MAS Design Environment (denoted by Black Bubbles).  

 

 

Figure 1:  Concept Map of the Literature 

The various areas of related work are described in more detail in the following sub-sections.  

Autonomous Agent Design Theory and Architectures. While many design models 

exist for Autonomous Agents, the three considered for this research were Belief-Desire-

Intent (BDI), GAIA, and NetLogo.  



5 

GAIA. The GAIA methodology is driven by requirements which are then 

grouped into two main models: the roles model and the interactions model 

[Wooldridge, 2000]. The GAIA architecture was considered because the Hunter 

Prey NetLogo Model, which was designed to evaluate a specific aspect of a 

hunter-prey environment (specifically the Contract Net Protocol), was 

programmed with this model as a framework.  

NetLogo. The NetLogo Agent model is structured along the framework of “setup 

procedures” and “runtime procedures” where the agents’ procedures are grouped 

under these main headings [Wilensky, 1999]. The NetLogo Agent model was 

considered as it was the native model for the NetLogo MAS development 

environment.  

Belief-Desire-Intent. BDI has its origins in the Procedural Reasoning System 

(PRS) and has “proved to be the most durable agent architecture developed to 

date” [Wooldridge, 2009]. The architecture is structured around the beliefs, 

desires, and intentions of the Autonomous Agents. This AA architecture was 

considered because of its current relevance in the MAS field of study. 

MAS Design Environment. Many MAS design environments exist within which to 

implement the agents and some of these environments are aligned with a corresponding 

architecture. Environments of these types are usually purpose built around a specific AA 

architecture. Examples of these include AgentSpeak [Machado & Bordini, 2003], V-Rep 

[Coppelia Robotics, 2017], and NetLogo. Two key aspects need to be considered in 

selecting a MAS Design Environment: the adaptability of the environment to the chosen 

AA architecture and the existence and maturity of the World Agent which controls the 



6 

environment. AgentSpeak [Machado & Bordini, 2003] is a design environment built 

specifically for a BDI architecture which has limited World Agents (these are custom 

built to a specific MAS implementation). V-Rep [Coppelia Robotics, 2017] is a design 

environment based on existing, commercially available robots which is not structured on 

any particular AA architecture. It has a three-dimensional World Agent which controls a 

limited surface area. Because it runs in 3 dimensions, it is computationally demanding 

and can support only a limited number of simultaneous Autonomous Agents. Though 

NetLogo has its native MAS architecture [Wilensky & Rand, 2015], it appears to be 

architecturally agnostic as seen by Wilhelmy, R. et al. (2014) who successfully adapted it 

to the GAIA architecture. It has a dynamic World Agent which can be programmed in 

two (2) and three (3) dimensions. It can also be interfaced with the Arduino robotic 

platforms to extend the AA and MAS into the physical world. 

Search, Hunting and Evasion Algorithms. Many search pattern algorithms exist with 

respect to searching for objects or for prey. These patterns can be for an individual to 

execute by themselves or for groups to execute in a collaborative effort.  Examples of 

search patterns include the expanding square search pattern, the expanding series of 

concentric circles pattern, and the track line pattern (see Figure 2 below).  

 

Figure 2: Search Patterns 



7 

Much literature exists on the hunting techniques of animals and many of these have been 

captured in videos and are available in television programming and most recently on 

YouTube. For example, Mech et al. (2015), have documented the hunting behaviours of 

wolves with respect to various prey types. Another facet of hunting techniques exists in 

modern warfare such as found in the Navy with surface and sub-surface (i.e., submarine) 

hunting methods. The development of evasion techniques has been studied as methods to 

avoid capture, and these are documented in the same manuals that study hunting 

techniques. For modern day land warfare, Wilson (2002) documents the evasion 

techniques used by the Special Air Service (SAS) to avoid capture while being pursued.  

 

Current Research 

Autonomous Agent Design Theory and Architectures. Research in Autonomous 

Agents has led to several design architectures, amongst them is GAIA, NetLogo, and 

Belief-Desire-Intent (BDI). While each has strengths and weaknesses, one of the major 

challenges of any AA architecture is in its implementation.  

GAIA. Using NetLogo, Wilhelmy et al. (2014) structured the code for their MAS 

environment (hunter-prey scenario) according to the GAIA architecture. The 

result was lists of procedures roughly organised under individual agent types 

(hunter and prey) and functions (such as establishing the Contract Net). While the 

GAIA architecture worked for a small MAS environment (ie. hundreds of lines of 

code), it is questionable how scalable it is to larger code sets (ie. thousands of 

lines of code).  



8 

NetLogo. Much of the current research using NetLogo are but hundreds of lines 

of code and utilize the native architecture proposed by Wilensky & Rand (2015), 

but as with GAIA, given thousands of lines of code, the MAS would likely 

become unmanageable. 

Belief-Desire-Intent. The BDI framework proposed by Wooldridge (1999), 

offers a structure that can perhaps be adapted to the NetLogo MAS design 

environment and used to organize thousands of lines of code.  

Also, structured around the BDI architecture, Bordini and Hubner (2005) 

documented the processes within AgentSpeak and correlated them. In their model, 

Actions taken by the AA affect the environment including driving new 

Perceptions. While memory has been allocated for Beliefs, and the Intentions 

section hold the plans as they are selected from the Plans Library, there is no 

overt memory or process to account for the determination of desires.                 

The challenge then will be to see if the BDI architecture as proposed by Bordini 

and Hubner (2005) can easily be adapted to the NetLogo MAS design 

environment. 

MAS Design Environments. In step with the evolution of AA architectures, the 

development of MAS design environments has also evolved over the last decade. 

Research continues to evolve in each of the three previously identified MAS 

environments: AgentSpeak, V-Rep, and NetLogo. Each of these design environments 

also have expanding libraries of reference material. Current research into expanding 

AgentSpeak has been in applicable World Agents and agent communication protocols 

(over the Internet). V-Rep continues to expand its library of physical robots as well as the 



9 

growing array of sensors that can be integrated into the robotic platforms. Current 

research in NetLogo over the last several years has led to significant expansion of the 

design environment. This has been fuelled by the fact that NetLogo is highly suitable for 

many academic disciplines ranging from the physical sciences (ex. physics) to the social 

sciences (ex. behavioural psychology). Because NetLogo appeals to such a broad range 

of scientists, it has been designed with simplicity in mind, to be used by non computer 

science researchers. One of the simplicities of its design is the fact that NetLogo is 

structured as a set of procedural calls. While vary basic, this structure is very easy to 

understand and enables code reuse between the various AAs. Several hunting projects 

have been recently completed in NetLogo such as the “Hunter-Gatherer Model” 

[Hosford, 2013] and “Ants at War” [Thomas, 2017]. 

Search, Hunting and Evasion Algorithms. Several hunting algorithms have been 

developed that postulate the hunting patterns of the followers (known as Betas, Deltas, 

and Omegas). An example is Oftadeh et al. (2010) who proposes a meta-heuristic 

optimization algorithm to converge the pack of hunters onto the prey. While these extend 

to land and sea based hunters, the land based algorithms in consideration for this research 

are the Lion Optimization Algorithm (LOA) [Yazdani & Jolai, 2015] and the Grey Wolf 

Optimizer (GWO) [Mirjalili et al., 2014] Algorithm.  

Pack Leadership. The leadership within the pack is important as the hunting 

algorithms are often based on the movements of the pack leader. Selection of the 

pack leadership is critical for hunting animals as their very survival often depends 

on the skill of the leaders. The research conducted by Wilhelmy et al (2014) had 



10 

as a goal the establishment of hunting groups, and consequently pack leadership, 

through the Contract Net Protocol.  

This research, which is focused on pack animals, assumes dominant leadership, 

and thus loyalty to the pack leader. Thus, when the pack leader summons the pack 

to hunt, there is no question of loyalty (or contract negotiation). Thus, the 

determination of pack leadership is out-of-scope of this research and, while 

important, is left to future development. 

Pack Leader Hunting Techniques. Also of current research is that of the 

hunting algorithms, which have seen recent development, in the last ten years, 

within the scientific community. The research has been focused on the hunting 

algorithms that concern the follower hunters, and not with the pack leaders 

themselves. This is an important distinction because, while these algorithms 

propose the movement of the follower hunters, they do not suggest how the alpha 

hunter leads the pack to hunt their prey. The insight into the lead hunter’s hunting 

techniques is left to other means of resolution. So, while the algorithm 

determining the follower hunters movement are given, the hunting strategy of the 

lead hunters are left to be developed. To address this critically important issue, the 

HAPEE must include some basic algorithms that can be used by the alpha hunter 

in leading their pack through a successful hunt. 

Evaluation of Current Hunting Algorithms. The evaluation of current hunting 

algorithms is currently based on “solving complex optimization problems with 

metaheuristic algorithms...inspired by various phenomenon of nature” [Yazdini 

and Jolai, 2015]. Yasdini and Jolai (2015), also state that “Some algorithms 



11 

provide better solution for some particular problems compared with others. 

Therfore, pursuing for new optimization techniques is an open problem”. The 

author agrees that further optimization techniques should be developed but also 

proposes that an alternative method for evaluating these algorithms be developed. 

In effect these current optimization techinques / algorithms establish a central 

control for the agents under observation, rather than the decentralized cooperation 

that exists in reality (with any hunting animal such as lionesses and wolves). As 

these evaluation environments are run through centrally controlled algorithms, a 

requirement exists to develop an evaluation environment that is decentralized, 

more accurately representing a real hunting environment, where hunting 

algorithms can be tested with cooperating Autonomous Agents (ie. within a 

Multi-Agent System).    

Definition of Terms  

Autonomous Agents (AA). These are computer agents with sensors that react to input based on 

the type and level of the sensory input and on their programming.   

Belief-Desire-Intent (BDI). This is an AA design theory and architecture where the AAs are 

structured as having Beliefs, Desires, and Intentions.  

Contract Net Protocol. This is a negotiation protocol where AAs decide which AA will be the 

leader for the session activity (ex. Hunt).   

GAIA. This is an AA design theory and architecture where the AAs are structured as 

requirements grouped into the roles model and the interactions model. 

Generic Agent (GA). Not a true AA as it is not instantiated, but is instead employed to enable 

code reuse amongst the other agents (PA and HA).   



12 

Grey Wolf Optimization (GWO). A hunting algorithm that predicts the convergence of omega 

wolves on a prey.  

Hunting Agent (HA). This is an AA which hunts Prey Agents as a food source.  

Lion Optimization Algorithm (LOA). A hunting algorithm that predicts the convergence of a 

beta lioness on a prey. 

Multi-Agent Systems (MAS).  This is a grouping of AAs which interact amongst each other, 

typically to accomplish a common goal. 

Observer. This is the human that is establishing the World Agent parameters and running the 

MAS environment.  

Prey Agent (PA). This is an AA which hunts stationary objects (such as apple trees) as a food 

source. 

World Agent (WA). This is an AA which takes input from the Observer, establishes the MAS 

environment, and brokers the interactions between the various PAs and HAs throughout the 

runtime.   

Summary 

A review of the literature gave indications for the establishment of selection criteria for both the 

design architecture and environment in the evaluation of existing search, hunt, and evasion 

algorithms. The selection of an appropriate AA architectural model and MAS design 

environments is important because the HAPEE is going to need to be highly scalable. Also 

important is the ability to reuse code within the design environment in the instantiation of 

different types of agents. The ability to reuse code is also key to the scalability of the HAPEE 

model otherwise the code size could become repetitive, large, and unmanageable. The existing 

research also identified that a design environment should be chosen that can handle any type of 



13 

search, hunting, and evasion algorithms. With regards to selecting algorithms for pack 

leadership, the current research indicated that this could be addressed if we instantiate basic 

hunting procedures for the pack leaders.  

  



14 

CHAPTER III 

METHODOLOGY 

Using the NetLogo MAS design environment, the autonomous agents were programmed within 

the BDI architecture. Five types of AAs were developed: The World Agent (WA), the Patch 

Agent, the Generic Agent (GA), the Prey Agent (PA), and the Hunting Agent (HA). 

BDI Architecture for NetLogo 

To structure the NetLogo code within the BDI framework, adjustments to the BDI architecture as 

established by AgentSpeak were required, which introduced the Deliberation Cycle. Without a 

deliberation cycle, updates to beliefs did not consistently cascade through the autonomous agent. 

In a sense the Deliberation Cycle represents the AA’s awareness, in that it is awake and 

constantly evaluating its environment through a cyclical process.  

 

Figure 3: BDI Architecture for NetLogo 

Perceptions and Sense Memory. There are two ways in which perceptions can be 

processed by the autonomous agent: as a driving function or through cyclical analysis. A 



15 

driving function not only updates the AA’s beliefs but it then forces a deliberation cycle 

(aka the “filter function” in BDI) to conduct a review of intentions and thus desires. In a 

sense, it simulates pain. With analogy to a bee sting, the perception of the bee stinging 

updates the belief that the AA is under attack, which then forces a deliberation cycle, 

resulting in the change to intention and thus desire (to crush the bee). Cyclical analysis is 

driven by the Deliberation Cycle, representing a cycle of awareness which refreshes the 

Beliefs, based on current perceptions, through the Belief Review Function. The Hunting 

Environment utilizes both types of perception processing (driving function and cyclical 

analysis) to influence the AAs. Perceptions are stored in a very short-term memory called 

the Sense Memory which is updated with every Deliberation Cycle. Thus, it is highly 

ephemeral.  

Beliefs and the Belief Review Function (BRF). Beliefs represent a longer-term memory 

of the AA’s environment and these are updated either through a driving function 

(originating from Perceptions) or from a Belief Review Function (originating from a 

Deliberation Cycle). Beliefs are internal to the AA and they cannot be perceived within 

the World Agent by other AAs. As shown in Figure 3, Beliefs have influence in the 

Deliberation Cycle, DRF, and IRF. 

Deliberation Cycle. Representing a cycle of awareness, the Deliberation Cycle takes 

input from the Beliefs, Desires, and Intentions, to then drive the Believe Review 

Function, the Desire Review Function, and the Intention Review Function through a 

review cycle. The Deliberation Cycle is intrinsically built into the NetLogo design 

environment and is activated (one cycle at a time) through the interface to the World 

Agent. 



16 

Desires and the Desire Review Function (DRF). Like a Belief, a Desire is a state which 

drives the AAs behaviour. A Desire is a highly persistent state that only changes once a 

need has been met. In the case of Prey Agents and Hunter Agents, the Desire to eat food 

drives their hunting behaviour (either for apples in the case of PAs and for deer in the 

case of HAs).  Desires influence the Deliberation Cycle and the IRF. 

Intentions and the Intention Review Function (IRF). An AA’s Intentions are the 

courses of action that it intends to take in order to fulfill its desires. While these could be 

handled as a memory state, for the HAPEE, the AA’s Intentions were procedural calls (to 

a given Intention) within which were further calls to one or more Plans. 

Plans. Each Plan details a series of Actions that the AA will take that change the State of 

the AA or that of the World Agent.  

Actions and States. The AA takes actions on itself or on the World Agent. Changing 

“heading” is an example of an Action an AA takes on itself while “eating” apples from a  

fruit tree is an example of an Action taken on the World Agent (through a Patch Agent). 

These Actions change the State of the AA or to the World Agent. Though more 

ephemeral, a State is also a message (such as a sound) as it moves through the World 

Agent. 

NetLogo Design Environment 

Perceptions. Four senses were developed for the Prey and Hunting Agents: visual, 

auditory, olfactory, and touch. Only the visual and auditory senses were fully enabled, 

touch was simply enabled through proximity, and while the World Agent was 

programmed to track odor types and levels, the ability to detect these was not enabled for 



17 

the HAs. Thus, only the visual, auditory, and touch senses were used in evaluating the 

hunting algorithms. 

Sight. The sense of sight was enabled with two visual scanning algorithms which 

were developed for the agents. The first was a reactionary algorithm and the 

second was an analytical algorithm. They were both originally developed to 

enable the prey to find their plant food source (ex: apple tree), they were then 

adapted to the hunters. Both algorithms, described in PA_perceive_scan1 and 

PA_perceive_scan2, use the NetLogo commands of patch-ahead, patch-left-and-

ahead, and patch-right-and-ahead to sequentially scan the ground in front (and left 

and right) of the Agent until a visual limit is reached. As shown in Figure 4 

below, the patch-left-and-ahead establishes the left arc of the visual field and the 

patch-right-and-ahead establishes the right arc. The scan starts in the middle (from 

near to far distance) and sweeps left (from middle) and then right (from middle) 

by incrementing first by 5 degrees and then 10 degrees (for the remainder). The 

algorithms stop scanning along a heading if it encounters an object (such as a rock 

feature or tree feature) that the agent should not be able to see through. The 

advantage of the algorithm is that it is simple to implement, the disadvantage is 

that it covers the squares (closest to the agent) several times while missing 

squares at distance (thus creating blind spots).  



18 

 

Figure 4: Visual Scanning Algorithm 

The analytical scanning algorithm saves the objects perceived within the visual 

field of the agent and stores these in a perception array. The data in the perception 

array is then analysed later through any Belief Review Function (in this case 

PA_brf_food within the PA_brf_cycle) which uses it to identify patches of a 

certain colour. 

Sound. The sense of hearing was enabled in the HAs through the 

HA_action_talk-prey_found procedure which would start the cycle of sound 

propagation with the WA procedure WA_brf_sounds-prey_found (which stores 

the sound in a State array that the WA initializes during setup through 

WA_brf_sounds-current-initialize and WA_brf_sounds-previous-initialize ). The 

WA updates the sounds every Deliberation Cycle through the WA_brf_sounds-

update_Current-to-Previous procedure and brokers these sounds with the Patch 



19 

Agents through the WA_Patch_brf_sounds procedure. This last procedure 

determines the residual sound level at the patch on which a PA or HA are 

occupying and lets them know whether a sound can be heard. The sound 

attenuation is given in Figure 5 below where a Level 1 sound (representing a 

whisper) can be heard on an adjecent square and a Level 7 sound (very loud) can 

be heard 200 square away. Note that this sound propagation algorithm can be 

adjusted to conform to any type of physical environment (as deserts and jungles 

have very different sound propagation properties).   

                                                                

Figure 5: Graph of Sound Level vs Distance. 

Smell. Each PA (through the GA) is given a unique scent (with GA_State_Scent-

Type) and a scent level (with GA_State_Scent-Level). As a PA moves around the 



20 

WA, they leave their scent on the Patch Agents (through 

WA_Patch_perception_scent-initialize and WA_Patch_brf_scent_initialize). The 

level of smell gradually fades with WA_Patch_brf_scent_fade. An HA can detect 

these residual smells by asking the Patch (which it occupies) for any smells it 

holds. As long as the odor has not faded below the threshold of its olfactory 

capability, the HA will be able to detect that the PA had previously been on that 

same patch. As shown in Figure 6 below, the HA can then move in a circular 

pattern to determine the adjacent squares that also contain the odor and also 

determine their intensity level.  

 

Figure 6: Hunting Agent Olfactory Sense. 

As the smell fades with time, the HA will be able to determine the vector of the 

PA from lowest smelling patch (first patch occupied by the PA) to the highest 

smelling patch (last patch occupied by the PA). Once the HA determines the PA’s 

vector, it simply follows the trail of odor (which is increasing) towards the current 

location of the PA.     

Touch. The sense of touch was enabled with PAs and HAs through the 

occupation of the same patch. In the case of an HA and PA occupying the same 

patch, the call to procedure WA_Patch_brf_kill-prey set the patch to colour 19 

thus denoting that the two Agents were collocated.   



21 

World Agent. The Human Operator (ie. Observer) interacts with the HAPEE through the 

World Agent’s interface (shown in Figure 7). The buttons under Terrain (under the 

Environmental Setup Options (Perceptions) heading) are used to establish and test the 

density of the terrain features in the HAPEE. The buttons under the Weather heading are 

not active. The buttons under the heading Agent Setup Options (Perceptions) are used to 

establish the number of Prey Agents (and types) and Hunter Agents (and types) that will 

be instantiated in the HAPEE. The buttons under the heading World Agent Controls 

(Deliberation) are used to setup or reset the HAPEE or to cycle the HAPEE either once or 

continuously. As their title describes, the procedures that these buttons control are either 

located in the Perceptions or the Deliberation areas of the World Agent’s code.  

 

Figure 7: World Agent Interface. 

The sequence of the setup of the World Agent is important and is shown in Figure 8. It is 

activated by pressing the Setup/Reset button. First the HAPEE is fully cleared of any 



22 

remnant Agents which would otherwise cause significant interference. Next the 

selections on the interface buttons are transferred to their equivalent WA variables. Then 

the sound arrays are initialized.  

 

Figure 8: World Agent – Setup. 

Next the Hunting Ground is initialized with the terrain feature densities selected prior to 

pressing the Setup/Reset button. Finally, the Prey Agents are instantiated followed by the 

Hunter Agents. 

The World Agent Deliberation Cycle is activated once by pressing the “Go Once” button 

on the interface or continuously activated by pressing the “Go” button. At the start of its 

cycle it updates the patches through the WA_Patch_deliberate_cycle-start procedure 

which in turn: updates the sounds on patches, changes the colour of any patches with an 

HA occupying it, fades scents on patches, and grows food on those patches that are fruit 

trees.  Each Prey Agent then steps through its Deliberation Cycle followed by a change in 

patch colour to that of the PAs.  



23 

 

Figure 9: World Agent Deliberation Cycle. 

All the HAs then step through their Deliberation Cycles followed by a return of all 

patches to their original colours. This cyclical process is detailed in Figure 9.  

Generic Agent. The GA was developed to reuse code that is shared across all AAs 

regardless if they are PAs or HAs. While structured as a BDI AA, it is never instantiated 

in HAPEE. The GA is used to establish Design states as well as Belief states related to 

normal animal functioning (hunger, thirst, energy levels, etc.) 

Prey Agent. The PA was designed around a simple Rest-Search-Eat cycle (Figure 10) 

which is activated by the Desire for food or water (GA_State_Energy-Current and 

GA_State_Water-Current).   

 

Figure 10: PA Activity Cycle. 



24 

While the PA has knowledge of the direction of the river, it searches for food based on a 

circular pattern of movement (like that of a partridge). When a PA encounters an HA, its 

evasion technique is simply to turn 180 degrees away from the HA and run away until 

exhausted.   

Hunter Agent. The HA has a more complicated activity cycle as seen in Figure 11. 

Starting from Rest, the HA becomes hungry and begins the search for food. If it hears 

another wolf has found prey, then it will converge on that wolf. If it sees prey then it will 

alert the wolves as to its presence. Once the wolves converge on the Alpha wolf, they will 

encircle and then approach the prey. Once they get close enough, they will strike the prey 

and kill it. Eating terminates the cycle and the wolves return to a state of rest.   

 

Figure 11: HA Activity Cycle. 

Applied to one wolf, this cycle may seem simple. However, it is complicated by the fact 

that it controls the cohesion and the sequencing of the pack. This is particularly true for 

the encircle, approach, and strike phases of the hunt. To synchronize the activities of the 

wolves (or the lionesses), the code was developed around a hunting state 

(HA_Belief_Hunt-Mode) which is used to control all the HAs involved in the hunt. This 

detailed control process is depicted in Figure 12. While HAs can be at different states, the 

transition from one state to the other is dependent on the disposition of one HA with 

respect to the other (particularly the Alpha). 



25 

 

Figure 12: HA State-Based Hunting Cycle. 

For instance, the wolves (or Beta lioness) will not transition to the strike phase unless the 

Alpha is seen striking the prey first. As discussed later, the Alpha typically strikes the 

prey from behind, thus initiating the strike from the other wolves (or Beta lioness). So, 

the Alpha roughly controls the pack, not through the use of messages, but through a state 

based process which controls the phasing of the overall hunting cycle.   

 

 

 



26 

Algorithms 

As search algorithms lead the hunter to its prey, they form key building block as a precursor to 

hunting algorithms. Whether this is a wolf hunting a deer or a deer hunting an apple tree, the 

search algorithms are based on a specific sense (visual, hearing, smell/taste) and a corresponding 

movement pattern. In addition, a search algorithm can be completed alone or as a group (thus 

requiring communication). 

Pack Leader Hunting Techniques. As discussed in Chapter 2, the hunting technique of 

the alpha hunter is critical to the execution of the hunting algorithms of the members of 

the hunting pack. While these are not given, they can in fact be deduced from the hunting 

algorithm of the follower (beta and omega) hunters, as these give strong indications of 

the alpha’s hunting technique. 

Alpha Lioness. For the Lion Optimizer Algorithm, the Beta hunter relies on the 

linear progression of the Alpha towards the prey. We also know that the Beta 

hunter strikes the prey in the face (by biting their snout) thus the Alpha’s strike is 

180 degrees from the prey’s heading. The Beta only strikes once the Alpha lioness 

pounces on the prey’s back end, sinking its claws into the rump of the animal and 

attempting to bite into the prey’s lower spine (with intent to paralyse its back 

legs). We can therefore deduce that the Alpha hunter approaches the prey linearly 

from behind at 0 degrees offset from the prey’s heading. This deduction is applied 

to the Alpha lioness in establishing her hunt algorithm.  

Alpha and Beta Wolves. The Alpha wolf has a similar approach to the Alpha 

lioness in that they attack their prey from behind; this occurs naturally during the 

pursuit where the Alpha wolf is chasing the prey. Thus, it seemed a reasonable 



27 

deduction to mirror the Alpha wolf’s hunting algorithm to that of the Alpha 

lioness.  With the Alpha at the rear of the prey, the two Beta wolves take up 

position in the front and on either side of the prey. Prior to attacking, the two Beta 

wolves, Alpha wolf, and the prey form a “Y” with the prey at the junction point.   

Lion Optimization Algorithm. The Lioness Hunting Algorithm controls the Beta’s 

movement during the hunting cycle. Simple in its design and easily executed, the Beta 

lioness simply gets to a position in front of the prey which is inline with the Alpha 

lioness. As the Alpha approaches the prey from behind, the Beta lioness distracts the prey 

by approaching it from the front, matching the Alpha’s distance from the prey. Once the 

Alpha pounces on the back of the prey, the Beta pounces on the front, sinking her claws 

into the shoulders of the prey, and biting its snout (in what appears to be an attempt to 

limit the prey’s air intake).  

Grey Wolf Optimizer Algorithm. The Grey Wolf Optimizer algorithm controls the 

Omega’s movement and is in relation to the positions of the Alpha and two Beta wolves. 

With the Alpha directly behind the prey, the algorithm essentially places the Omega wolf 

directly in front of the prey which serves to distract it. Assuming that the Omega wolf has 

perfect visual targeting, the value of “A” is set to one (1) and the value of “C” is set to 

zero (0). This greatly simplifies the GWO to its fundamental structure by removing any 

ambiguity in the precise location of objects (whether prey, another wolf, or obstacles 

such as trees or rocks). It effectively localizes objects to the patch (square) on which they 

are located. This works well in the HAPEE because this is essentially how the visual 

perception is designed to function; where visual ambiguity is controlled by the visual 

perception algorithm and there is no additional requirement to further control the visual 



28 

ambiguity through the GWO. Thus, the GWO (equation 3.7) sums each of the position 

vectors from the Omega to the Alpha and Betas and then divides this by a factor of 3. 

 

 

  



29 

CHAPTER IV 

RESULTS 

BDI Architecture for NetLogo 

With over four thousand lines of code for this project, the architecture provides a structured 

framework which is highly scalable. Organized into five major sections, additional sections 

could easily be added. As per Appendix-B, the code started with the declaration of variables for 

each of the five agent types: globals (for the World Agent), patches-own (for the Patch Agent), 

turtles-own (for the Generic Agent), hunted-own (for the Prey Agent), and hunters-own (for the 

Hunter Agent). The second section was the World Agent, the third section the Generic Agent, the 

fourth section the Prey Agent, and the final section was the Hunter Agent. 

Each agent was sub-structured along its BDI functions where these were ordered alphabetically 

to simplify look-up. The sub-sections for each agent were structured as follows: 

 a. Actions; 

 b. Belief Review Function (BRF); 

 c. Deliberation; 

 d. Desire Review Function (DRF); 

 e. Intention Review Function (IRF); 

 f. Perceptions; and 

g. Plans. Note that this section was only used for the World Agent. The GA, PA, and 

HA called Actions directly from the IRF. 

The BDI Architecture proved conducive to supporting code reuse through the Generic Agent.  

 

 

 



30 

NetLogo MAS Design Environment 

As we can see from Appendix-B, the result of programming the HAPEE was the generation of 

roughly 150 procedures. The adherence to nomenclature rules to distinguish the procedure from 

each other was very important. Table 1 below denotes the types and corresponding number of 

procedures used to program the HAPEE. 

AA Actions BRF Deliberate DRF IRF Perceptions Plans Total 

WA 15 16 4 0 3 11 5 54 

Patch Agent 0 10 3 0 0 3 0 16 

GA 8 5 1 2 1 0 0 17 

PA 3 5 1 2 8 1 0 20 

HA 13 11 5 0 11 4 0 44 

Total 39 47 14 4 23 19 5 151 

Table 1: Procedures Summary for the HAPEE. 

Note that the there is no DRF for the HAs and this was purposely done to ensure these were 

always hungry and thus motivated to hunt.  

Algorithm Evaluation 

The results of the algorithm evaluation are documented at Appendix – B. The Lion Optimization 

Algorithm was tested first followed by the Grey Wolf Optimization algorithm.  

Lion Optimization Algorithm 

The following table is a summary of the results of the evaluation of the Lion 

Optimization Algorithm documented in Appendix – B.   

 

 



31 

(A) 

Trial Group 

(B) 

Vegetation Density 

(%) 

(C) 

Percentage of 

Convergences (%) 

(D) 

Average Number of ΔTicks / 

Convergence 

1 0 100 0 

2 1 90 -0.1 

3 2 90 +1.2 

4 3 60 +0.2 

5 4 50 +0.8 

Table 2: Summary of LOA evaluation results 

The results of the lionesses show that as the vegetation density increases, the percentage 

of convergences decrease with only a slight increase in the amount of time to complete 

the convergence.  

Grey Wolf Optimizer Algorithm 

The following table is a summary of the results of the evaluation of the Grey Wolf 

Optimization algorithm documented in Appendix – B.   

(A) 

Trial Group 

(B) 

Vegetation Density 

(%) 

(C) 

Percentage of 

Convergences (%) 

(D) 

Average Number of ΔTicks / 

Convergence 

1 0 100 0 

2 1 70 +1.4 

3 2 50 +0 

4 3 40 +14.0 

5 4 30 +26.3 

Table 3: Summary of GWO evaluation results 

The results of the grey wolves show that as the vegetation density increases, the 

percentage of convergences decrease but with a significant increase in the time to 

complete the convergence. 

 

 

 

  



32 

CHAPTER V 

DISCUSSION 

For the discussion, the sections on BDI architecture and the NetLogo MAS design environment 

are treated together as the HAPEE is a combination of these two main functions. 

BDI Architecture for NetLogo MAS Design Environment 

Though the code at Appendix – B is lengthy, the adapted BDI Architecture for NetLogo has 

worked well to structure it and make it manageable. One of the means to keeping the code 

manageable was to ensure that states were only modified within their functional zones. This 

meant that Beliefs could only be modified in a BRF procedure, Desires in a DRF procedure, 

Intentions in an IRF procedure, and States within an Action procedure. While the occasional 

exception arose, the change of a state within a procedure not functionally related to that state had 

to occur through a call from a procedure that was functionally related. That way the state change 

was contained within the functionally related procedure (though directly executed by the 

embedded non-functionally related procedure). The BDI architecture simplified debugging as the 

state changes were contained to their functional areas of the code. Adapting the BDI Architecture 

to NetLogo also generated the following analysis during implementation.   

Beliefs and Desires. While a belief and a desire are essentially the same in that they are 

both state functions (held in memory), it is the change in these states that reveals their 

differences. A change in a belief drives changes in desires (one or more), whereas a 

change in a desire drives a change in intentions. In a sense intentions are a function of 

desires which themselves are a function of beliefs. Intentions are also a direct function of 

beliefs and available plans. This is captured in the equation: 

intention = (desire(belief), belief, plan)                                                          (1) 

which effectively summarizes the arrows pointing into the IRF in Figure 3.  



33 

Perceptions and Beliefs. Three methods were found of handling the way perceptions 

updated beliefs. The first method had two distinct functions, the Perceptions and the 

Belief Review Function, with a clear delineation between the functions. In this case 

changes to variables occurred within their respective functions but were copied to the 

variables in the other function to process them (ie. modify them). The second method 

combines the Perception variables directly into the BRF. The third method, opposite to 

the second method, has the Belief variables being directly updated within the Perception 

functions. The advantage of the first method is that code is separated and evolution of the 

perception functions can occur independently from the evolution of the belief review 

functions. Another advantage is that the results of a perception cycle can be used by 

several BRFs. The disadvantage is a requirement for additional memory and 

computational inefficiency due to the belief review functions having to examine 

essentially the same information an additional time to then change the beliefs; this 

increases the amount of code required and introduces additional latency (due to increased 

processing requirements). The second and third methods intertwine the variables of the 

Perception and Belief Review Functions, which has the advantage of being more 

computationally efficient and requiring less code. The disadvantage of these two methods 

is that the intertwined code becomes more difficult to evolve as they must be advanced 

together (there is no longer a clean interface between the two). Another disadvantage is 

that the results of a perception cycle cannot be used by more than one BRF; each BRF 

needs to run its own perception cycle. With a lot of BRFs, this would also become highly 

inefficient.  



34 

Examined from the perspective of an animal, these three methods of handling Perceptions 

and Beliefs are the difference between a learning animal and a reflex animal.  A visual 

animal with high learning ability, will take a picture of its environment and then apply 

several BRFs to analyse it (and consequently update its beliefs based on the analysis). A 

visual animal with high reflex abilities, takes no picture of its environment, it turns 

perceptions directly into beliefs and then reacts accordingly. This simple code structuring 

gives indications as to the natural selection of higher intelligence vice faster reflexes. An 

animal of higher intelligence will have the ability to take one perception and analyse it to 

determine different conclusions (but at the cost of reaction time) while an animal of 

higher reflex will use a single perception to derive a single conclusion.  

The method implemented in the HAPEE was that of a clear separation of the Perception 

and BRF functions. The perception data was brokered through the GA variable 

GA_Perceive_Visual-Scan which enabled the reuse of the visual scan data with the 

advantage that it permitted many Belief Review Functions to search that data set to make 

modifications to the Agent’s beliefs (it was thus very efficient for the HAs as they had 

several BRF that needed to access the scan). The disadvantage was an increased time lag 

between the scan and its analysis by a BRF, so if the PA was in danger, then it took it 

more time to perceive the danger and react accordingly. Thus, the PAs had a lower 

reaction time than if a visual perception model had been selected that modified Beliefs in 

the Perception function.  

Intentions, Plans, and Actions. While Beliefs and Desires have states, an AA’s 

Intentions were simply procedural calls (to an IRF) which then further called plans, or in 

the case of the HA and PA, just called Action procedures. The use of plans was found to 



35 

be superfluous and the absence of these worked in structuring the PA and HA for the 

HAPEE because each Deliberation Cycle formed a unit of time (Tick) and each IRF was 

set to execute in that one cycle. This design decision assumed that the Actions executed 

in any IRF procedures (of both PAs and HAs) were temporally equivalent. Thus, in 

programming the HAPEE, care must be taken to ensure temporal equivalence of IRF 

procedures. If temporal equivalence is not maintained, then the Intentions would need to 

be states that regulate the execution of Actions in fixed periods of time.   

Actions, States, and Perceptions. All Actions taken by the WA, Patch Agents, PAs or 

HAs (whether executed or not through the GA procedures) changed the States of one of 

these AAs through a call to one of their Perception procedures. Thus, the cycle of Action 

– Perception was completed as originally intended in the BDI Framework of Figure 3.    

State Based Function Cycles. The design of the hunting cycle as a state controlled 

process, which is activated by the desire for food (GA_Desire_Food), prompted an 

extrapolation to the wider life cycle. As displayed in Figure 13, desires could be used to 

put AAs into additional functional cycles (other than the Hunting Cycle) such as a Pack 

Cycle, Reproduction Cycle, Home Building Cycle, or a Migration Cycle. Developing 

these cycles could evolve our understanding of evasion algorithms (for instance) as many 

animals use their homes as a defensive strategy to avoid capture. 



36 

 

Figure 13: Functional Cycles within the Overall Life Cycle. 

 

State Based Hunting, Task Focusing, and Hunting Algorithm Resilience. One of the 

observations of this study was that a state based hunting process (or algorithm) induced a 

task focusing where locking into a given state might trap the AA in that state. In a sense, 

state based hunting simulates the problem of gun-fighter vision narrowing (or task focus) 

where the HA becomes focused on the completion of a single task with little 

consideration to other tasks or other activities in its environment. A real concern with any 

tactical police force, the challenges of vision narrowing are addressed through repeated 

training where the gun-fighter practices a relaxation technique which draws him out of 

the vision narrowing, effectively bringing him from a state of “encircle”, “approach” or 

“strike” back to a state of “search”.  Remaining in the task focused states of “approach” 

or “strike” are not only taxing on the gun-fighter (as they represent heightened states of 

alertness due to danger) but they will also lead to mistakes (often resulting in the injury of 



37 

innocent bystanders due to errors in adversarial target selection). The HAPEE then could 

be used to increase the resilience of HAs to quickly transition in and out of “encircle”, 

“approach”, and “strike” states back to “search” states. This will also enable an HA to 

quickly reacquire its Prey should it be lost during the “encircle, approach, or strike” 

phases.  

Deliberate Cycle Timing and Persistent Memory. The NetLogo World Agent handles 

the interactions of the AAs within it in defined rounds (where each round is a Tick). At 

the start of a new round, two design options were available: the first option was to 

execute actions in play from last round and then conduct a new analysis (i.e. action-

decision cycle where the round ends with the completion of the new analysis) or the 

round begins with a new analysis and then is finished at the completion of an action (i.e. 

decision-action cycle). While either design can work, the latter one is simpler to 

implement in coding as the decision–action cycle is contained within one temporal 

reference frame (round) rather than bridging two of them (decision being made in one 

round and the action being taken in the next round). Thus, the design decision was to start 

each round with an analysis of the current situation and then take an action according to 

the analysis. The use of persistent memory (memory that persists beyond the Deliberation 

Cycle) is then limited to the state based cycles (such as the Hunting Cycle). 

Algorithm Evaluation 

Using MATLAB, the graphs Trial Group vs. Convergence Percentages (%) were generated and 

then fitted with a linear curve. 



38 

Lion Optimization Algorithm. Graph 1 plots both the results of the LOA and GWO and 

fits the linear curve to the LOA. The equation of the fitted LOA curve is calculated to be 

y = -13x + 117. 

 

Figure 14: LOA fitted with a Linear Curve. 

Grey Wolf Optimizer. Graph 2 plots both the results of the LOA and GWO and fits the 

linear curve to the GWO. The equation of the fitted LOA curve is calculated to be           

y = -17x + 109. 

 

Figure 15: GWO fitted with a Linear Curve. 



39 

The GWO’s steeper slope of -17x vise that of the LOA’s at -13x gives strong indications 

that the GWO loses convergence faster in the presence of obstacles. This can be 

explained as we would expect the pack of wolves to have visual reference to each other in 

order to collaborate together. Even a small number of obstacles will disrupt their visual 

perception abilities to see each other. As the omega wolf needs to see the alpha and the 

betas to determine its position, it can easily become confused if it cannot see all the alpha 

and beta wolves. Because they work in pairs, the lionesses need only see each other, and 

there is no dependencies on other lions.  

In evaluating the results of column D from Table 1, we can see that the lionesses either 

always converge on the prey (with little time variance (the average ΔTick < 1 Tick)) or 

they fail to converge. From column D of Table 2, with ΔTicks as high +26 Ticks, we see 

that the wolves may initially fail to convergence but are able to recover and re-engage the 

prey. This can be explained as the number of wolves which are surveying the hunting 

grounds are more numerous (by a factor of 2) than the number of lionesses. Thus, if the 

prey disappears behind an obstacle, it is far more probable for one of the wolves to have 

visual sight of it than it is for a lioness.      

Perceptions and Search Algorithms. As search algorithms lead the hunter to its prey, 

they form a key building block as a precursor to hunting algorithms. Whether this is a 

wolf hunting a deer or a deer hunting an apple tree, the search algorithms are based on a 

specific sense (visual, hearing, smell/taste) and a corresponding movement pattern 

(whether, body, head, or just the eyes). The visual search algorithm implemented in 

HAPEE, based on a near-to-far radial scan, worked well in the near to mid distances but 

created blind spots in the far distance. Also, this visual search algorithm was inefficient in 



40 

the near field as it passed over the same square several times. A more thorough visual 

scan could be developed that inversed the pattern to that of a radial scan that then 

incremented from near-to-far (ie. a radial scan would occur at a fixed distance and then 

restarted at an incremented distance).   



41 

CHAPTER VI 

CONCLUSION AND RECOMMENDATION 

Conclusion 

This research found that a BDI architecture enabled the NetLogo environment to effectively 

generate a HAPEE where two algorithms (LOA and GWO) were evaluated with the LOA being 

found to be more resilient to obstacles than the GWO.  

BDI Architecture 

As hypothesized, the Modified BDI Architecture could provide significant structuring to 

the NetLogo code thus making it feasible for a large-scale MAS environment.   

NetLogo MAS Design Environment 

Also, hypothesized, with the structuring provided by the Modified BDI Architecture, the 

NetLogo environment has proven to be able to establish a large-scale MAS Hunting 

Algorithm Performance Evaluation Environment (HAPEE) which is flexible and 

scalable. 

Algorithms  

The HAPEE found that the Lion Optimization Algorithm (LOA), in the presence of 

obstacles, was more effective at hunter convergence than the Grey Wolf Optimization 

algorithm. It also found that the Grey Wolf Optimization algorithm, after having lost 

sight of the prey, was more capable of re-acquiring and converging on the prey than was 

the Lion Optimization Algorithm. The LOA either succeeded or failed, whereas the 

GWO had a larger variance where it could recover from failure. Thus, as hypothesized, 

the HAPEE can be used to provide an alternative means to test Hunting Algorithms. 

 

 



42 

Suggestions for Further Research 

Several areas of further research were alluded throughout this thesis paper. While the BDI 

Architecture is addressed in step with the NetLogo MAS Design Environment, the Algorithms 

are dealt with separately.  

BDI Architecture and NetLogo MAS Design Environment 

Learning vs. Dexterity. The simple code structuring of Perceptions vice Beliefs 

gives indications as to the natural selection of higher intelligence vice faster 

reflexes. As an analogy, the analytical algorithm favours a learning agent (with a 

scaling number of BRFs) while a reactionary algorithm favours an agent with 

high dexterity (aka agility). This simple design choice perhaps gives some 

indication as to the construct of the human mind. Humans with higher analytical 

and learning abilities often have lower dexterity than those humans that are very 

good at sports (high dexterity), but face challenges with their analytical thinking 

and abilities to learn diverse subjects. For further study, animals, that are not 

constantly under the threat of being hunted, are naturally selected to evolve their 

minds from those of high reflex ability to those that have a higher learning ability. 

Also, a third visual scanning algorithm could exist which would be a hybrid of the 

analytical and reactionary algorithms, this could be developed as a follow-on 

activity. 

Temporal Equivalence. The BDI Architecture does not overtly address the 

temporal equivalence of a Deliberation Cycle amongst AAs (or within a MAS). 

There are good reasons for this, mainly because the BDI Architecture is meant for 

the design of AAs within the real World (not a World Agent) where time is real 



43 

and not artificially controlled by the World Agent. Thus, the temporal nature of 

Intentions, Plans, and Actions could be further studied to ensure equivalence 

across all the AAs within the HAPEE. 

Weather. While the HAPEE was intended to handle simple weather conditions of 

wind and rain, the buttons under the Weather heading are not active and remain to 

be developed. These will be particularly important in the enabling of the olfactory 

sense of both PAs and HAs which is particularly influenced by the movement of 

air or the presence of air born water.  

Functional Cycles within the AA Life Cycle. The HAPEE in its current state has 

only developed the Hunting Cycle and marginally developed the Pack Cycle (in 

instantiation). Further functional cycles remain to be developed within the life 

cycle of the AA. 

Hunting Algorithm Resiliency. The ability of an AA to recover from vision 

narrowing (or task focus) caused by a state phase lock such as “encircle, 

approach, or strike” represents an increase in hunter algorithm resilience. Further 

research remains to continue to evolve the resiliency of the state based hunting 

process to be able to quickly transition in and out of the “encircle, approach, and 

strike” states back to a “search” (or prey acquisition) state. 

Algorithms 

Search Algorithms. While the HAPEE generated a visual search algorithm and 

basic (circular) physical search algorithm, many more remain to be developed and 

tested. 

 



44 

Visual Search Scan. A more thorough visual scan could be developed that 

inversed the pattern to that of a radial scan that then incremented from near-to-far. 

The design of other visual scans is highly encouraged. 

Hunting Algorithms. While the LOA and GWO were tested with the HAPEE, it 

is hoped that the scientific community will evolve this environment to test other 

hunting algorithms.  

Evasion Algorithms. A simple “turn and run” evasion algorithm was developed 

and utilised for this initial research. This area of research remains untapped and 

even a slight focus in this field could have significant results to organization such 

as police, special forces, and detentions (in the recovery of prisoners when they 

escape).  

 

 

  



45 

REFERENCES 

Bordini, R. H., & Hubner, J. F. (2005). Computational Logic in Multi-Agent Systems, 

3259(April). http://doi.org/10.1007/b104175. 

Coppelia Robotics. (2017).  Virtual Robot Experimentation Platform (V-REP) version 3.4.0.  

Retrieved 21 February 2017 from www.coppeliarobotics.com 

 

Hosford, A. (2013). NetLogo: Hunter-Gatherer Model Final Project. Retrieved from 

http://modelingcommons.org/browse/one_model/3782. Center for Connected Learning 

and Computer-Based Modeling, Northwestern University, Evanston, IL. 

 

Machado, R., & Bordini, R.H. (2003). Running AgentSpeak(L) Agents on SIM AGENT. DOI: 

10.1007/3-540-45448-9_12. Retrieved on 10 July 16 from 

https://www.researchgate.net/publication/2910734_Running_AgentSpeakL_Agents_on_

SIM_AGENT 

 

Mech, D. L., Smith, W. S., & MacNulty, D. R. (2015).  Wolves on the Hunt: The Behavior of 

Wolves Hunting Wild Prey. The University of Chicago Press, Chicago, Ill. 

 

Mirjalili, S., Mirjalili, S.M., and Lewis, A. (2014). Grey Wolf Optimizer. Advances in 

Engineering Software, vol. 69, pp. 46-61. 

http://dx.doi.org/10.1016/j.advengsoft.2013.12.007 

 

Oftadeh, R., Mahjoob, M.J., & Shariatpanahi, M. (2010). A novel meta-heuristic optimization 

algorithm inspired by group hunting of animals: Hunting search. Comput. Math. with 

Appl., vol. 60, no. 7, pp. 2087–2098. 

 

Thomas, J. (2017). NetLogo: Ants At War. Retrieved from 

http://modelingcommons.org/browse/one_model/4828#model_tabs_browse_info. Center 

for Connected Learning and Computer-Based Modeling, Northwestern University, 

Evanston, IL. 

 

Wilhelmy, R. et al. (2014). Multiagent modeling of a hunter-prey scenario using ContractNET. 

Researchgate.Net, (June 2015). Retrieved from 

http://www.researchgate.net/publication/248380879_Multiagent_modeling_of_a_hunter-

prey_scenario_using_ContractNET/file/5046351ddc0017a1d3.pdf 

 

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected 

Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.  

 

Wilensky, U., & Rand, W. (2015). An Introduction to Agent-Based Modelling: Modeling 

Natural, Social, and Engineered Complex Systems with NetLogo. The MIT Press: 

Massachusetts, USA.  

 

http://www.coppeliarobotics.com/
http://modelingcommons.org/browse/one_model/3782
https://www.researchgate.net/publication/2910734_Running_AgentSpeakL_Agents_on_SIM_AGENT
https://www.researchgate.net/publication/2910734_Running_AgentSpeakL_Agents_on_SIM_AGENT
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://modelingcommons.org/browse/one_model/4828#model_tabs_browse_info
http://www.researchgate.net/publication/248380879_Multiagent_modeling_of_a_hunter-prey_scenario_using_ContractNET/file/5046351ddc0017a1d3.pdf
http://www.researchgate.net/publication/248380879_Multiagent_modeling_of_a_hunter-prey_scenario_using_ContractNET/file/5046351ddc0017a1d3.pdf
http://ccl.northwestern.edu/netlogo/


46 

Wilson, N. (2002). The SAS Handbook of Tracking & Navigation. Amber Books Ltd: London, 

UK. 

 

Wooldridge, M. (1999). Intelligent Agents. In G. Weiss (Ed.), Multiagent systems: A modern 

approach to distributed artificial intelligence (pp. 27-79). Cambridge, MA: The MIT 

Press. 

Wooldridge, M., Jennings, N. R., & Kinny, D. (2000). The Gaia Methodology for AgentOriented 

Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3): 285–312, 285–

312. 

Wooldridge, M. (2009). An introduction to MultiAgent Systems – 2
nd

 Edition. Chichester, West 

Sussex: John Wiley and Sons, Ltd. 

Yazdani, M., & Jolai, F. (2015). Lion Optimization Algorithm (LOA): A Nature-Inspired 

Metaheuristic Algorithm. J. Comput. Des. Eng., vol. 3, no. 1, pp. 1–14. 

 

 

 

 

  



47 

APPENDIX – A 

ALGORITHM TEST RESULTS 

Lioness Hunting Results 

Trial 

Number 

Vegetation 

Density (%) 

Tick-Count until 

Convergence 

Convergence dT 

0 0 20 Y n/a 

1 1 20 Y 0 

2 1 19 Y -1 

3 1 20 Y 0 

4 1 20 Y 0 

5 1 20 Y 0 

6 1 20 Y 0 

7 1 20 Y 0 

8 1 - N - 

9 1 20 Y 0 

10 1 20 Y 0 

1 2 26 Y +6 

2 2 15 Y -5 

3 2 20 Y 0 

4 2 26 Y +6 

5 2 - N - 

6 2 19 Y -1 

7 2 19 Y -1 

8 2 20 Y 0 

9 2 26 Y +6 

10 2 20 Y 0 

1 3 - N - 

2 3 - N - 

3 3 - N - 

4 3 - N - 

5 3 20 Y 0 

6 3 22 Y +2 

7 3 20 Y 0 

8 3 19 Y -1 

9 3 20 Y 0 

10 3 20 Y 0 

1 4 - N - 

2 4 19 Y -1 

3 4 - N - 

4 4 19 Y -1 

5 4 19 Y -1 

6 4 - N - 

7 4 - N - 

8 4 27 Y +7 

9 4 - N - 

10 4 20 Y 0 

 



48 

Wolf Hunting Results 

Trial 

Number 

Vegetation 

Density (%) 

Tick-Count until 

Convergence 

Convergence dT 

0 0 19 Y n/a 

1 1 - N - 

2 1 19 Y 0 

3 1 - N - 

4 1 29 Y +10 

5 1 19 Y 0 

6 1 19 Y 0 

7 1 19 Y 0 

8 1 - N - 

9 1 19 Y 0 

10 1 19 Y 0 

1 2 - N - 

2 2 16 Y -3 

3 2 - N - 

4 2 20 Y +1 

5 2 - N - 

6 2 20 Y +1 

7 2 19 Y 0 

8 2 - N - 

9 2 - N - 

10 2 20 N +1 

1 3 18 Y -1 

2 3 - N - 

3 3 - N - 

4 3 - N - 

5 3 - N - 

6 3 33 Y +14 

7 3 - N - 

8 3 62 Y +43 

9 3 19 Y 0 

10 3 - N - 

1 4 - N - 

2 4 - N - 

3 4 75 Y +56 

4 4 - N - 

5 4 29 Y +10 

6 4 - N - 

7 4 32 Y +13 

8 4 - N - 

9 4 - N - 

10 4 - N - 

 

       

 



49 

APPENDIX – B  

HAPEE – NETLOGO CODE  

;@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@; 
;@@@@ MAS HUNTING ALGORITHM PERFORMANCE EVALUATION ENVIRONMENT @@@@; 
;@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@; 
;@@@@                                                          @@@@; 
;@@@@  Copyright 2017 Marc Prince.                             @@@@; 
;@@@@  See Info tab for full copyright and license.            @@@@; 
;@@@@                                                          @@@@; 
;@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@; 
;@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@; 
 
; CODE FOR TROUBLESHOOTING 
; show [(word "("pxcor ", " pycor")")] of self 
 
 
extensions [rnd] 
 
globals [ ; These are detailed in the Beliefs, Desires, Intentions of the World Agent 
  WA_Belief_Food-Density             WA_Belief_Vegetation-Density        WA_Belief_Rock-Density              WA_Belief_Water-Density      WA_Belief_Open-Terrain 
  WA_Belief_Marsh-Density            WA_Belief_Wind-Direction            WA_Belief_Wind-Strength             WA_Belief_Rain-Frequency 
  WA_Belief_Rain-Intensity           WA_Belief_Prey-Adult_Number 
  WA_Belief_HA-Alpha_Quantity        WA_Belief_HA-Beta_Quantity          WA_Belief_HA-Omega_Quantity         WA_Belief_HA-Type            WA_Belief_HA-Algorithm_Test 
  WA_State_Sounds-Current_Cycle      WA_State_Sounds-Previous_Cycle 
  WA_State_Agents-List 
  WA_State_Patches-List 
] 
 
patches-own [ ; These are detailed in the World Agent under Patch Agent 
  WA_Patch_State_Type                WA_Patch_State_Grow-Time 
  WA_Patch_State_Colour              WA_Patch_State_Colour-Temp 
  WA_Patch_State_Agent-Number        WA_Patch_State_Agent-Heading        WA_Patch_State_Agent-Speed 
  WA_Patch_State_Scent-Type          WA_Patch_State_Scent-Level 
  WA_Patch_State_Sounds 
] 
 
turtles-own [ ; These are detailed in the Generic Agent's Beliefs, Desire, Intentions. 
  GA_State_Agent-Type     GA_State_Agent-Class      GA_State_Exhaustion          GA_State_Scan-Distance 
  GA_State_Scent-Type     GA_State_Scent-Level      GA_State_Energy-Current      GA_State_Speed-Current      GA_State_Water-Current      GA_State_Voice-Level 
  GA_Design_Speed-Max     GA_Design_Energy-Max      GA_Design_Hearing-Level-Min  GA_Design_Vocal-Level-Max   GA_Design_Scent-Level-Min   GA_Design_Vision-

Max 
  GA_Belief_Hunger-Level  GA_Belief_Water-Level     GA_Belief_Water-Bearing      GA_Belief_Patch-Colour      GA_Belief_Patch-Type 
  GA_Belief_Water         GA_Belief_Water-Heading   GA_Belief_Water-Distance     GA_Belief_Water-Sources     GA_Belief_Water-atSource 
  GA_Desire_Food          GA_Desire_Water           GA_Desire_Evade 
  GA_Perceive_Visual-Scan 
] 
 
breed [ hunted prey ] 
hunted-own [ ; These are detailed in the Prey Agent's Beliefs, Desire, Intentions. 
  PA_Belief_Food          PA_Belief_Food-Heading    PA_Belief_Food-Distance    PA_Belief_Food-Sources    PA_Belief_Food-atSource 
  PA_Belief_Hunter        PA_Belief_Hunter-Heading  PA_Belief_Hunter-Distance  PA_Belief_Hunter-Sees-Me  PA_Belief_Hunter-atSource 
  PA_Desire_Heading-Next  PA_Desire_Hunger-Thirst 
] 
 
breed [ hunters hunter ] 
hunters-own [ ; These are detailed in the Hunter Agent's Beliefs, Desire, Intentions. 
  HA_State_Hunter-Type            HA_State_Hunter-Class           HA_State_Hunter-Level             HA_Belief_Hunter-Leader 
  HA_Belief_Hunt-Mode 
  HA_Belief_Prey-Seen             HA_Belief_Prey-Known            HA_Belief_Hunter-Prey_Heading     HA_Belief_Hunter-Prey_Distance 
  HA_Belief_Prey-X                HA_Belief_Prey-Y                HA_Belief_Prey-Heading            HA_Belief_Prey-Speed 
  HA_Belief_Prey-atSource         HA_Belief_Prey-Sources 
  HA_Belief_Alpha                 HA_Belief_Alpha-Seen            HA_Belief_Alpha-Known             HA_Belief_Hunter-Alpha_Heading    HA_Belief_Hunter-Alpha_Distance 
  HA_Belief_Alpha-X               HA_Belief_Alpha-Y               HA_Belief_Alpha-Heading           HA_Belief_Alpha-Speed 
  HA_Belief_Alpha-Prey_Distance   HA_Belief_Alpha-Prey_Heading    HA_Belief_Alpha-Prey_Attack 
  HA_Belief_Beta1                HA_Belief_Beta1-Seen             HA_Belief_Beta1-Known             HA_Belief_Hunter-Beta1_Heading    HA_Belief_Hunter-Beta1_Distance 
  HA_Belief_Beta1-X               HA_Belief_Beta1-Y               HA_Belief_Beta1-Heading 
  HA_Belief_Beta1-Prey_Distance   HA_Belief_Beta1-Prey_Heading    HA_Belief_Beta1-Encircle-X        HA_Belief_Beta1-Encircle-Y 
  HA_Belief_Beta2                 HA_Belief_Beta2-Seen            HA_Belief_Beta2-Known             HA_Belief_Hunter-Beta2_Heading    HA_Belief_Hunter-Beta2_Distance 
  HA_Belief_Beta2-X               HA_Belief_Beta2-Y               HA_Belief_Beta2-Heading 
  HA_Belief_Beta2-Prey_Distance   HA_Belief_Beta2-Prey_Heading    HA_Belief_Beta2-Encircle-X        HA_Belief_Beta2-Encircle-Y 
  HA_Belief_Omega1                HA_Belief_Omega1-Seen           HA_Belief_Omega1-Known 
  HA_Belief_Omega2                HA_Belief_Omega2-Seen           HA_Belief_Omega2-Known 
  HA_Belief_Heard-Call            HA_Belief_Heard-Alpha 
  HA_Belief_Encircle-X            HA_Belief_Encircle-Y 
  HA_Perceive-Sounds              HA_Perceive-Scents 
] 
 
links-own [_range] 
 
;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;----------------------;; 
;;;;; World Agent ;;;;;;;; 
;;----------------------;; 
;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
;;;;;;;;; Actions ;;;;;;;;;;;;;; 
; Nomenclature: WA_action_subject_verb (refactoring still needs to be completed) 



50 

 
to WA_action_clear-all 
  clear-all 
  reset-ticks 
end 
 
to WA_action_clear-ticks 
  reset-ticks 
end 
 
to WA_action_hunters-die 
  ask hunters [die] 
end 
 
to WA_action_hunters-setup 
 
  if WA_Belief_HA-Type = "Lionesses" [ 
    HA_belief_instantiate-lioness_alpha 
    HA_belief_instantiate-lioness_beta 
  ] 
 
  if WA_Belief_HA-Type = "Wolves" [ 
    let i WA_Belief_HA-Alpha_Quantity 
    while [ WA_Belief_HA-Alpha_Quantity != 0 ] [ 
      HA_belief_instantiate-wolf_alpha 
      set WA_Belief_HA-Alpha_Quantity (WA_Belief_HA-Alpha_Quantity - 1) 
    ] 
    set WA_Belief_HA-Alpha_Quantity i 
 
    set i WA_Belief_HA-Beta_Quantity 
    while [ WA_Belief_HA-Beta_Quantity != 0 ] [ 
      HA_belief_instantiate-wolf_beta 
      set WA_Belief_HA-Beta_Quantity (WA_Belief_HA-Beta_Quantity - 1) 
    ] 
    set WA_Belief_HA-Beta_Quantity i 
 
    set i WA_Belief_HA-Omega_Quantity 
    while [ WA_Belief_HA-Omega_Quantity != 0 ] [ 
      HA_belief_instantiate-wolf_omega 
      set WA_Belief_HA-Omega_Quantity (WA_Belief_HA-Omega_Quantity - 1) 
    ] 
    set WA_Belief_HA-Omega_Quantity i 
  ] 
 
end 
 
to WA_action_prey-die 
  ask hunted [die] 
end 
 
to WA_action_prey-setup 
 
  let i 0 
  while [ (i < WA_Belief_Prey-Adult_Number) ] [ 
    PA_belief_instantiate-hunted_prey_adult 
    set i i + 1 
  ] 
end 
 
to WA_action_setup-axes 
  ;; draw x-axis & y-axis as light gray 
  ask patches with [pxcor = 0 or pycor = 0] 
    [ set pcolor gray - 3 ] 
end 
 
to WA_action_setup-food 
  let random-value random 100 
  let x-value min-pxcor 
  let y-value min-pycor 
 
  while [ (x-value <= max-pxcor) ] [ 
    set y-value min-pycor 
    while [ (y-value <= max-pycor)] [ 
      set random-value random 100 
      if random-value <= WA_Belief_Food-Density [ 
        ask patches with [ pxcor = x-value and pycor = y-value] [set pcolor orange] 
      ] 
      set y-value (y-value + 5) 
    ] 
    set x-value  (x-value + 5) 
  ] 
end 
 
to WA_action_setup-marsh 
  let random-value random 100 
  let x-value 0 
  let y-value 0 
  ask patches with [ pcolor = blue ] [ 
    set random-value random 100 
    if random-value <= WA_Belief_Marsh-Density [ 
      set x-value pxcor 
      set y-value pycor 
      if random-value < 51 



51 

        [ask patches with [ pxcor = x-value and pycor = (y-value + 1)] [set pcolor 42]] 
      if (33 < random-value) and (random-value < 67) 
        [ask patches with [ pxcor = x-value and pycor = (y-value - 1)] [set pcolor 42]] 
      if random-value > 66 [ 
        ask patches with [ pxcor = x-value and pycor = (y-value - 1)] [set pcolor 42] 
        ask patches with [ pxcor = x-value and pycor = (y-value + 1)] [set pcolor 42] 
        ] 
    ] 
  ] 
  ask patches with [ pcolor = sky ] [ 
    set random-value random 100 
    if random-value <= WA_Belief_Marsh-Density [ 
      set x-value pxcor 
      set y-value pycor 
      if random-value < 34 [ 
        ask patches with [ pxcor = x-value and pycor = (y-value + 1)] [set pcolor 42] 
      ] 
      if (33 < random-value) and (random-value < 67) [ 
        ask patches with [ pxcor = x-value and pycor = (y-value + 1)] [set pcolor 42] 
        ask patches with [ pxcor = x-value and pycor = (y-value - 1)] [set pcolor 42] 
      ] 
      if random-value > 66 [ 
        ask patches with [ pxcor = x-value and pycor = (y-value - 1)] [set pcolor 42] 
        ask patches with [ pxcor = x-value and pycor = (y-value + 1)] [set pcolor 42] 
        ask patches with [ pxcor = (x-value - 1) and pycor = y-value] [set pcolor 42] 
        ask patches with [ pxcor = (x-value + 1) and pycor = y-value] [set pcolor 42] 
      ] 
    ] 
  ] 
end 
 
to WA_action_setup-river 
;  let random-value random 100 
;  let x-value min-pxcor 
;  let y-value 0 
  ask patches [ 
    if pycor = 0 [set pcolor blue     set WA_Patch_State_Type "Stream"     set WA_Patch_State_Colour blue ] 
  ] 
 
;  while [ x-value <= max-pxcor] [ 
;    ask patch x-value y-value [set pcolor blue] 
;    ask patch x-value (y-value - 1) [set pcolor blue] 
; 
;    set x-value  (x-value + 1) 
;    set random-value random 100 
;    ifelse random-value < 51 
;      [ set y-value (y-value - 1) ] 
;      [ set y-value (y-value + 1) ] 
;  ] 
end 
 
to WA_action_setup-statistical_features 
  let m [] 
  let feature_probability (list m) 
  set feature_probability but-first feature_probability 
 
  set m lput orange m 
  set m lput WA_Belief_Food-Density m 
  set feature_probability lput m feature_probability 
  set m [] 
 
  set m lput green m 
  set m lput WA_Belief_Vegetation-Density m 
  set feature_probability lput m feature_probability 
  set m [] 
 
  set m lput grey m 
  set m lput WA_Belief_Rock-Density m 
  set feature_probability lput m feature_probability 
  set m [] 
 
  set m lput sky m 
  set m lput WA_Belief_Water-Density m 
  set feature_probability lput m feature_probability 
  set m [] 
 
  set WA_Belief_Open-Terrain (100 - WA_Belief_Food-Density - WA_Belief_Vegetation-Density - WA_Belief_Rock-Density - WA_Belief_Water-Density) 
  set m lput black m 
  set m lput WA_Belief_Open-Terrain m 
  set feature_probability lput m feature_probability 
  set m [] 
 
  ask patches [ 
    set pcolor first rnd:weighted-one-of-list feature_probability [ [p] -> last p] 
    WA_Patch_brf_instantiate 
  ] 
end 
 
to WA_action_setup-rock_features 
  let random-value random 100 
  let x-value min-pxcor 
  let y-value min-pycor 
 



52 

  while [ (x-value <= max-pxcor) ] [ 
    set y-value min-pycor 
    while [ (y-value <= max-pycor)] [ 
      set random-value random 100 
      if random-value <= WA_Belief_Rock-Density [ 
        set random-value random 100 
        ask patches with [ pxcor = x-value and pycor = y-value] [set pcolor grey] 
        if (0 < random-value) and (random-value < 26) [ 
          ask patches with [ pxcor = x-value and pycor = (y-value + 1)] [set pcolor grey] 
          ask patches with [ pxcor = x-value and pycor = (y-value - 1)] [set pcolor grey] 
        ] 
        if (25 < random-value) and (random-value < 51) [ 
          ask patches with [ pxcor = (x-value - 1) and pycor = y-value] [set pcolor grey] 
          ask patches with [ pxcor = (x-value + 1) and pycor = y-value] [set pcolor grey] 
        ] 
        if (50 < random-value) and (random-value < 76) [ 
          ask patches with [ pxcor = x-value and pycor = (y-value + 1)] [set pcolor grey] 
          ask patches with [ pxcor = x-value and pycor = (y-value - 1)] [set pcolor grey] 
          ask patches with [ pxcor = (x-value - 1) and pycor = y-value] [set pcolor grey] 
          ask patches with [ pxcor = (x-value + 1) and pycor = y-value] [set pcolor grey] 
        ] 
        if (75 < random-value) and (random-value < 101) [ 
          ask patches with [ pxcor = x-value and pycor = (y-value - 1)] [set pcolor grey] 
          ask patches with [ pxcor = x-value and pycor = (y-value + 1)] [set pcolor grey] 
          ask patches with [ pxcor = (x-value - 1) and pycor = y-value] [set pcolor grey] 
          ask patches with [ pxcor = (x-value + 1) and pycor = y-value] [set pcolor grey] 
          ask patches with [ pxcor = (x-value - 1) and pycor = y-value - 1] [set pcolor grey] 
          ask patches with [ pxcor = (x-value + 1) and pycor = y-value - 1] [set pcolor grey] 
          ask patches with [ pxcor = (x-value - 1) and pycor = y-value + 1] [set pcolor grey] 
          ask patches with [ pxcor = (x-value + 1) and pycor = y-value + 1] [set pcolor grey] 
        ] 
      ] 
      set y-value (y-value + 4) 
    ] 
    set x-value  (x-value + 4) 
  ] 
end 
 
to WA_action_setup-vegetation 
  let random-value random 100 
  let x-value min-pxcor 
  let y-value min-pycor 
 
  while [ (x-value <= max-pxcor) ] [ 
    set y-value min-pycor 
    while [ (y-value <= max-pycor)] [ 
      set random-value random 100 
      if random-value <= WA_Belief_Vegetation-Density [ 
        ask patches with [ pxcor = x-value and pycor = y-value] [set pcolor green] 
        set random-value random 100 
        if (19 < random-value) and (random-value < 36) [ 
          ask patches with [ pxcor = x-value and pycor = (y-value + 1)] [set pcolor green] 
          ask patches with [ pxcor = x-value and pycor = (y-value - 1)] [set pcolor green] 
        ] 
        if (35 < random-value) and (random-value < 51) [ 
          ask patches with [ pxcor = (x-value - 1) and pycor = y-value] [set pcolor green] 
          ask patches with [ pxcor = (x-value + 1) and pycor = y-value] [set pcolor green] 
        ] 
        if (50 < random-value) and (random-value < 76) [ 
          ask patches with [ pxcor = x-value and pycor = (y-value + 1)] [set pcolor green] 
          ask patches with [ pxcor = x-value and pycor = (y-value - 1)] [set pcolor green] 
          ask patches with [ pxcor = (x-value - 1) and pycor = y-value] [set pcolor green] 
          ask patches with [ pxcor = (x-value + 1) and pycor = y-value] [set pcolor green] 
        ] 
        if (75 < random-value) and (random-value < 101) [ 
          ask patches with [ pxcor = x-value and pycor = (y-value - 1)] [set pcolor green] 
          ask patches with [ pxcor = x-value and pycor = (y-value + 1)] [set pcolor green] 
          ask patches with [ pxcor = (x-value - 1) and pycor = y-value] [set pcolor green] 
          ask patches with [ pxcor = (x-value + 1) and pycor = y-value] [set pcolor green] 
          ask patches with [ pxcor = (x-value - 1) and pycor = y-value - 1] [set pcolor green] 
          ask patches with [ pxcor = (x-value + 1) and pycor = y-value - 1] [set pcolor green] 
          ask patches with [ pxcor = (x-value - 1) and pycor = y-value + 1] [set pcolor green] 
          ask patches with [ pxcor = (x-value + 1) and pycor = y-value + 1] [set pcolor green] 
        ] 
      ] 
      set y-value (y-value + 5) 
    ] 
    set x-value  (x-value + 5) 
  ] 
end 
 
to WA_action_setup-water 
  let random-value random 100 
  let x-value min-pxcor 
  let y-value min-pycor 
 
  while [ (x-value <= max-pxcor) ] [ 
    set y-value min-pycor 
    while [ (y-value <= max-pycor)] [ 
      set random-value random 100 
      if random-value <= WA_Belief_Water-Density [ 
        ask patches with [ pxcor = x-value and pycor = y-value] [set pcolor sky] 
      ] 



53 

      set y-value (y-value + 3) 
    ] 
    set x-value  (x-value + 3) 
  ] 
end 
 
to-report WA_action_tickCount 
  report ticks 
end 
 
;;;;;;;;;;;;; Belief Revision Function (BRF) ;;;;;;;;;;;;;;;; 
 
;--Beliefs--; 
 
;  WA_Belief_Setup-State                Belief: True/False - If true then the World Agent has been reset. Not Used Because No Tick to Associate Cycle...Look to Delete. 
;  WA_Belief_Food-Density               Belief: The World Agent's density of food sources (apple trees, etc). 
;  WA_Belief_Vegetation-Density         Belief: The World Agent's density of vegetation. 
;  WA_Belief_Rock-Density               Belief: The World Agent's density of rock features. 
;  WA_Belief_Water-Density              Belief: The World Agent's density of water (ponds, lakes, etc). 
;  WA_Belief_Marsh-Density              Belief: The World Agent's density of marshland. 
;  WA_Belief_Open-Terrain               Belief: The World Agent's density of open terrain. This value is calculated and is approximate. 
;  WA_Belief_Wind-Direction             Belief: The direction of the wind. 
;  WA_Belief_Wind-Strength              Belief: The strength of the wind. 
;  WA_Belief_Rain-Frequency             Belief: The frequency of rain. 
;  WA_Belief_Rain-Intensity             Belief: The intensity of rain. 
;  WA_Belief_Prey-Adult_Number          Belief: Number of Prey. 
;  WA_Belief_Hunters-Alpha_Number       Belief: Number of Alpha Hunters. 
;  WA_Belief_Hunters-Beta_Number        Belief: Number of Beta Hunters. 
;  WA_Belief_Hunters-Omega_Number       Belief: Number of Omega Hunters. 
;  WA_State_Sounds                      State: List that holds the sounds that are in the environment during that cycle. 
;  WA_Belief_HA-Type                    Belief: The type of hunters. 
 
;--BRF--; 
; Nomenclature: WA_perceive_subject_verb (refactoring still needs to be completed) 
 
to WA_brf_hunters-instantiate; This is designed as a driving function and is utilized for testing 
  set WA_Belief_HA-Alpha_Quantity #Level1Hunters 
  WA_action_hunters-setup 
end 
 
to WA_brf_hunters-die; This is designed as a driving function and is utilized for testing 
  WA_action_hunters-die 
end 
 
to WA_brf_prey-instantiate; This is designed as a driving function and is utilized for testing 
  set WA_Belief_Prey-Adult_Number Prey-Adult 
  WA_action_prey-setup 
end 
 
to WA_brf_prey-die; This is designed as a driving function and is utilized for testing 
  WA_action_prey-die 
end 
 
to WA_brf_setup 
  set WA_Belief_Food-Density Food-Density 
  set WA_Belief_Vegetation-Density Vegetation-Density 
  set WA_Belief_Rock-Density Rock-Density 
  set WA_Belief_Water-Density Water-Density 
  set WA_Belief_Marsh-Density Marsh-Density 
 
  set WA_Belief_Wind-Direction Wind-Direction 
  set WA_Belief_Wind-Strength Wind-Strength 
 
  set WA_Belief_Prey-Adult_Number Prey-Adult 
  set WA_Belief_HA-Type Hunter-Type 
  set WA_Belief_HA-Alpha_Quantity #Level1Hunters 
  set WA_Belief_HA-Beta_Quantity #Level2Hunters 
  set WA_Belief_HA-Omega_Quantity #Level3Hunters 
  set WA_Belief_HA-Algorithm_Test Algorithm-Test 
 
  WA_brf_sounds-initialize 
 
end 
 
to WA_brf_setup-food; This is designed as a driving function and is utilized for testing 
  set WA_Belief_Food-Density Food-Density 
  WA_action_setup-food 
end 
 
to WA_brf_setup-vegetation; This is designed as a driving function and is utilized for testing 
  set WA_Belief_Vegetation-Density Vegetation-Density 
  WA_action_setup-vegetation 
end 
 
to WA_brf_setup-rock_features; This is designed as a driving function and is utilized for testing 
  set WA_Belief_Rock-Density Rock-Density 
  WA_action_setup-rock_features 
end 
 
to WA_brf_setup-water; This is designed as a driving function and is utilized for testing 
  set WA_Belief_Water-Density Water-Density 
  WA_action_setup-water 
end 



54 

 
to WA_brf_setup-river; This is designed as a driving function and is utilized for testing 
  WA_action_setup-river 
end 
 
to WA_brf_setup-marsh; This is designed as a driving function and is utilized for testing 
  set WA_Belief_Marsh-Density Marsh-Density 
  WA_action_setup-marsh 
end 
 
to WA_brf_sounds-initialize 
  WA_brf_sounds-current-initialize 
  WA_brf_sounds-previous-initialize 
end 
 
to WA_brf_sounds-current-initialize 
   set WA_State_Sounds-Current_Cycle [] 
 
  let m [] 
  set m lput 0 m                     ; sender's agent number 
  set m lput "name-curr-init" m      ; sender's label 
  set m lput 0 m                     ; xcor of sender 
  set m lput 0 m                     ; ycor of sender 
  set m lput 0 m                     ; sound-level of sender  ********this does not seem to be updating 
  set m lput "Curr-Initialize" m          ; sender's message 
 
  set WA_State_Sounds-Current_Cycle lput m WA_State_Sounds-Current_Cycle 
;  show "sounds-current-initialize" 
end 
 
to WA_brf_sounds-previous-initialize 
 
  set WA_State_Sounds-Previous_Cycle [] 
 
  let m [] 
  set m lput 0 m                    ; sender's agent number 
  set m lput "name-prev-init" m     ; sender's label 
  set m lput 0 m                    ; xcor of sender 
  set m lput 0 m                    ; ycor of sender 
  set m lput 0 m                    ; sound-level of sender 
  set m lput "Prev-Initialize" m         ; sender's message 
 
  set WA_State_Sounds-Previous_Cycle lput m WA_State_Sounds-Previous_Cycle 
;  show "sounds-previous-initialize" 
end 
 
to WA_brf_sounds-prey_found 
 
  let m [] 
  set m lput [who] of self m 
  set m lput [label] of self m 
  set m lput [xcor] of self m 
  set m lput [ycor] of self m 
  set m lput [GA_State_Voice-Level] of self m 
  set m lput "WA_brf_sounds-prey_found-1" m 
 
  set WA_State_Sounds-Current_Cycle lput m WA_State_Sounds-Current_Cycle 
;  show "WA_brf_sounds-prey_found" 
 
;  foreach WA_State_Sounds-Current_Cycle [ [n] -> 
;    let sound-level (item 3 n) 
;    let message (item 4 n) 
;    show [(word "("message", "sound-level ")")] of self 
;  ] 
end 
 
to WA_brf_sounds-update_Current-to-Previous 
  set WA_State_Sounds-Previous_Cycle [] 
    let n [] 
;    let sender 0 
;    let name "name" 
;    let sound-x 0 
;    let sound-y 0 
 ;   let sound-level 0 
;    let message "W" 
 
  foreach WA_State_Sounds-Current_Cycle [ [m] -> 
    set n[] 
    set n lput (item 0 m) n       ; sender's agent number 
    set n lput (item 1 m) n       ; sender's label 
    set n lput (item 2 m) n       ; sender's xcor 
    set n lput (item 3 m) n       ; sender's ycor 
    set n lput (item 4 m) n       ; sender's sound level 
    set n lput (item 5 m) n       ; sender's message 
 
    set WA_State_Sounds-Previous_Cycle lput n WA_State_Sounds-Previous_Cycle 
  ] 
 
;  foreach WA_State_Sounds-Previous_Cycle [ [o] -> 
;    let sound-level1 (item 3 o) 
;    let message1 (item 4 o) 
;    show ( word message1 "test" sound-level1) 
;  ] 



55 

 
  set WA_State_Sounds-Current_Cycle [] ; clears the list 
;  show "WA_brf_sounds-update_Current-to-Previous" ; [(word "brf_sounds - ("message")")] of self 
;  set WA_State_Sounds-Current_Cycle but-first WA_State_Sounds-Current_Cycle 
end 
 
;;;;;;;;;;;;;;; Deliberation ;;;;;;;;;;;;;;;; 
; Because the World Agent cannot automatically react to new perceptions, the BRF must be forced in the Deliberation process 
; to ensure that the Beliefs are updated prior to the Desires, Plans, and Intentions are re-examined. 
; Nomenclature: WA_perceive_verb_subject (refactoring still needs to be completed) 
 
to WA_deliberate_clear 
  WA_irf_clear 
end 
 
to WA_deliberate_clear-ticks 
  WA_irf_clear-ticks 
end 
 
to WA_deliberate_cycle 
  ;; stop if the lead turtle is about to go out of the world 
  ;if [patch-at 1 0] of hunters = nobody [ stop ] 
 ; if ((remainder ticks 5) = 0) [(set ROx posx) (set ROy posy)] 
  tick 
 
  WA_Patch_deliberate_cycle-start 
 
  ask hunted [ 
    PA_deliberate_cycle 
  ] 
 
  WA_Patch_deliberate_cycle-middle 
 
  ask hunters [ 
    if WA_Belief_HA-Type = "Lionesses" [ 
      if HA_State_Hunter-Class = "Alpha" [ 
        HA_deliberate_lioness-alpha 
      ] 
      if HA_State_Hunter-Class = "Beta" [ 
        HA_deliberate_lioness-beta 
      ] 
    ] 
 
    if WA_Belief_HA-Type = "Wolves" [ 
      if HA_State_Hunter-Class = "Alpha" [ 
        HA_deliberate_wolf-alpha 
      ] 
      if HA_State_Hunter-Class = "Beta" [ 
        HA_deliberate_wolf-beta 
      ] 
      if HA_State_Hunter-Class = "Omega" [ 
        HA_deliberate_wolf-omega 
      ] 
    ] 
  ] 
 
  WA_Patch_deliberate_cycle-end 
 
  WA_brf_sounds-update_Current-to-Previous 
  ask turtle 0 [show[(word "("pxcor ", " pycor")")] of self] 
  ask turtle 1 [show[(word "("pxcor ", " pycor")")] of self] 
  ask turtle 2 [show[(word "("pxcor ", " pycor")")] of self] 
;  ask turtle 3 [show[(word "("pxcor ", " pycor")")] of self] 
;  ask turtle 4 [show[(word "("pxcor ", " pycor")")] of self] 
  show "***End of Turn" 
end 
 
to WA_deliberate_setup ; executed by clicking the Setup/Reset button 
  WA_irf_clear 
  WA_brf_setup 
  WA_irf_setup 
end 
 
;;;;;;;;;;;;;;; Desires ;;;;;;;;;;;;;;; 
; The World Agent has no desires of its own. 
 
;;;;;;;;;;;;; Desire Review Funtion (DRF) ;;;;;;;;;;;;;;;; 
; The World Agent has no desires of its own. 
 
;;;;;;;;;;;;;; Intention Review Function (IRF) ;;;;;;;;;;;; 
; Nomenclature: WA_irf_verb_subject (refactoring still needs to be completed) 
 
;--Intentions--; 
; The World Agent has no state level intentions of its own. 
 
;--IRF--; 
to WA_irf_clear 
  WA_plan_clear 
end 
 
to WA_irf_clear-ticks 
  WA_action_clear-ticks 
end 



56 

 
to WA_irf_setup 
  WA_plan_setup 
  WA_plan_setup-hunting_grounds 
  WA_plan_hunters-setup 
  WA_plan_prey-setup 
end 
 
;;;;;;;;;;;;; Plans ;;;;;;;;;;;; 
; Nomenclature: WA_perceive_subject_verb (refactoring still needs to be completed) 
 
to WA_plan_clear 
  WA_action_clear-all 
end 
 
to WA_plan_setup 
  WA_action_setup-axes 
end 
 
to WA_plan_setup-hunting_grounds ; The hunting ground is set up according to the inputs of the various slider buttons 
  WA_action_setup-statistical_features 
  WA_action_setup-river 
  WA_action_setup-marsh 
end 
 
to WA_plan_prey-setup 
  WA_action_prey-setup 
end 
 
to WA_plan_hunters-setup 
  WA_action_hunters-setup 
end 
 
;;;;;;;;;;;;;; Perceptions ;;;;;;;;;; 
; This function consists of the selection boxes on the Interface GUI. 
; With NetLogo, these objects broker variables which are handled by the BRF Function through a deliberation cycle. 
; They are documented here for the purpose of completeness. 
; Also, several procedures are coded here as they represent a forcing function which is activated through perception. 
; Their primary function is for testing purposes. 
; Nomenclature: WA_perceive_subject_verb (refactoring still needs to be completed) 
 
; Vegetation-Density     Slider from 1-100 used to set the density of vegetation. 
; Rock-Density           Slider from 1-25 used to set the density of rock features. 
; Water-Density          Slider from 1-25 used to set the density of water sources. 
; Marsh-Density          Slider from 1-100 used to set the density of marsh lands. 
; Wind-Direction         Chooser (Random, North, North-East, East, South-East, South, South-West, West, North-West) used to select the wind direction. 
; Wind-Strength          Slider from 1-10 used to set the strength of the wind. 
; Rain-Frequency 
; Rain-Intensity 
 
to WA_perception_hunters-clear 
  WA_brf_hunters-die 
end 
 
to WA_perception_hunters-setup 
  WA_brf_hunters-instantiate 
end 
 
to WA_perception_prey-clear 
  WA_brf_prey-die 
end 
 
to WA_perception_prey-setup 
  WA_brf_prey-instantiate 
end 
 
to WA_perception_setup-food 
  WA_brf_setup-food 
end 
 
to WA_perception_setup-vegetation 
  WA_brf_setup-vegetation 
end 
 
to WA_perception_setup-rock_features 
  WA_brf_setup-rock_features 
end 
 
to WA_perception_setup-water 
  WA_brf_setup-water 
end 
 
to WA_perception_setup-river 
  WA_brf_setup-river 
end 
 
to WA_perception_setup-marsh 
  WA_brf_setup-marsh 
end 
 
to WA_perception_sounds-prey_found 
  WA_brf_sounds-prey_found 
end 



57 

 
;;-----------------------;; 
;;;;;;; Patch Agent ;;;;;;; 
;;-----------------------;; 
 
;;;;;;;;;;; Belief Review Function (BRF) ;;;;;;;;;;;;; 
 
; WA_Patch_State-Scent_Type        State: This variable holds the scent type that is on the patch. The types are neutral, hunter, and prey. 
; WA_Patch_State-Scent_Level       State: This variable holds the scent level on the patch. 
; WA_Patch_State-Grow_Time         State: This variable holds the growth rate of the vegetation patches. 
; WA_Patch_State-Colour            State: This variable holds the patch's color when it was first instantiated. 
; WA_Patch_State_Colour-Temp       State: This variable holds the patch's temporary color while it regrows. 
; WA_Patch_State-Type              State: This variable holds the patch's type which is rock, vegetation, food, water, etc. 
; WA_Patch_State-Sounds            State: This list holds the sounds (sound waves) that can be detected on the patch. 
;                                           -  Sound Level 0     No sound 
;                                           -  Sound Level 1     Whisper, only heard on the patch from which it originates and the adjoining patches. 
;                                           -  Sound Level 2     Low Voice, only heard within 10 patch radius. 
;                                           -  Sound Level 3     Normal Voice, heard within 50 patch radius. 
;                                           -  Sound Level 4     Loud Voice, heard within 100 patch radius. 
;                                           -  Sound Level 5     Yelling / barking, heard within 150 patch radius. 
;                                           -  Sound Level 6     Howling, heard within 200 patch radius. 
; WA_Patch_State_Agent-Number      State: This variable holds the unique turtle number of the PA or HA currently on the patch agent. 
; WA_Patch_State_Agent-Heading     State: This variable holds the heading of the PA or HA currently on the patch agent. 
; WA_Patch_State_Agent-Speed       State: This variable holds the speed of the PA or HA currently on the patch agent. 
 
;;;;;;;;;;; Instantiation ;;;;;;;;;;; 
 
to WA_Patch_brf_instantiate 
  if pcolor = orange [ set WA_Patch_State_Type "Food"         set WA_Patch_State_Colour orange    set WA_Patch_State_Colour-Temp  "None"] 
  if pcolor = green  [ set WA_Patch_State_Type "Vegetation"   set WA_Patch_State_Colour green     set WA_Patch_State_Colour-Temp  "None"] 
  if pcolor = grey   [ set WA_Patch_State_Type "Rock"         set WA_Patch_State_Colour grey      set WA_Patch_State_Colour-Temp  "None"] 
  if pcolor = sky    [ set WA_Patch_State_Type "Water"        set WA_Patch_State_Colour sky       set WA_Patch_State_Colour-Temp  "None"] 
  if pcolor = black  [ set WA_Patch_State_Type "Field"        set WA_Patch_State_Colour black     set WA_Patch_State_Colour-Temp  "None"] 
end 
 
;;;;;;;;;;; BRFs ;;;;;;;;;;; 
 
to WA_Patch_brf_scent_fade 
 
  ask patches [ 
    if (WA_Patch_State_Scent-Type = "prey") [ 
      ;show [(word "("pxcor ", " pycor" , "WA_Patch_State-Scent_Level")")] of self 
 
      ifelse (WA_Patch_State_Scent-Level = 0) [ 
        set WA_Patch_State_Scent-Type 0 
;        if pcolor = yellow [ set pcolor black] 
      ] 
      [set WA_Patch_State_Scent-Level (WA_Patch_State_Scent-Level - 1)] 
    ] 
  ] 
end 
 
to WA_Patch_brf_scent_initialize 
  ask patch-here [ 
;    if (pcolor = black) [ set pcolor yellow ] 
    set WA_Patch_State_Scent-Type [GA_State_Scent-Type] of myself 
    set WA_Patch_State_Scent-Level [GA_State_Scent-Level] of myself 
  ] 
end 
 
to WA_Patch_brf_food-eat 
  ask patch-here [ 
    set pcolor lime 
    set WA_Patch_State_Colour-Temp lime 
    set WA_Patch_State_Grow-Time 350 
  ] 
end 
 
to WA_Patch_brf_food-grow 
  ask patches [ 
    if (WA_Patch_State_Colour-Temp = lime) [ 
      ifelse (WA_Patch_State_Grow-Time = 0) [ 
        set pcolor orange 
        set WA_Patch_State_Colour-Temp "None" 
      ][ 
        set WA_Patch_State_Grow-Time (WA_Patch_State_Grow-Time - 1) 
      ] 
    ] 
  ] 
end 
 
;to WA_Patch_brf_HA-end 
;  foreach WA_State_Patches-List [ [m] -> 
 ;   ask patch (item 0 m) (item 1 m) [ 
;      if (pcolor = red) or (pcolor = 13) or (pcolor = 13) [ set pcolor WA_Patch_State_Colour ] 
;    ] 
;  ] 
;end 
 
to WA_Patch_brf_HA-start 
  set WA_State_Patches-List [] 
  ask hunters [ 
    let n [] 



58 

    ask patch-here [ 
      if pcolor != 19 [ 
        ;set WA_Patch_State_Colour-Temp pcolor 
        set pcolor [color] of myself 
;      show pcolor 
        set WA_Patch_State_Agent-Number [who] of myself 
        set WA_Patch_State_Agent-Heading [heading] of myself 
        set WA_Patch_State_Agent-Speed [ GA_State_Speed-Current ] of myself 
 
        set n lput pxcor n 
        set n lput pycor n 
        set n lput WA_Patch_State_Agent-Number n 
        set n lput WA_Patch_State_Agent-Heading n 
        set n lput WA_Patch_State_Agent-Speed n 
        ask myself [set WA_State_Patches-List lput n WA_State_Patches-List] 
      ] 
    ] 
  ] 
end 
 
to WA_Patch_brf_kill_prey 
  ask patch-here [ 
;    set WA_Patch_State_Colour 19 
    set pcolor 19 
    show "HA and PA on same Patch" 
  ] 
end 
 
;to WA_Patch_brf_PA-end 
;  foreach WA_State_Patches-List [ [m] -> 
;    ask patch (item 0 m) (item 1 m) [ 
;      if (pcolor = brown) [ set pcolor WA_Patch_State_Colour ] 
;    ] 
;  ] 
;end 
 
to WA_Patch_brf_PA/HA-end 
  foreach WA_State_Patches-List [ [m] -> 
    ask patch (item 0 m) (item 1 m) [ 
      if (pcolor = red) [ 
        set pcolor WA_Patch_State_Colour 
        if (WA_Patch_State_Colour-Temp = lime) [set pcolor WA_Patch_State_Colour-Temp] 
      ] 
 
      if (pcolor = 13) [ 
        set pcolor WA_Patch_State_Colour 
        if (WA_Patch_State_Colour-Temp = lime) [set pcolor WA_Patch_State_Colour-Temp] 
      ] 
 
      if (pcolor = 14) [ 
        set pcolor WA_Patch_State_Colour 
        if (WA_Patch_State_Colour-Temp = lime) [set pcolor WA_Patch_State_Colour-Temp] 
      ] 
 
      if (pcolor = 16) [ 
        set pcolor WA_Patch_State_Colour 
        if (WA_Patch_State_Colour-Temp = lime) [set pcolor WA_Patch_State_Colour-Temp] 
      ] 
 
      if (pcolor = 19) [ 
        set pcolor WA_Patch_State_Colour 
        if (WA_Patch_State_Colour-Temp = lime) [set pcolor WA_Patch_State_Colour-Temp] 
      ] 
 
      if (pcolor = brown) [ 
        set pcolor WA_Patch_State_Colour 
        if (WA_Patch_State_Colour-Temp = lime) [set pcolor WA_Patch_State_Colour-Temp] 
      ] 
 
;       if (pcolor = red) or (pcolor = 13) or (pcolor = 14) or (pcolor = 16) or (pcolor = 19) or (pcolor = brown) [ 
;        ifelse (WA_Patch_State_Colour = lime) [ 
;          set pcolor WA_Patch_State_Colour-Temp 
 ;       ][ 
 ;         set pcolor WA_Patch_State_Colour 
 ;       ] 
      ;] 
    ] 
  ] 
end 
 
to WA_Patch_brf_PA-start 
;  set WA_State_Patches-List [] 
  ask hunted [ 
    let n [] 
    ask patch-here [ 
      if pcolor != 19 [ 
        ;set WA_Patch_State_Colour pcolor 
        set pcolor [color] of myself 
        show pcolor 
        set WA_Patch_State_Agent-Number [who] of myself 
        set WA_Patch_State_Agent-Heading [heading] of myself 
        set WA_Patch_State_Agent-Speed [ GA_State_Speed-Current ] of myself 
 



59 

        set n lput pxcor n 
        set n lput pycor n 
        set n lput WA_Patch_State_Agent-Number n 
        set n lput WA_Patch_State_Agent-Heading n 
        set n lput WA_Patch_State_Agent-Speed n 
        ask myself [set WA_State_Patches-List lput n WA_State_Patches-List] 
      ] 
    ] 
  ] 
end 
 
to WA_Patch_brf_sounds 
  let sender 0 
  let name "name" 
  let sound-x 0 
  let sound-y 0 
  let sound-level 0 
  let message "none" 
  let sound-distance 0 
 
  let n [] 
 
  ask turtles [ 
    ask patch-here [ 
      set WA_Patch_State_Sounds [] 
      set n [] 
      foreach WA_State_Sounds-Previous_Cycle [ [m] -> 
        set sender (item 0 m) 
        set name (item 1 m) 
        set sound-x (item 2 m) 
        set sound-y (item 3 m) 
        set sound-level (item 4 m) 
        set message (item 5 m) 
 
;             show [(word "brf_sounds - ("sound-level")")] of self 
 
        set sound-distance (sqrt( ((pxcor - sound-x) ^ 2) + ((pycor - sound-y) ^ 2) )) 
;        show [(word "sender - ("sender") and sound-distance - ("sound-distance") and initial sound-level - ("sound-level")")] of self 
 
        if ((sound-distance >= 0) and (sound-distance <= 2)) and sound-level >= 1 [ 
          set n lput sender n 
          set n lput name n 
          set n lput sound-x n 
          set n lput sound-y n 
          set n lput sound-level n 
          set n lput message n 
 
          set WA_Patch_State_Sounds lput n WA_Patch_State_Sounds 
;           show [(word "patch sound-level - ("sound-level")")] of self 
          ] 
 
        if ((sound-distance > 2) and ( sound-distance <= 5)) and sound-level >= 2 [ ;((sound-level > 1) and (sound-level <= 2)) [ 
          set sound-level (sound-level - 1) 
 
          set n lput sender n 
          set n lput name n 
          set n lput sound-x n 
          set n lput sound-y n 
          set n lput sound-level n 
          set n lput message n 
 
          set WA_Patch_State_Sounds lput n WA_Patch_State_Sounds 
;           show [(word "patch sound-level - ("sound-level")")] of self 
          ] 
 
        if ((sound-distance > 5) and ( sound-distance <= 10)) and sound-level >= 3 [ ;((sound-level > 2) and (sound-level <= 3)) [ 
          set sound-level (sound-level - 2) 
 
          set n lput sender n 
          set n lput name n 
          set n lput sound-x n 
          set n lput sound-y n 
          set n lput sound-level n 
          set n lput message n 
 
          set WA_Patch_State_Sounds lput n WA_Patch_State_Sounds 
           show [(word "patch sound-level - ("sound-level")")] of self 
        ] 
 
        if ((sound-distance > 10) and ( sound-distance <= 50)) and sound-level >= 4 [ ;((sound-level > 3) and (sound-level <= 4)) [ 
          set sound-level (sound-level - 3) 
 
          set n lput sender n 
          set n lput name n 
          set n lput sound-x n 
          set n lput sound-y n 
          set n lput sound-level n 
          set n lput message n 
 
          set WA_Patch_State_Sounds lput n WA_Patch_State_Sounds 
;           show [(word "patch sound-level - ("sound-level")")] of self 
        ] 
 



60 

        if ((sound-distance > 50) and ( sound-distance <= 100)) and sound-level >= 5 [ ;((sound-level > 4) and (sound-level <= 5)) [ 
          set sound-level (sound-level - 4) 
 
          set n lput sender n 
          set n lput name n 
          set n lput sound-x n 
          set n lput sound-y n 
          set n lput sound-level n 
          set n lput message n 
 
          set WA_Patch_State_Sounds lput n WA_Patch_State_Sounds 
;           show [(word "patch sound-level - ("sound-level")")] of self 
        ] 
 
        if ((sound-distance > 100) and ( sound-distance <= 150)) and sound-level >= 6 [ ;((sound-level > 5) and (sound-level <= 6)) [ 
          set sound-level (sound-level - 5) 
 
          set n lput sender n 
          set n lput name n 
          set n lput sound-x n 
          set n lput sound-y n 
          set n lput sound-level n 
          set n lput message n 
 
          set WA_Patch_State_Sounds lput n WA_Patch_State_Sounds 
;           show [(word "patch sound-level - ("sound-level")")] of self 
        ] 
 
        if ((sound-distance > 150) and ( sound-distance <= 200)) and sound-level >= 7 [ ;((sound-level > 6) and (sound-level <= 7)) [ 
          set sound-level (sound-level - 6) 
 
          set n lput sender n 
          set n lput name n 
          set n lput sound-x n 
          set n lput sound-y n 
          set n lput sound-level n 
          set n lput message n 
 
          set WA_Patch_State_Sounds lput n WA_Patch_State_Sounds 
           show [(word "patch sound-level - ("sound-level")")] of self 
        ] 
 
        if ((sound-distance > 200) and ( sound-distance <= 250)) and sound-level >= 8 [ ;((sound-level > 7) and (sound-level <= 8)) [ 
          set sound-level (sound-level - 7) 
 
          set n lput sender n 
          set n lput name n 
          set n lput sound-x n 
          set n lput sound-y n 
          set n lput sound-level n 
          set n lput message n 
 
          set WA_Patch_State_Sounds lput n WA_Patch_State_Sounds 
;          show [(word "patch sound-level - ("sound-level")")] of self 
        ] 
      ] 
;          foreach WA_Patch_State_Sounds [ [o] -> 
;            set message (item 4 o ) 
;            show [(word "Patch_State_Sounds - ("message")")] of self 
;          ] 
 
    ] 
  ] 
 
end 
 
;;;;;;;;;;; Deliberate ;;;;;;;;;;; 
 
to WA_Patch_deliberate_cycle-end 
  WA_Patch_brf_PA/HA-end 
  ;WA_Patch_brf_HA-end 
  ;WA_Patch_brf_PA-end 
end 
 
to WA_Patch_deliberate_cycle-middle 
 
  WA_Patch_brf_PA-start 
end 
 
to WA_Patch_deliberate_cycle-start 
  WA_Patch_brf_sounds 
  WA_Patch_brf_HA-start 
  WA_Patch_brf_scent_fade 
  WA_Patch_brf_food-grow 
end 
 
;;;;;;;;;;;;;; Perceptions ;;;;;;;;;; 
; Perceptions by a Patch Agent represent a forcing function of an action taken against the patch. 
 
to WA_Patch_perception_food-eaten ; this is a forcing function initiated by a PA eating the food on the patch. 
  WA_Patch_brf_food-eat 
end 
 



61 

to WA_Patch_perception-kill_prey 
  WA_Patch_brf_kill_prey 
end 
 
to WA_Patch_perception_scent-initialize 
  WA_Patch_brf_scent_initialize 
end 
 
;to WA_Patch_perception_sounds 
;  WA_Patch_brf_sounds 
;end 
 
;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;;-----------------------;; 
;;;;;; Generic Agent ;;;;;; 
;;-----------------------;; 
;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
;The Generic Agent defines states and procedures that are common to both Hunter and Prey Agents. 
;As NetLogo does not yet have Super Classes (and thus Inheritance), the Generic Agent fills this role. 
;It is used as a means to re-use code, increasing both coding efficiency and simplicity (in both reading the code and evolving it). 
 
;;;;;;;;; Actions ;;;;;;;;;;;;;; 
; Nomenclature: GA_action_subject_verb     if the subject is the Agent, then it is omitted. 
 
to GA_action_move-none 
  show "Do Nothing" 
  set GA_State_Energy-Current (GA_State_Energy-Current - 1) 
  set GA_State_Water-Current (GA_State_Water-Current - 1) 
  WA_Patch_perception_scent-initialize 
end 
 
to GA_action_move-normal 
  fd 1 
  set GA_State_Energy-Current (GA_State_Energy-Current - 2) 
  set GA_State_Water-Current (GA_State_Water-Current - 2) 
  WA_Patch_perception_scent-initialize 
end 
 
to GA_action_move-quick 
  fd 2 
  ; fd 1 
  ; fd 1 
  set GA_State_Energy-Current (GA_State_Energy-Current - 3) 
  set GA_State_Water-Current (GA_State_Water-Current - 3) 
  WA_Patch_perception_scent-initialize 
end 
 
to GA_action_move-fast 
  fd 3 
  set GA_State_Energy-Current (GA_State_Energy-Current - 4) 
  set GA_State_Water-Current (GA_State_Water-Current - 4) 
  WA_Patch_perception_scent-initialize 
end 
 
to GA_action_move-run 
  fd 5 
  set GA_State_Energy-Current (GA_State_Energy-Current - 5) 
  set GA_State_Water-Current (GA_State_Water-Current - 5) 
  WA_Patch_perception_scent-initialize 
end 
 
to GA_action_move-sprint 
  fd 7 
  set GA_State_Energy-Current (GA_State_Energy-Current - 6) 
  set GA_State_Water-Current (GA_State_Water-Current - 6) 
  set GA_State_Exhaustion 20 
  WA_Patch_perception_scent-initialize 
end 
 
to GA_action_move-pounce_prey 
  move-to patch HA_Belief_Prey-X HA_Belief_Prey-Y 
end 
 
to GA_action_turn-around 
  let heading-temp heading 
  set heading (remainder int ((heading-temp) + 180) 360) 
end 
 
;;;;;;;;;;; Belief Review Function (BRF) ;;;;;;;;;;;;; 
; The Beliefs of the Generic Agent are detailed under the Beliefs / Turtles-Own section of the World Agent. 
; This occurs because NetLogo requires these variables to be declared at the beginning of the code (for reasons unknown). 
; Though the class of generic agent variables are not formally declared at this location in the code, they are described below: 
 
;--Beliefs--; 
;  GA_Design_Speed-Max                   Design: the Agent's maximum possible speed. 
;  GA_State_Speed-Current                State: the Agent's current speed. 
;  GA_Design_Energy-Max                  Design: the maximum Energy that the Agent can store. 
;  GA_State_Energy-Current               State: the Agent's current energy reserve. 
;  GA_Belief_Hunger-Level                Belief: the Agent's hunger level. The level is dependent on the amount of energy in reserve. The lower the energy reserve, the higher the 

hunger level. 
;  GA_Design_Hearing-Level-Min           Design: this is the minimum sound level that the Agent is able to perceive (measured at the Agent's location (ie: the Agent's ears)). 
;  GA_Design_Vocal-Level-Max             Design: this is the sound level of the Agent's voice (measured at the Agent's location (ie: the Agent's mouth)). 



62 

;  GA_Design_Scent-Level-Min             Design: this is the minimum scent level that the Agent is able to perceive. 
;  GA_State_Scent-Type                   State: This is the type of scent that the Agent possesses. The types are either prey or hunter. 
;  GA_State_Scent-Level                  Belief: this is the Agent's scent level. The scent level increases with the Agent's age. 
;  GA_Design_Vision-Max                  Belief: the maximum distance that the Agent can perceive objects. 
;  GA_State_Water-Current                State: the Agent's current water reserve. 
;  GA_Belief_Water-Level                 Belief: the Agent's thirst level. 
;  GA_Belief_Water-Bearing               Belief: the bearing to the nearest water source. 
;  GA_Belief_Patch-Colour                Belief: the colour of the patch (WA_Patch_State-Colour) that the Agent is occupying. This variable holds the patch colour at the start of the 

cycle and restores it at the end. 
;  GA_Belief_Patch-Type                  Belief: the type of patch (WA_Patch_State-Type) that the Agent is occupying. 
;  GA_State_Voice-Level                  State: This is the voice level of the Agent. 
;                                           -  Sound Level 0     No sound 
;                                           -  Sound Level 1     Whisper, only heard on the patch from which it originates and the adjoining patches. 
;                                           -  Sound Level 2     Low Voice, only heard within 10 patch radius. 
;                                           -  Sound Level 3     Normal Voice, heard within 50 patch radius. 
;                                           -  Sound Level 4     Loud Voice, heard within 100 patch radius. 
;                                           -  Sound Level 5     Yelling / barking, heard within 150 patch radius. 
;                                           -  Sound Level 6     Howling, heard within 200 patch radius. 
;  GA_State_Exhaustion                   State: The Agent is exhausted - True/False. 
;  GA_State_Agent-Type                   State: The type of Agent: PA / HA. 
;  GA_State_Agent-Class                  State: The class of Agent: For PA (Adult or Adolescent). For HA (Alpha, Beta, Omega). 
;  GA_State_Scan-Distance                Belief: this variable is the distance upon which the eyes focus...representing the control of the nerves upon the retina. 
;                                            It is a state because it represents a physical state of the optical reception capability. 
;  GA_Perceive_Visual-Scan               Perception: This variable holds the perceived data from the eyes. 
 
;--BRF--; 
 
to GA_brf_cycle 
  set GA_Belief_Water false 
  set GA_Belief_Water-atSource false 
  set GA_Belief_Water-Distance 100 
  set GA_State_Exhaustion (GA_State_Exhaustion - 1 ) 
end 
 
to GA_brf_disposition 
  ask patch-here [ ; determines the patch that the Agent is standing on 
    ask myself [ set GA_Belief_Patch-Colour WA_Patch_State_Colour     set GA_Belief_Patch-Type WA_Patch_State_Type ] 
  ] 
end 
 
to GA_brf_hunger-level 
  if (0 < GA_State_Energy-Current) and (GA_State_Energy-Current < 25) [set GA_Belief_Hunger-Level 4] 
  if (24 < GA_State_Energy-Current) and (GA_State_Energy-Current < 50) [set GA_Belief_Hunger-Level 3] 
  if (49 < GA_State_Energy-Current) and (GA_State_Energy-Current < 75) [set GA_Belief_Hunger-Level 2] 
  if (74 < GA_State_Energy-Current) and (GA_State_Energy-Current < 100) [set GA_Belief_Hunger-Level 1] 
  if (99 < GA_State_Energy-Current) and (GA_State_Energy-Current < 150) [set GA_Belief_Hunger-Level 0] 
end 
 
to GA_brf_thirst-level 
  if (0 < GA_State_Water-Current) and (GA_State_Water-Current < 25) [set GA_Belief_Water-Level 4] 
  if (24 < GA_State_Water-Current) and (GA_State_Water-Current < 50) [set GA_Belief_Water-Level 3] 
  if (49 < GA_State_Water-Current) and (GA_State_Water-Current < 75) [set GA_Belief_Water-Level 2] 
  if (74 < GA_State_Water-Current) and (GA_State_Water-Current < 100) [set GA_Belief_Water-Level 1] 
  if (99 < GA_State_Water-Current) and (GA_State_Water-Current < 151) [set GA_Belief_Water-Level 0] 
 
end 
 
to GA_brf_water 
  let temp-heading 0 
  let temp-distance 100 
  let patch-colour 0 
 
  let n first GA_Perceive_Visual-Scan 
  set GA_Belief_Patch-Colour (item 0 n) 
 
  ifelse (GA_Belief_Patch-Colour = blue) or (GA_Belief_Patch-Colour = sky) or (GA_Belief_Patch-Colour = 42)[ 
;    show "at water" 
    set GA_Belief_Water-atSource true ][ 
    foreach GA_Perceive_Visual-Scan [ [m] -> 
        set patch-colour (item 0 m) 
        if (patch-colour = blue) or (patch-colour = sky) or (patch-colour = 42) [ 
 ;         show "found water" 
          (set GA_Belief_Water true) 
          (set temp-heading (item 1 m)) 
          (set temp-distance (item 2 m)) 
 
          if (temp-distance < GA_Belief_Water-Distance) [ 
            set GA_Belief_Water-Distance temp-distance 
            set GA_Belief_Water-Heading temp-heading 
          ] 
        ] 
      ] 
    ] 
 
 ; show [(word "( "GA_Belief_Water-Heading" , "GA_Belief_Water-Distance" )")] of self 
 
  if (GA_Belief_Water = false)[ 
    ifelse (ycor >= 0)[set GA_Belief_Water-Heading 180 set GA_Belief_Water true show "water at 180"][set GA_Belief_Water-Heading 0 set GA_Belief_Water true show "water 

at 0"] 
  ] 
 
end 
 



63 

;;;;;;;;;;;;;;; Deliberation ;;;;;;;;;;;;;;;; 
 
to GA_deliberate_cycle 
  GA_brf_hunger-level 
  GA_brf_thirst-level 
  GA_drf_food 
  GA_drf_water 
end 
 
;;;;;;;;;;;;; Desire Review Function (DRF) ;;;;;;;;;;;;;;;; 
 
;--Desires--; 
;  GA_Desire_Food                        Desire: does the Agent desire food? 
;  GA_Desire_Water true                  Desire: does the Agent desire water? 
;  GA_Desire_Evade                       Desire: Does the Agent desire to evade the situation. States are True or False. 
 
;--DRF--; 
 
to GA_drf_food 
  if GA_Belief_Hunger-Level = 4 [set GA_Desire_Food true] 
  if GA_Belief_Hunger-Level = 3 [set GA_Desire_Food true] 
  if GA_Belief_Hunger-Level = 2 [set GA_Desire_Food true] 
  if GA_Belief_Hunger-Level = 1 [set GA_Desire_Food true] 
  if GA_Belief_Hunger-Level = 0 [set GA_Desire_Food false] 
end 
 
to GA_drf_water 
  if GA_Belief_Water-Level = 4 [set GA_Desire_Water true] 
  if GA_Belief_Water-Level = 3 [set GA_Desire_Water true] 
  if GA_Belief_Water-Level = 2 [set GA_Desire_Water true] 
  if GA_Belief_Water-Level = 1 [set GA_Desire_Water true] 
  if GA_Belief_Water-Level = 0 [set GA_Desire_Water false] 
end 
 
;;;;;;;;;;;;;; Intention Review Function (IRF) ;;;;;;;;;;;; 
; Nomenclature: GA_irf_verb_subject 
 
to GA_irf_turn-and-run 
  show "run-away!" 
  GA_action_turn-around 
  GA_action_move-sprint 
;  GA_action_turn-around 
end 
 
;;;;;;;;;;;;;; Perceptions ;;;;;;;;;; 
 
to GA_perceive 
 
end 
 
;;;;;;;;;;;;;; Plans ;;;;;;;;;;;; 
 
;to GA_plan_turn-and-run 
;  show "run-away!" 
;  GA_action_turn-around 
;  GA_action_move-sprint 
;  GA_action_turn-around 
;end 
 
;;-----------------------;; 
;;;;;; Prey Agent ;;;;;; 
;;-----------------------;; 
 
; The Prey Agent represents an adult or adolescent prey depending on how it is instantiated. 
; The command "breed [ hunted prey]" is defined in the World Agent / Beliefs section as required by NetLogo. 
 
;;;;;;;;; Actions ;;;;;;;;;;;;;; 
; Nomenclature: PA_action_subject_verb     if the subject is the Agent, then it is omitted. 
 
to PA_action_eat-food 
;  show "eating food" 
  set GA_State_Energy-Current 150 
  WA_Patch_perception_food-eaten 
end 
 
to PA_action_drink-water 
;  show "drinking water" 
  set GA_State_Water-Current 150 
end 
 
to PA_action_kill-prey 
  WA_Patch_perception-kill_prey 
end 
 
;;;;;;;;;;;;; Belief Review Function (BRF) ;;;;;;;;;;;;;;;; 
 
; The Beliefs of the Prey Agent are instantiated under the Beliefs / Hunted-Own section of the World Agent. 
; This occurs because NetLogo requires these variables to be declared at the beginning of the code (for reasons unknown). 
; Though the class of hunted variables are not formally declared at this location in the code, they are described below: 
 
;--Beliefs--; 
;  PA_Belief_Food                     Belief: the Agent believes (true/false) that it has perceived food. 
;  PA_Belief_Food-Heading             Belief: this is the heading of perceived food. 



64 

;  PA_Belief_Food-Distance            Belief: this is the distance of the food from the Agent. 
;  PA_Belief_Food-Sources             Belief: this is the Agent's list of known food sources. 
;  PA_Belief_Food-atSource            Belief: true/false, the Agent is geolocated with a food source. 
 
;  PA_Belief_Water                    Belief: the Agent believes (true/false) that it has perceived water. 
;  PA_Belief_Water-Heading            Belief: this is the heading of perceived water. 
;  PA_Belief_Water-Distance           Belief: this is the distance of the water from the Agent. 
;  PA_Belief_Water-Sources            Belief: this is the Agent's list of known water sources. 
;  PA_Belief_Water-atSource           Belief: true/false, the Agent is geolocated with a water source. 
 
;  PA_Belief_Hunter                   Belief: the Agent believes (true/false) that it has perceived a hunter. 
;  PA_Belief_Hunter-Heading           Belief: this is the heading of the perceived hunter. 
;  PA_Belief_Hunter-Distance          Belief: this is the distance of the hunter from the Agent. 
;  PA_Belief_Hunter-Sees-Me           Belief: the Agent believes (true/false) that it is being observed by the hunter. (Not Used) 
;  PA_Belief_Hunter-atSource          Belief: true/false, the Prey Agent is geolocated with a Hunter Agent. 
 
;  PA_Belief_Move-Next_Heading        Belief: this is the heading that the prey prefers to follow on its next movement. (Not Used) 
;  PA_Belief_Move-Next_Distance       Belief: this is the number of squares that the Prey can move before it needs to reassess its next steps. (Not Used) 
 
;--Instantiation--; 
to PA_belief_instantiate-hunted_prey_adult 
 
  create-hunted 1 
    [ set color brown 
      set size 7 
      set shape "default" 
      set pen-size 1 
 
      setxy 0 10 ;random-xcor random-ycor 
;      set heading 180 
      ;pen-down 
;      facexy 0 1 
 
      set label who 
      set label-color white 
      set heading 180 
      set GA_State_Energy-Current 75 
      set GA_State_Water-Current 150 
      set GA_Design_Speed-Max 5 
      set GA_State_Speed-Current 0 
      set GA_State_Scent-Type "prey" 
      set GA_State_Scent-Level 100 
      set GA_State_Exhaustion 0 
      set PA_Belief_Hunter-atSource false 
 
      set PA_Belief_Food-Sources [] 
      set GA_Belief_Water-Sources [] 
    ] 
end 
 
to PA_belief_instantiate-hunted_prey_adolescent 
  create-hunted 1 
    [ set color orange 
      set size 3 
      set shape "default" 
      set pen-size 1 
 
      setxy 25 25 
      facexy 0 1 
 
      set label who 
      set label-color black 
 
      set GA_Design_Speed-Max 5 
      set GA_State_Speed-Current 0 
    ] 
end 
 
;--BRF--; 
to PA_brf_cycle 
  set PA_Belief_Food false 
  set PA_Belief_Food-atSource false 
  set PA_Belief_Food-Distance 100 
  set PA_Belief_Hunter false 
  set PA_Belief_Hunter-Distance 100 
  GA_brf_cycle 
 
  PA_perception_visual-scan 
 
end 
 
to PA_brf_food 
  let temp-heading 0 
  let temp-distance 100 
  let patch-colour 0 
 
  let n first GA_Perceive_Visual-Scan 
  set GA_Belief_Patch-Colour (item 0 n) 
 
  ifelse (GA_Belief_Patch-Colour = orange)[ 
;    show "at food" 
    set PA_Belief_Food-atSource true 
  ][ 



65 

    foreach GA_Perceive_Visual-Scan [ [m] -> 
      set patch-colour (item 0 m) 
      if (patch-colour = orange) [ 
;        show "found food" 
        (set PA_Belief_Food true) 
        (set temp-heading (item 1 m)) 
        (set temp-distance (item 2 m)) 
 
        if (temp-distance < PA_Belief_Food-Distance) [ 
          set PA_Belief_Food-Distance temp-distance 
          set PA_Belief_Food-Heading temp-heading 
        ] 
      ] 
    ] 
  ] 
 
end 
 
to PA_brf_hunter 
  let temp-heading 0 
  let temp-distance 100 
  let patch-colour 0 
 
  let n first GA_Perceive_Visual-Scan 
  set GA_Belief_Patch-Colour (item 0 n) 
;  show [(word "("GA_Belief_Patch-Colour")")] of self 
 
  ifelse (GA_Belief_Patch-Colour = red)[ 
    show "I'm being attacked!" 
    set PA_Belief_Hunter-atSource true 
  ][ 
    foreach GA_Perceive_Visual-Scan [ [m] -> 
      set patch-colour (item 0 m) 
      if (patch-colour = red) [ 
        show "found hunter" 
        (set PA_Belief_Hunter true) 
        (set temp-heading (item 1 m)) 
        (set temp-distance (item 2 m)) 
 
        if (temp-distance < PA_Belief_Hunter-Distance) [ 
          set PA_Belief_Hunter-Distance temp-distance 
          set PA_Belief_Hunter-Heading temp-heading 
;          show [(word "(" PA_Belief_Hunter-Heading ", " PA_Belief_Hunter-Distance")")] of self 
        ] 
      ] 
    ] 
  ] 
 
end 
 
;;;;;;;;;;;;;;; Deliberation ;;;;;;;;;;;;;;;; 
 
to PA_deliberate_cycle 
 
  PA_brf_cycle 
 
  PA_brf_hunter 
 
  PA_drf_hunter 
 
  if PA_Belief_Hunter-atSource = true [ 
    PA_irf_kill-prey 
  ] 
 
  if PA_Belief_Hunter-atSource = false [ 
    if GA_State_Exhaustion <= 0 [ 
      ifelse (GA_Desire_Evade = true) [ 
        PA_irf_evade-turn-and-run 
      ][ 
        GA_deliberate_cycle 
        PA_drf_food-or-water 
;    show [(word "("GA_Desire_Food " , "GA_Desire_Water " , "PA_Desire_Hunger-Thirst " , "GA_State_Energy-Current " , "GA_State_Water-Current ")")] of self 
        let heading-set false 
 
        if (GA_Desire_Water = true) [ 
;      show "Water" 
          GA_brf_water 
;      show [(word "( "GA_Belief_Water" )")] of self 
          if GA_Belief_Water-atSource = true [PA_irf_drink-water] 
            if (GA_Belief_Water = true) and (GA_Belief_Water-atSource = false) [ 
              PA_irf_move-water 
              set heading-set true 
            ] 
          ] 
 
        if (GA_Desire_Food = true) and (PA_Desire_Hunger-Thirst = "Food")[ 
;      show "Food" 
          PA_brf_food 
;      show [(word "( "PA_Belief_Food" )")] of self 
          if PA_Belief_Food-atSource = true [PA_irf_eat-food] 
          if PA_Belief_Food = true and (PA_Belief_Food-atSource = false)[ 
            PA_irf_move-food 
            set heading-set true 



66 

          ] 
        ] 
 
        if ((GA_Desire_Water = true) or (GA_Desire_Food = true) and (PA_Belief_Food = false) and (GA_Belief_Water = false) and (heading-set = false)) [PA_irf_move-

search_circle] 
 
        if ((GA_Desire_Food = false) and (GA_Desire_Water = false)) [PA_irf_relax] 
      ] 
    ] 
  ] 
end 
 
;;;;;;;;;;;;; Desire Review Function (DRF) ;;;;;;;;;;;;;;;; 
 
;--Desires--; 
; PA_Desire_Hunger-Thirst             Desire: Does the Agent desire food or water above the other. States are "Food" or "Water". 
 
to PA_drf_food-or-water 
  ifelse (GA_Desire_Food = true) and (GA_Desire_Water = true) [set PA_Desire_Hunger-Thirst "Water"] [ set PA_Desire_Hunger-Thirst "Food" ] 
end 
 
to PA_drf_hunter 
  ifelse (PA_Belief_Hunter = true) [set GA_Desire_Evade true][set GA_Desire_Evade false] 
end 
 
;;;;;;;;;;;;;; Intention Review Function (IRF) ;;;;;;;;;;;; 
; Nomenclature: PA_irf_verb_subject 
 
;--Intentions--; 
 
 
;--IRF--; 
to PA_irf_drink-water 
  PA_action_drink-water 
end 
 
 
to PA_irf_eat-food 
  PA_action_eat-food 
end 
 
to PA_irf_kill-prey 
  PA_action_kill-prey 
end 
 
to PA_irf_move-food 
  set heading PA_Belief_Food-Heading 
  GA_action_move-normal 
end 
 
to PA_irf_move-search_circle 
  set heading (heading + 10) 
  GA_action_move-normal 
end 
 
to PA_irf_relax 
  GA_action_move-none 
end 
 
to PA_irf_move-water 
  set heading GA_Belief_Water-Heading 
  GA_action_move-normal 
end 
 
to PA_irf_evade-turn-and-run 
  GA_irf_turn-and-run 
end 
 
;;;;;;;;;;;;;; Plans ;;;;;;;;;;;; 
 
;to PA_plan_food-moveto 
;  set heading PA_Belief_Food-Heading 
;  GA_action_move-normal 
;end 
 
;to PA_plan_food-water-search 
;  set heading (heading + 10) 
;  GA_action_move-normal 
;end 
 
;to PA_plan_water-moveto 
;  set heading GA_Belief_Water-Heading 
;  GA_action_move-normal 
;end 
 
;;;;;;;;;;;;;; Perceptions ;;;;;;;;;; 
 
;  PA_Perceive_Visual-Scan            Perception: this is a list of perceived objects during a visual scan. 
 
to PA_perception_visual-scan 
 
  set GA_Perceive_Visual-Scan [] 
 



67 

;;;;; Scan Agent's Patch;;;;; 
 
  ask patch-here [ ; determines the patch that the Agent is standing on 
    let m [] 
    set m lput pcolor m 
    set m lput 0 m 
    set m lput 0 m 
    ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
  ] 
 
;;;;; Center Scan;;;;; 
  let i 1 
 
  while [i <= 12] [ 
    ask patch-ahead i [ ; determines the patches in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 13) ] 
    ] 
    set i (i + 1) 
  ] 
 
;;;;; Left Scan;;;;; 
 
  set i 1 
 
  while [i <= 11] [ 
    ask patch-left-and-ahead 5 i [ ; determines the patches left by 5 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 12) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-left-and-ahead 15 i [ ; determines the patches left by 15 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-left-and-ahead 25 i [ ; determines the patches left by 25 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-left-and-ahead 35 i [ ; determines the patches left by 35 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-left-and-ahead 45 i [ ; determines the patches left by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 



68 

      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-left-and-ahead 55 i [ ; determines the patches left by 55 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-left-and-ahead 65 i [ ; determines the patches left by 65 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-left-and-ahead 75 i [ ; determines the patches left by 75 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-left-and-ahead 85 i [ ; determines the patches left by 85 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-left-and-ahead 95 i [ ; determines the patches left by 95 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
;;;;; Right Scan;;;;; 
 
  set i 1 
 
  while [i <= 11] [ 
    ask patch-right-and-ahead 5 i [ ; determines the patches right by 5 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 



69 

      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 12) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-right-and-ahead 15 i [ ; determines the patches right by 15 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-right-and-ahead 25 i [ ; determines the patches right by 25 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-right-and-ahead 35 i [ ; determines the patches right by 35 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-right-and-ahead 45 i [ ; determines the patches right by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-right-and-ahead 55 i [ ; determines the patches right by 55 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-right-and-ahead 65 i [ ; determines the patches right by 65 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 



70 

      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-right-and-ahead 75 i [ ; determines the patches right by 75 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-right-and-ahead 85 i [ ; determines the patches right by 85 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 10] [ 
    ask patch-right-and-ahead 95 i [ ; determines the patches right by 95 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 11) ] 
    ] 
    set i (i + 1) 
  ] 
 
end 
 
;;-----------------------;;; 
;;;;;;  Hunter Agent  ;;;;;; 
;;-----------------------;;; 
 
; The Hunter Agent represents three classes of hunters: 
;     1. Level-1 Hunter: 
;     2. Level-2 Hunter: 
;     3. Level-3 Hunter 
; 
; The command "breed [ hunters hunter]" is defined in the World Agent / Beliefs section as required by NetLogo. 
; 
 
;;;;;;;;; Actions ;;;;;;;;;;;;;; 
 
to HA-action_talk-prey_found 
  show "HA-action_talk-prey_found" 
  WA_perception_sounds-prey_found 
 
end 
 
to HA_action_eat-prey 
  ;show "Eating Prey" 
  set GA_State_Energy-Current 300 
  ;figure out where an Agent dies!!! 
;  WA_Patch_perception_food-eaten 
end 
 
to HA_action_face-alpha_heading 
  set heading HA_Belief_Alpha-Heading 
end 
 
to HA_action_face-prey 
    facexy HA_Belief_Prey-X HA_Belief_Prey-Y 
end 
 
to HA_action_kill-prey 
  WA_Patch_perception-kill_prey 
end 
 
to HA_action_move-alpha 



71 

  facexy HA_Belief_Alpha-X HA_Belief_Alpha-Y 
  GA_action_move-fast 
end 
 
to HA_action_move-encircle 
  facexy HA_Belief_Encircle-X HA_Belief_Encircle-Y 
  let x-dif (HA_Belief_Encircle-X - xcor) 
  let y-dif (HA_Belief_Encircle-Y - ycor) 
 
  let d sqrt( ((x-dif) ^ 2) + ((y-dif) ^ 2) ) 
 
  ifelse d >= 5 [ 
    GA_action_move-run 
  ][ 
    HA_action_move-pounce_encircle 
  ] 
end 
 
to HA_action_move-pounce_encircle 
 
  if label = "Beta1" [ 
    move-to patch HA_Belief_Beta1-Encircle-X HA_Belief_Beta1-Encircle-Y 
  ] 
 
  if label = "Beta2" [ 
    move-to patch HA_Belief_Beta2-Encircle-X HA_Belief_Beta2-Encircle-Y 
  ] 
 
  if label = "Omega1" [ 
    move-to patch HA_Belief_Encircle-X HA_Belief_Encircle-Y 
  ] 
end 
 
to HA_action_move-prey_fast 
 set heading HA_Belief_Hunter-Prey_Heading 
 GA_action_move-fast 
end 
 
to HA_action_move-prey_normal 
  facexy HA_Belief_Prey-X HA_Belief_Prey-Y 
  GA_action_move-normal 
end 
 
to HA_action_move-prey_pounce 
  set heading HA_Belief_Hunter-Prey_Heading 
  GA_action_move-pounce_prey 
end 
 
to HA_action-search-alpha 
  set heading (heading + 90) 
end 
 
to HA_action_search-prey 
  set heading (heading + 10) 
  GA_action_move-fast 
end 
 
;;;;;;;;;;;;; Belief Revision Function (BRF) ;;;;;;;;;;;;;;;; 
 
; The Beliefs of the Hunter Agent are instantiated under the Beliefs / Hunters-Own section of the World Agent. 
; This occurs because NetLogo requires these variables to be declared at the beginning of the code (for reasons unknown). 
; Though the class of hunter variables are not formally declared at this location in the code, they are described below. Note that 
; each belief exists within a cycle, where the cycles existing for this specific implementation are the Deliberate Cycle (DC), the 
; Hunting Cycle (HC), and the Pack Cycle (PC) (where the Pack Cycle is used only to distinguish between the Alpha, Beta, and Omega Hunters). 
 
;--Beliefs--; 
 
;  HA_Belief_Prey-Seen                     Belief (DC): Prey has been visually observed - True/False. 
;  HA_Belief_Prey-Known                    Belief (HC): HA has knowledge of the Prey's last known location. - True/False. 
;  HA_Belief_Hunter-Prey_Heading           Belief (DC): Heading of HA to the prey. 
;  HA_Belief_Hunter-Prey_Distance          Belief (DC): Distance from HA to prey. 
;  HA_Belief_Prey-X                        Belief (HC): Prey's x-coord. 
;  HA_Belief_Prey-Y                        Belief (HC): Prey's y-coord. 
;  HA_Belief_Prey-Heading                  Belief (HC): Prey's heading. 
;  HA_Belief_Prey-Speed                    Belief (HC): Prey's speed. 
;  HA_Belief_Prey-atSource                 Belief (DC): The HA and the prey occupy the same patch. 
;  HA_Belief_Prey-Sources                  Belief (HC): List of all the sources of prey (and their X,y coordinates). 
;  HA_Belief_Leader                        Belief (PC): The turtle number of the HA's superior. 
;  HA_Belief_Alpha                         Belief (PC): The turtle number of the Alpha. 
;  HA_Belief_Alpha-Seen                    Belief (DC): Alpha has been visually observed - True/False. 
;  HA_Belief_Alpha-Known                   Belief (HC): HA has knowledge of the Alpha's last location. - True/False. 
;  HA_Belief_Hunter-Alpha_Heading          Belief (DC): The heading from the HA to the Alpha. 
;  HA_Belief_Hunter-Alpha_Distance         Belief (DC): The distance from the HA to the Alpha. 
;  HA_Belief_Alpha-X                       Belief (HC): The Alpha's x-coord. 
;  HA_Belief_Alpha-Y                       Belief (HC): The Alpha's y-coord. 
;  HA_Belief_Alpha-Heading                 Belief (HC): Alpha's heading. 
;  HA_Belief_Alpha-Speed                   Belief (HC): Alpha's speed. 
;  HA_Belief_Alpha-Prey_Distance           Belief (DC): The distance between the Alpha and the Prey. 
;  HA_Belief_Alpha-Prey_Heading            Belief (DC): The heading from the Alpha and the Prey. 
;  HA_Belief_Beta1                         Belief (PC): The turtle number of the Beta1. 
;  HA_Belief_Beta1-Seen                    Belief (DC): Beta1 has been visually observed - True/False. 
;  HA_Belief_Beta1-Known                   Belief (HC): HA has knowledge of the Beta1's last location. - True/False. 
;  HA_Belief_Hunter-Beta1_Heading          Belief (DC): The heading from the HA to the Beta1. 



72 

;  HA_Belief_Hunter-Beta1_Distance         Belief (DC): The distance from the HA to the Beta1. 
;  HA_Belief_Beta1-X                       Belief (HC): The Beta1's x-coord. 
;  HA_Belief_Beta1-Y                       Belief (HC): The Beta1's y-coord. 
;  HA_Belief_Beta1-Prey_Distance           Belief (DC): The distance between the Beta1 and the Prey. 
;  HA_Belief_Beta1-Prey_Heading            Belief (DC): The heading from the Beta1 and the Prey. 
;  HA_Belief_Beta1-Encircle-X              Belief (DC): X-coord of the Beta1 encircle point. 
;  HA_Belief_Beta1-Encircle-Y              Belief (DC): Y-coord of the Beta1 encircle point. 
;  HA_Belief_Beta2                         Belief (PC): The turtle number of the Beta2. 
;  HA_Belief_Beta2-Seen                    Belief (DC): Beta2 has been visually observed - True/False. 
;  HA_Belief_Beta2-Known                   Belief (HC): HA has knowledge of the Beta2's last location. - True/False. 
;  HA_Belief_Hunter-Beta2_Heading          Belief (DC): The heading from the HA to the Beta2. 
;  HA_Belief_Hunter-Beta2_Distance         Belief (DC): The distance from the HA to the Beta2. 
;  HA_Belief_Beta2-X                       Belief (HC): The Beta2's x-coord. 
;  HA_Belief_Beta2-Y                       Belief (HC): The Beta2's y-coord. 
;  HA_Belief_Beta2-Prey_Distance           Belief (DC): The distance between the Beta2 and the Prey. 
;  HA_Belief_Beta2-Prey_Heading            Belief (DC): The heading from the Beta2 and the Prey. 
;  HA_Belief_Beta2-Encircle-X              Belief (DC): X-coord of the Beta2 encircle point. 
;  HA_Belief_Beta2-Encircle-Y              Belief (DC): Y-coord of the Beta2 encircle point. 
;  HA_Belief_Omega1                        Belief (PC): The turtle number of Omega1. 
;  HA_Belief_Omega1-Seen                   Belief (DC): Omega1 has been visually observed - True/False. 
;  HA_Belief_Omega1-Known                  Belief: HA has knowledge of the Omega1's last location. - True/False. 
;  HA_Belief_Omega2                        Belief (PC): The turtle number of Omega2. 
;  HA_Belief_Omega2-Seen                   Belief: Omega2 has been visually observed - True/False. 
;  HA_Belief_Omega2-Known                  Belief: HA has knowledge of the Omega2's last location. - True/False. 
;  HA_Belief_Heard-Call                    Belief (DC): HA heard a call from one of the other HAs. 
;  HA_Belief_Heard-Alpha                   Belief (HC): HA heard a call from the Alpha. 
;  HA_Belief_Encircle-X                    Belief (DC): X-coord of the encircle point. 
;  HA_Belief_Encircle-Y                    Belief (DC): Y-coord of the encircle point. 
;  HA_Belief_Hunt-Mode                     Belief (HC): The hunt mode that the HA is in: Rest, Search, Encircle, Strike, Eat. 
;  HA_State_Hunter-Type                    State (PC): The type of Hunting Agent: lioness, wolf, etc. 
;  HA_State_Hunter-Class                   State (PC): The class of hunter: alpha, beta, omega, etc. 
;  HA_State_Hunter-Level                   State (PC): The level of the HA is used to distinguish two HAs of the same Class (ie. Beta1 from Beta2). 
 
;--Instantiation--; 
to HA_belief_instantiate-lioness_alpha 
  create-hunters 1 
    [ set color red 
      set size 5 
      set shape "default" 
      set pen-size 1 
 
      setxy  0 0 
      facexy 0 1 
 
      set HA_State_Hunter-Type "Lioness" 
      set HA_State_Hunter-Class "Alpha" 
      set HA_Belief_Hunter-Leader [who] of self 
      set HA_Belief_Beta1 1 
 
      set label (word "Alpha" 1 ) 
      set label-color white 
 
      set HA_Belief_Hunt-Mode "Rest" 
      set GA_State_Energy-Current 75 
      set GA_State_Water-Current 150 
      set GA_Design_Speed-Max 5 
      set GA_State_Speed-Current 0 
      set GA_State_Voice-Level 7 
    ] 
end 
 
to HA_belief_instantiate-lioness_beta 
  create-hunters 1 [ 
    set size 5 
    set shape "default" 
    set pen-size 1 
 
    setxy 10 -10 ; 
    facexy 0 1 
 
    set HA_State_Hunter-Type "Lioness" 
    set HA_State_Hunter-Class "Beta" 
 
    set HA_Belief_Hunter-Leader 0 
 
    set label (word "Beta" 1) 
    set label-color white 
    set color 13 
 
    set HA_Belief_Hunt-Mode "Rest" 
    set GA_State_Energy-Current 75 
    set GA_State_Water-Current 150 
    set GA_Design_Speed-Max 5 
    set GA_State_Speed-Current 0 
    set GA_State_Voice-Level 7 
    ] 
end 
 
to HA_belief_instantiate-wolf_alpha 
  create-hunters 1 
    [ set color red 
      set size 5 
      set shape "default" 



73 

      set pen-size 1 
 
      setxy 0 0 ;random-xcor random-ycor 
      facexy 0 1 
 
      set HA_Belief_Beta1 -1 
      set HA_Belief_Beta2 -1 
      set HA_Belief_Omega1 -1 
      set HA_Belief_Omega2 -1 
 
      set HA_State_Hunter-Type "Wolf" 
      set HA_State_Hunter-Class "Alpha" 
      set HA_Belief_Hunter-Leader [who] of self 
 
      let i 0 
      ask hunters [ 
        if (HA_State_Hunter-Class = "Alpha") [ set i (i + 1) ] 
        set HA_State_Hunter-Level i 
      ] 
 
      set label (word "Alpha" WA_Belief_HA-Alpha_Quantity ) 
      set label-color white 
 
;      show [(word "("HA_State_Hunter-Type ", " HA_State_Hunter-Level ", " HA_Belief_Hunter-Leader ")"  )] of self 
 
      set HA_Belief_Hunt-Mode "Rest" 
      set GA_State_Energy-Current 75 
      set GA_State_Water-Current 150 
      set GA_Design_Speed-Max 5 
      set GA_State_Speed-Current 0 
      set GA_State_Voice-Level 7 
    ] 
end 
 
to HA_belief_instantiate-wolf_beta 
  create-hunters 1 [ 
;    set color 14 
    set size 5 
    set shape "default" 
    set pen-size 1 
 
  ;  setxy random-xcor random-ycor ; 0 0 
    facexy 0 1 
 
    set HA_Belief_Omega1 -1 
    set HA_Belief_Omega2 -1 
 
    set HA_State_Hunter-Type "Wolf" 
    set HA_State_Hunter-Class "Beta" 
 
    let i 0 
    let j who 
    ask hunters [ 
;   show [(word "Hunter - ("HA_State_Hunter-Type ", " HA_State_Hunter-Level ", " HA_Belief_Hunter-Leader ")"  )] of self 
      if (HA_State_Hunter-Type = "Beta") [ set i (i + 1) ] 
        let assigned false 
        if (HA_State_Hunter-Type = "Alpha") [ 
          if HA_Belief_Beta1 = -1 [ 
            set HA_Belief_Beta1 j 
            set assigned true 
          ] 
          if (assigned = false) and (HA_Belief_Beta2 = -1) [set HA_Belief_Beta2 j] 
          set j who 
;         show [(word "Alpha - ("HA_State_Hunter-Type ", " HA_State_Hunter-Level ", " HA_Belief_Hunter-Leader ", " HA_Belief_Hunter-Beta1 ", " HA_Belief_Hunter-Beta2 ")"  )] 

of self 
        ] 
      ] 
      set HA_State_Hunter-Level i 
      set HA_Belief_Hunter-Leader j 
 
;      show [(word "Beta - ("HA_State_Hunter-Type ", " HA_State_Hunter-Level ", " HA_Belief_Hunter-Leader ", " who ")"  )] of self 
 
      if WA_Belief_HA-Beta_Quantity = 2 [ 
        set label (word "Beta" 1 ) 
        set color 13 
        setxy 10 -10 
        show "my colour is 13" 
      ] 
 
      if WA_Belief_HA-Beta_Quantity = 1 [ 
        set label (word "Beta" 2 ) 
        set color 14 
        setxy -10 -10 
        show "my colour is 14" 
      ] 
 
      set HA_Belief_Hunt-Mode "Rest" 
      set label-color white 
 
      set GA_State_Energy-Current 75 
      set GA_State_Water-Current 150 
      set GA_Design_Speed-Max 5 
      set GA_State_Speed-Current 0 



74 

      set GA_State_Voice-Level 7 
    ] 
end 
 
to HA_belief_instantiate-wolf_omega 
  create-hunters 1 
    [ set color 16 
      set size 5 
      set shape "default" 
      set pen-size 1 
 
      setxy random-xcor random-ycor ; 0 0 
      facexy 0 1 
 
      set HA_State_Hunter-Type "Wolf" 
      set HA_State_Hunter-Class "Omega" 
 
      let i 0 
      let j who 
      let k who 
      let assigned false 
      ask hunters [ 
;        set j k 
;       show [(word "Hunter - ("HA_State_Hunter-Type ", " HA_State_Hunter-Level ", " HA_Belief_Hunter-Leader ")"  )] of self 
        if (HA_State_Hunter-Type = "Omega") [ set i (i + 1) ] 
;        set assigned false 
        if (HA_State_Hunter-Type = "Alpha") and (assigned = false) [ 
          if HA_Belief_Omega1 = -1 [ 
            set HA_Belief_Omega1 j 
            set k who 
            set assigned true 
          ] 
          if (assigned = false) and (HA_Belief_Omega2 = -1)[ 
            set HA_Belief_Omega2 j 
            set assigned true 
            set k who 
          ] 
;          show [(word "Alpha/Beta - ("HA_State_Hunter-Type ", " HA_State_Hunter-Level ", " HA_Belief_Hunter-Leader ", " HA_Belief_Hunter-Omega1 ", " HA_Belief_Hunter-

Omega2 ")"  )] of self 
        ] 
 
        if (HA_State_Hunter-Type = "Beta") and (assigned = false) [ 
          if HA_Belief_Omega1 = -1 [ 
            set HA_Belief_Omega1 j 
            set k who 
            set assigned true 
          ] 
          if (assigned = false) and (HA_Belief_Omega2 = -1)[ 
            set HA_Belief_Omega2 j 
            set assigned true 
            set k who 
          ] 
 
        ] 
 ;       show [(word "Alpha/Beta - ("HA_State_Hunter-Type ", " HA_State_Hunter-Level ", " HA_Belief_Hunter-Leader ", " HA_Belief_Hunter-Omega1 ", " HA_Belief_Hunter-

Omega2 ")"  )] of self 
  ;      if assigned = true [set k who] 
      ] 
      set HA_State_Hunter-Level i 
      set HA_Belief_Hunter-Leader k 
 
 ;     show [(word "Me - ("HA_State_Hunter-Type ", " HA_State_Hunter-Level ", " HA_Belief_Hunter-Leader ", " who ")"  )] of self 
 
      if WA_Belief_HA-Omega_Quantity = 1 [ 
        setxy 0 -25 
      ] 
 
      set label (word "Omega" WA_Belief_HA-Omega_Quantity ) 
      set HA_Belief_Hunt-Mode "Rest" 
      set label-color white 
 
      set GA_State_Energy-Current 75 
      set GA_State_Water-Current 150 
      set GA_Design_Speed-Max 5 
      set GA_State_Speed-Current 0 
      set GA_State_Voice-Level 7 
    ] 
end 
 
;--BRF--; 
 
to HA_brf_audio-update 
  let sender 0 
  let name "name" 
  let sound-x 0 
  let sound-y 0 
  let sound-level 0 
  let message "none" 
  let sound-bearing 0 
  let hunter-distance 500 
 
  HA_perception_sound 
 



75 

  foreach HA_Perceive-Sounds [ [m] -> 
    set sender (item 0 m) 
    set name (item 1 m) 
    set sound-x (item 2 m) 
    set sound-y (item 3 m) 
    set sound-level (item 4 m) 
    set message (item 5 m) 
 
    if (sender != [who] of self) and (ticks >= 2)[    ;(turtle sender != [who] of self) ... (xcor != sound-x) and (ycor != sound-y) 
 
      set HA_Belief_Heard-Call true 
 
;      show "heard call" 
;      show [(word "HA_brf_hunters-audio - (" sender ", " sound-x ", " sound-y ", " sound-level ")"  )] of self 
      if (name = "Alpha1") [ 
;        show "heard Alpha" 
        set HA_Belief_Heard-Alpha true 
        set hunter-distance (distance turtle sender) 
        if hunter-distance > 1 [ 
          set HA_Belief_Prey-Heading towardsxy sound-x sound-y 
        ] 
      ] 
      if (HA_Belief_Heard-Alpha = false) and (distance turtle sender < hunter-distance) [ 
        set hunter-distance (distance turtle sender) 
        if hunter-distance > 1 [ 
          set HA_Belief_Prey-Heading towardsxy sound-x sound-y 
        ] 
      ] 
    ] 
  ] 
 
end 
 
to HA_brf_cycle 
;  set HA_Belief_Prey false 
;  set HA_Belief_Prey-atSource false 
;  set HA_Belief_Hunter-Prey_Distance 100 
;  set HA_Belief_Heard-Call false 
;  set HA_Belief_Heard-Alpha false 
;  set HA_Belief_Hunter-Leader false 
;  set HA_Belief_Alpha false 
;  set HA_Belief_Beta1 false 
;  set HA_Belief_Beta2 false 
;  set HA_Belief_Omega1 false 
 
  GA_brf_cycle 
  HA_perception_visual-scan 
  HA_brf_visual-update 
  HA_brf_audio-update 
 
end 
 
to HA_brf_lioness-spatial_update 
  let dx_alpha-prey (HA_Belief_Prey-X - HA_Belief_Alpha-X) 
  let dy_alpha-prey (HA_Belief_Prey-Y - HA_Belief_Alpha-Y) 
 
  set HA_Belief_Alpha-Prey_Distance (sqrt( ((dx_alpha-prey) ^ 2) + ((dy_alpha-prey) ^ 2) )) 
 
  set HA_Belief_Encircle-X (HA_Belief_Prey-X + dx_alpha-prey) 
  set HA_Belief_Encircle-Y (HA_Belief_Prey-Y + dy_alpha-prey) 
 
  set HA_Belief_Beta1-Encircle-X HA_Belief_Encircle-X 
  set HA_Belief_Beta1-Encircle-Y HA_Belief_Encircle-Y 
 
  set HA_Belief_Beta1-Prey_Distance (sqrt( ((HA_Belief_Beta1-X - HA_Belief_Prey-X) ^ 2) + ((HA_Belief_Beta1-Y - HA_Belief_Prey-Y) ^ 2) )) 
end 
 
to HA_brf_wolf-spatial_update 
  ;let dx_beta1-prey (HA_Belief_Prey-X - HA_Belief_Beta1-X) 
  ;let dy_beta1-prey (HA_Belief_Prey-Y - HA_Belief_Beta1-Y) 
 
  ;let dx_beta2-prey (HA_Belief_Prey-X - HA_Belief_Beta2-X) 
  ;let dy_beta2-prey (HA_Belief_Prey-Y - HA_Belief_Beta2-Y) 
 
  let dx_alpha-prey (HA_Belief_Prey-X - HA_Belief_Alpha-X) 
  let dy_alpha-prey (HA_Belief_Prey-Y - HA_Belief_Alpha-Y) 
 
  show [(word "Prey-X - ("HA_Belief_Prey-X") Prey-Y - ("HA_Belief_Prey-Y")"  )] of self 
  show [(word "Alpha-X - ("HA_Belief_Alpha-X") Alpha-Y - ("HA_Belief_Alpha-Y")"  )] of self 
 
  set HA_Belief_Alpha-Prey_Distance (sqrt( ((dx_alpha-prey) ^ 2) + ((dy_alpha-prey) ^ 2) )) 
 
  if (label = "Beta1") or (label = "Alpha1") [ 
    set HA_Belief_Beta1-Encircle-X (HA_Belief_Prey-X + (HA_Belief_Alpha-Prey_Distance * 0.5)) 
    set HA_Belief_Beta1-Encircle-Y (HA_Belief_Prey-Y + (HA_Belief_Alpha-Prey_Distance * 1.2)) 
 
    set HA_Belief_Beta1-Prey_Distance (sqrt( ((HA_Belief_Beta1-X - HA_Belief_Prey-X) ^ 2) + ((HA_Belief_Beta1-Y - HA_Belief_Prey-Y) ^ 2) )) 
    set HA_Belief_Encircle-X HA_Belief_Beta1-Encircle-X 
    set HA_Belief_Encircle-Y HA_Belief_Beta1-Encircle-Y 
  ] 
 
  if label = "Beta2" or (label = "Alpha1") [ 
    set HA_Belief_Beta2-Encircle-X (HA_Belief_Prey-X + (HA_Belief_Alpha-Prey_Distance * -0.5)) 



76 

    set HA_Belief_Beta2-Encircle-Y (HA_Belief_Prey-Y + (HA_Belief_Alpha-Prey_Distance * 1.2)) 
 
    set HA_Belief_Beta2-Prey_Distance (sqrt( ((HA_Belief_Beta2-X - HA_Belief_Prey-X) ^ 2) + ((HA_Belief_Beta2-Y - HA_Belief_Prey-Y) ^ 2) )) 
    set HA_Belief_Encircle-X HA_Belief_Beta2-Encircle-X 
    set HA_Belief_Encircle-Y HA_Belief_Beta2-Encircle-Y 
  ] 
 
  if label = "Omega1" [ 
   ; set HA_Belief_Encircle-X (HA_Belief_Prey-X + ((HA_Belief_Alpha-X + HA_Belief_Beta1-X + HA_Belief_Beta2-X) / 3)) 
   ; set HA_Belief_Encircle-Y (HA_Belief_Prey-Y + ((HA_Belief_Alpha-Y + HA_Belief_Beta1-Y + HA_Belief_Beta2-Y) / 3)) 
 
    set HA_Belief_Encircle-X ((HA_Belief_Alpha-X + HA_Belief_Beta1-X + HA_Belief_Beta2-X) / 3) 
    set HA_Belief_Encircle-Y ((HA_Belief_Alpha-Y + HA_Belief_Beta1-Y + HA_Belief_Beta2-Y) / 3) 
 
    show [(word "Omega-Encircle-X - ("HA_Belief_Encircle-X") Omega-Encircle-Y - ("HA_Belief_Encircle-Y")"  )] of self 
    show [(word "Alpha-X - ("HA_Belief_Alpha-X") Alpha-Y - ("HA_Belief_Alpha-Y")"  )] of self 
    show [(word "Beta1-X - ("HA_Belief_Beta1-X") Beta1-Y - ("HA_Belief_Beta1-Y")"  )] of self 
    show [(word "Beta2-X - ("HA_Belief_Beta2-X") Beta2-Y - ("HA_Belief_Beta2-Y")"  )] of self 
 
;    set HA_Belief_Omega-Prey_Distance (sqrt( ((HA_Belief_Beta1-X - HA_Belief_Prey-X) ^ 2) + ((HA_Belief_Beta1-Y - HA_Belief_Prey-Y) ^ 2) )) 
  ] 
 
end 
 
to HA_brf_reset-beliefs 
  set HA_Belief_Prey-Known false 
  set HA_Belief_Alpha-Known false 
  set HA_Belief_Beta1-Known false 
  set HA_Belief_Beta2-Known false 
  set HA_Belief_Omega1-Known false 
  set HA_Belief_Omega2-Known false 
end 
 
to HA_brf_visual-update 
  let patch-colour 0 
  let temp-heading 0 
  let temp-distance 100 
  let temp-x 0 
  let temp-y 0 
  let agent-number 1000 
  let agent-heading 1000 
  let agent-speed 1000 
  let i 0 
  set HA_Belief_Hunter-Prey_Distance 110 
 
  set HA_Belief_Prey-Seen false 
  set HA_Belief_Prey-atSource false 
;-  set HA_Belief_Hunter-Prey_Distance 100 
;-  set HA_Belief_Heard-Call false 
;-  set HA_Belief_Heard-Alpha false 
;  set HA_Belief_Hunter-Leader false 
  set HA_Belief_Alpha-Seen false 
  set HA_Belief_Beta1-Seen false 
  set HA_Belief_Beta2-Seen false 
  set HA_Belief_Omega1-Seen false 
  set HA_Belief_Alpha-Prey_Attack false 
 
;  let n first GA_Perceive_Visual-Scan 
;  set GA_Belief_Patch-Colour (item 0 n) 
;  show [(word "(HA - "GA_Belief_Patch-Colour")")] of self 
 
 ; ifelse (GA_Belief_Patch-Colour = brown) or (GA_Belief_Patch-Colour = 19) [ 
;    show "Captured Prey!" 
;    set HA_Belief_Prey-atSource true 
;  ][ 
  foreach GA_Perceive_Visual-Scan [ [m] -> 
    set patch-colour (item 0 m) 
    set temp-heading (item 1 m) 
    set temp-distance (item 2 m) 
    set temp-x (item 3 m) 
    set temp-y (item 4 m) 
    set agent-number (item 5 m) 
    set agent-heading (item 6 m) 
    set agent-speed (item 7 m) 
 
    ifelse (i <= 0) [ 
      set GA_Belief_Patch-Colour patch-colour 
      if (GA_Belief_Patch-Colour = brown) or (GA_Belief_Patch-Colour = 19) [ 
        show "Captured Prey!" 
        set HA_Belief_Prey-atSource true 
        set HA_Belief_Prey-Seen true 
      ] 
    ][ 
      if (patch-colour = brown) [ 
        set HA_Belief_Prey-Seen true 
        show "found prey" 
 
        if (temp-distance < HA_Belief_Hunter-Prey_Distance) [ 
          set HA_Belief_Hunter-Prey_Distance temp-distance 
          set HA_Belief_Hunter-Prey_Heading temp-heading 
          set HA_Belief_Prey-X temp-x 
          set HA_Belief_Prey-Y temp-y 
          show [(word "Visual-HA_Belief_Prey-X - ("HA_Belief_Prey-X") Visual-HA_Belief_Prey-Y - ("HA_Belief_Prey-Y")"  )] of self 



77 

        ] 
      ] 
      if (patch-colour = red) [ 
        set HA_Belief_Alpha-Seen true 
        show "Visual Scan - I see Alpha" 
        set HA_Belief_Alpha-Heading agent-heading 
        set HA_Belief_Alpha-Speed agent-speed 
 
        set HA_Belief_Hunter-Alpha_Heading temp-heading 
        set HA_Belief_Hunter-Alpha_Distance temp-distance 
        set HA_Belief_Alpha-X temp-x 
        set HA_Belief_Alpha-Y temp-y 
      ] 
      if (patch-colour = 13) [ 
        set HA_Belief_Beta1-Seen true 
        show "Visual Scan - I see Beta1" 
        set HA_Belief_Hunter-Beta1_Heading temp-heading 
        set HA_Belief_Hunter-Beta1_Distance temp-distance 
        set HA_Belief_Beta1-X temp-x 
        set HA_Belief_Beta1-Y temp-y 
        show [(word "Visual-HA_Belief_Beta1-X - ("HA_Belief_Beta1-X") Visual-HA_Belief_Beta1-Y - ("HA_Belief_Beta1-Y")"  )] of self 
      ] 
      if (patch-colour = 14) [ 
        set HA_Belief_Beta2-Seen true 
        show "Visual Scan - I see Beta2" 
        set HA_Belief_Hunter-Beta2_Heading temp-heading 
        set HA_Belief_Hunter-Beta2_Distance temp-distance 
        set HA_Belief_Beta2-X temp-x 
        set HA_Belief_Beta2-Y temp-y 
        show [(word "Visual-HA_Belief_Beta2-X - ("HA_Belief_Beta1-X") Visual-HA_Belief_Beta2-Y - ("HA_Belief_Beta1-Y")"  )] of self 
      ] 
      if (patch-colour = 19) [                                    ; this represents an HA and PA on the same patch agent. 
        set HA_Belief_Alpha-Seen true 
        set HA_Belief_Prey-Seen true 
        set HA_Belief_Alpha-Prey_Attack true 
        set HA_Belief_Alpha-Prey_Distance 0 
        show "Visual Scan - Alpha on Prey" 
        set HA_Belief_Alpha-Heading agent-heading 
        set HA_Belief_Alpha-Speed agent-speed 
 
        set HA_Belief_Hunter-Alpha_Heading temp-heading 
        set HA_Belief_Hunter-Alpha_Distance temp-distance 
        set HA_Belief_Alpha-X temp-x 
        set HA_Belief_Alpha-Y temp-y 
 
        set HA_Belief_Hunter-Prey_Distance temp-distance 
        set HA_Belief_Hunter-Prey_Heading temp-heading 
        set HA_Belief_Prey-X temp-x 
        set HA_Belief_Prey-Y temp-y 
      ] 
    ] 
    set i i + 1 
  ] 
end 
;;;;;;;;;;;;;;; Deliberation ;;;;;;;;;;;;;;;; 
 
to HA_deliberate_lioness-alpha 
  HA_brf_cycle 
  GA_deliberate_cycle 
 
  if HA_Belief_Beta1-Seen = true [ 
    show "Deliberate - I See Beta1" 
    set HA_Belief_Beta1-Known true 
  ] 
 
  if GA_Desire_Food = true [     ; this is the entry condition into the "Hunting Cycle" 
    if (HA_Belief_Hunt-Mode = "Rest") [ 
      set HA_Belief_Hunt-Mode "I Search for Prey" 
      show "I'm Searching For Prey" 
    ] 
  ] 
 
 if HA_Belief_Hunt-Mode = "I Search for Prey" [ 
    if HA_Belief_Heard-Call = true [ 
      set HA_Belief_Hunt-Mode "Pack Found Prey" 
      show "Pack Found Prey" 
    ] 
 
    if (HA_Belief_Prey-Seen = true) [ 
      set HA_Belief_Hunt-Mode "I See Prey" 
      set HA_Belief_Prey-Known true 
      show "I See Prey" 
      if (HA_Belief_Heard-Call = false) [ 
        HA_irf_communicate-prey_found 
      ] 
    ] 
 
    if (HA_Belief_Prey-Seen = false) and (HA_Belief_Prey-Known = true)[ 
      set HA_Belief_Hunt-Mode "I Search for Prey at Last Known Location" 
    ] 
 
    if (HA_Belief_Heard-Call = false) and (HA_Belief_Prey-Seen = false) [ 
;      show "I move to search for prey" 



78 

      HA_irf_search-prey 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Pack Found Prey" [ 
    HA_irf_move-alpha 
    set HA_Belief_Hunt-Mode "I Search for Prey" 
    show "Back to I Search For Prey" 
  ] 
 
  if HA_Belief_Hunt-Mode = "I Search for Prey at Last Known Location" [ 
    ifelse (HA_Belief_Prey-Seen = false) and (xcor = HA_Belief_Prey-X) and (ycor = HA_Belief_Prey-Y) [ 
      set HA_Belief_Prey-Known False 
      show "At Last Known Prey Location" 
    ][ 
      HA_irf_move-prey_fast 
      show "Moving to Last Known Prey Location" 
    ] 
    set HA_Belief_Hunt-Mode "I Search for Prey" 
  ] 
 
  if HA_Belief_Hunt-Mode = "I See Prey" [ 
    HA_irf_communicate-prey_found 
    if (HA_Belief_Hunter-Prey_Distance >= 16) [ HA_irf_move-prey_fast ] 
    if (HA_Belief_Hunter-Prey_Distance < 16) [ 
      set HA_Belief_Hunt-Mode "Encircle" 
      show "Move to Encircle" 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Encircle" [ 
    HA_brf_lioness-spatial_update 
    show [(word "Encircle-X - ("HA_Belief_Encircle-X") Encircle-Y - ("HA_Belief_Encircle-Y")"  )] of self 
    if (HA_Belief_Encircle-X - HA_Belief_Beta1-X < 5) and (HA_Belief_Encircle-Y - HA_Belief_Beta1-Y < 5) [ 
      set HA_Belief_Hunt-Mode "Approach" 
      show "I see Beta...Move to Approach" 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Approach" [ 
    if (HA_Belief_Beta1-Seen = true) [ 
      if ((HA_Belief_Hunter-Prey_Distance < 16) and (HA_Belief_Hunter-Prey_Distance > 7)) [ 
        HA_irf_move-prey_normal-linear 
      ] 
      if (HA_Belief_Hunter-Prey_Distance < 9) [ 
        set HA_Belief_Hunt-Mode "Strike" 
        show "Move to Strike" 
      ] 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Strike" [ 
    HA_irf_move-prey_pounce 
    set HA_Belief_Hunt-Mode "Move to Kill" 
  ] 
 
  if HA_Belief_Hunt-Mode = "Kill" [ 
    if HA_Belief_Prey-atSource = true [ 
      HA_irf_kill-prey 
      set HA_Belief_Hunt-Mode "Move to Eat" 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Eat" [ 
     HA_irf_eat-prey 
    set HA_Belief_Hunt-Mode "Rest" 
  ] 
 
  if HA_Belief_Hunt-Mode = "Rest" [ 
    HA_brf_reset-beliefs 
  ] 
 
 show [(word "Alpha Hunt State - ("HA_Belief_Hunt-Mode")")] of self 
 show [(word "Alpha Patch Colour - ("pcolor")")] of patch-here 
 
end 
 
to HA_deliberate_lioness-beta 
  HA_brf_cycle 
  GA_deliberate_cycle 
 
  if HA_Belief_Alpha-Seen = true [ 
      show "Deliberate - I See Alpha" 
      set HA_Belief_Alpha-Known true 
  ] 
 
  if GA_Desire_Food = true [     ; this is the entry condition into the "Hunting Cycle" 
    if (HA_Belief_Hunt-Mode = "Rest") [ 
      set HA_Belief_Hunt-Mode "I Search for Prey" 
      show "I'm Searching For Prey" 
    ] 
  ] 
 



79 

  if HA_Belief_Hunt-Mode = "I Search for Prey" [ 
    if HA_Belief_Heard-Call = true [ 
      set HA_Belief_Hunt-Mode "Pack Found Prey" 
      show "Pack Found Prey" 
    ] 
 
    if (HA_Belief_Prey-Seen = true) [ 
      set HA_Belief_Hunt-Mode "I See Prey" 
      set HA_Belief_Prey-Known true 
      show "I See Prey" 
      if (HA_Belief_Heard-Call = false) and (HA_Belief_Alpha-Seen = false) [ 
        HA_irf_communicate-prey_found 
      ] 
    ] 
 
    if (HA_Belief_Prey-Seen = false) and (HA_Belief_Prey-Known = true)[ 
      set HA_Belief_Hunt-Mode "I Search for Prey at Last Known Location" 
    ] 
 
    if (HA_Belief_Heard-Call = false) and (HA_Belief_Prey-Seen = false) [ 
      HA_irf_search-prey 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Pack Found Prey" [ 
    HA_irf_move-alpha 
    set HA_Belief_Hunt-Mode "I Search for Prey" 
    show "Back to I Search For Prey" 
  ] 
 
  if HA_Belief_Hunt-Mode = "I Search for Prey at Last Known Location" [ 
    ifelse (HA_Belief_Prey-Seen = false) and (xcor = HA_Belief_Prey-X) and (ycor = HA_Belief_Prey-Y) [ 
      set HA_Belief_Prey-Known False 
      show "At Last Known Prey Location" 
    ][ 
      HA_irf_move-prey_fast 
      show "Moving to Last Known Prey Location" 
    ] 
    set HA_Belief_Hunt-Mode "I Search for Prey" 
  ] 
 
  if HA_Belief_Hunt-Mode = "I See Prey" [ 
    if (HA_Belief_Hunter-Prey_Distance >= 16) [ HA_irf_move-prey_fast ] 
    if (HA_Belief_Hunter-Prey_Distance < 16) and (HA_Belief_Alpha-Known = true) [ 
      set HA_Belief_Hunt-Mode "Encircle" 
      show "Move to Encircle" 
    ] 
   if (HA_Belief_Hunter-Prey_Distance < 16) and (HA_Belief_Alpha-Known = false) [ 
     HA_irf_search-alpha 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Encircle" [ 
    HA_brf_lioness-spatial_update 
    show [(word "Encircle-X - ("HA_Belief_Encircle-X") Encircle-Y - ("HA_Belief_Encircle-Y")"  )] of self 
    HA_irf_move-encircle 
    if (xcor = precision HA_Belief_Encircle-X 0) and (ycor =  precision HA_Belief_Encircle-Y 0) [ 
      HA_irf_face-prey 
      set HA_Belief_Hunt-Mode "Approach" 
      show "Move to Approach" 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Approach" [ 
    if (HA_Belief_Prey-Seen = true) and (HA_Belief_Alpha-Known = true) [ 
      show "Approach - I see Prey and Alpha" 
      HA_brf_lioness-spatial_update 
 
 ;     if (abs(HA_Belief_Hunter-Prey_Heading - HA_Belief_Hunter-Alpha_Heading) <= 20 ) [ HA_irf_move-prey_normal-linear ] 
      if HA_Belief_Beta1-Prey_Distance > (HA_Belief_Alpha-Prey_Distance - 1) [ 
          HA_irf_move-prey_normal-linear 
      ] 
 
      if HA_Belief_Beta1-Prey_Distance <= (HA_Belief_Alpha-Prey_Distance - 1) [ 
          ; wait until Alpha moves closer to Prey. 
      ] 
 
      if (HA_Belief_Hunter-Prey_Distance < 9) [ 
        set HA_Belief_Hunt-Mode "Strike" 
        show "Move to Strike" 
      ] 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Strike" [ 
    HA_irf_move-prey_pounce 
    set HA_Belief_Hunt-Mode "Move to Kill" 
  ] 
 
 if HA_Belief_Hunt-Mode = "Kill" [ 
    if HA_Belief_Prey-atSource = true [ 
      HA_irf_kill-prey 
      set HA_Belief_Hunt-Mode "Move to Eat" 



80 

    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Eat" [ 
     HA_irf_eat-prey 
    set HA_Belief_Hunt-Mode "Rest" 
  ] 
 
  if HA_Belief_Hunt-Mode = "Rest" [ 
    HA_brf_reset-beliefs 
  ] 
 
  show [(word "Beta Hunt State - ("HA_Belief_Hunt-Mode")")] of self 
 
end 
 
to HA_deliberate_wolf-alpha 
  HA_brf_cycle 
  GA_deliberate_cycle 
 
  if HA_Belief_Beta1-Seen = true [ 
    show "Deliberate - I See Beta1" 
    set HA_Belief_Beta1-Known true 
  ] 
 
  if HA_Belief_Beta2-Seen = true [ 
      show "Deliberate - I See Beta2" 
      set HA_Belief_Beta2-Known true 
  ] 
 
  if GA_Desire_Food = true [     ; this is the entry condition into the "Hunting Cycle" 
    if (HA_Belief_Hunt-Mode = "Rest") [ 
      set HA_Belief_Hunt-Mode "I Search for Prey" 
      show "I'm Searching For Prey" 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "I Search for Prey" [ 
    if HA_Belief_Heard-Call = true [ 
      set HA_Belief_Hunt-Mode "Pack Found Prey" 
      show "Pack Found Prey" 
    ] 
 
    if (HA_Belief_Prey-Seen = true) [ 
      set HA_Belief_Hunt-Mode "I See Prey" 
      set HA_Belief_Prey-Known true 
      show "I See Prey" 
      if (HA_Belief_Heard-Call = false) [ 
        HA_irf_communicate-prey_found 
      ] 
    ] 
 
    if (HA_Belief_Prey-Seen = false) and (HA_Belief_Prey-Known = true)[ 
      set HA_Belief_Hunt-Mode "I Search for Prey at Last Known Location" 
    ] 
 
    if (HA_Belief_Heard-Call = 0) and (HA_Belief_Prey-Seen = false) [ 
      show "I move to search for prey" 
      HA_irf_search-prey 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Pack Found Prey" [ 
    HA_irf_move-alpha 
    set HA_Belief_Hunt-Mode "I Search for Prey" 
    show "Back to I Search For Prey" 
  ] 
 
  if HA_Belief_Hunt-Mode = "I Search for Prey at Last Known Location" [ 
    ifelse (HA_Belief_Prey-Seen = false) and (xcor = HA_Belief_Prey-X) and (ycor = HA_Belief_Prey-Y) [ 
      set HA_Belief_Prey-Known False 
      show "At Last Known Prey Location" 
    ][ 
      HA_irf_move-prey_fast 
      show "Moving to Last Known Prey Location" 
    ] 
    set HA_Belief_Hunt-Mode "I Search for Prey" 
  ] 
 
  if HA_Belief_Hunt-Mode = "I See Prey" [ 
    HA_irf_communicate-prey_found 
    if (HA_Belief_Hunter-Prey_Distance >= 16) [ HA_irf_move-prey_fast ] 
    if (HA_Belief_Hunter-Prey_Distance < 16) and (HA_Belief_Beta1-Seen = true) and (HA_Belief_Beta2-Seen = true)[ 
      set HA_Belief_Hunt-Mode "Encircle" 
      show "Move to Encircle" 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Encircle" [ 
    HA_brf_wolf-spatial_update 
 
    let beta1-dx abs(HA_Belief_Beta1-Encircle-X - HA_Belief_Beta1-X) 
    let beta1-dy abs(HA_Belief_Beta1-Encircle-Y - HA_Belief_Beta1-Y) 



81 

    let beta2-dx abs(HA_Belief_Beta2-Encircle-X - HA_Belief_Beta2-X) 
    let beta2-dy abs(HA_Belief_Beta2-Encircle-Y - HA_Belief_Beta2-Y) 
 
show [(word "( Encircle1 - "HA_Belief_Beta1-X ", " HA_Belief_Beta1-Y ", "HA_Belief_Beta2-X ", "HA_Belief_Beta2-Y ")"  )] of self 
show [(word "( Encircle2 - "HA_Belief_Beta1-Encircle-X ", "HA_Belief_Beta1-Encircle-Y ", "HA_Belief_Beta2-Encircle-X ", "HA_Belief_Beta2-Encircle-Y ")"  )] of self 
show [(word "( Encircle3 - "beta1-dx ", " beta1-dy ", " beta2-dx ", " beta2-dy ")"  )] of self 
 
    if (beta1-dx <= 8 ) and (beta1-dy <= 8 ) and (beta2-dx <= 8 ) and (beta2-dy <= 8 ) [ 
 ;   if (abs(HA_Belief_Hunter-Prey_Heading - HA_Belief_Hunter-Beta1_Heading) <= 20 ) and (abs(HA_Belief_Hunter-Prey_Heading - HA_Belief_Hunter-Beta2_Heading) <= 20 

)[ 
 
        set HA_Belief_Hunt-Mode "Approach" 
        show "Move to Approach" 
      ] 
 
    if HA_Belief_Prey-Seen = false [ 
        set HA_Belief_Hunt-Mode "I Search for Prey" 
      ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Approach" [ 
    if (HA_Belief_Beta1-Seen = true) and (HA_Belief_Beta2-Seen = true) [ 
      show "I see Beta1 and Beta2" ] 
      if ((HA_Belief_Hunter-Prey_Distance < 16) and (HA_Belief_Hunter-Prey_Distance > 7)) [ 
        HA_irf_move-prey_normal-linear ] 
      if (HA_Belief_Hunter-Prey_Distance < 9) [ 
        set HA_Belief_Hunt-Mode "Strike" 
        show "Move to Strike" 
      ] 
      if HA_Belief_Prey-Seen = false [ 
        set HA_Belief_Hunt-Mode "I Search for Prey" 
      ] 
    ] 
 
  if HA_Belief_Hunt-Mode = "Strike" [ 
    HA_irf_move-prey_pounce 
    set HA_Belief_Hunt-Mode "Move to Kill" 
  ] 
 
  if HA_Belief_Hunt-Mode = "Kill" [ 
    if HA_Belief_Prey-atSource = true [ 
      HA_irf_kill-prey 
      set HA_Belief_Hunt-Mode "Move to Eat" 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Eat" [ 
     HA_irf_eat-prey 
     set HA_Belief_Hunt-Mode "Rest" 
  ] 
 
  if HA_Belief_Hunt-Mode = "Rest" [ 
    HA_brf_reset-beliefs 
  ] 
 
 show [(word "Alpha Hunt State - ("HA_Belief_Hunt-Mode")")] of self 
 show [(word "Alpha Patch Colour - ("pcolor")")] of patch-here 
 
end 
 
to HA_deliberate_wolf-beta 
  HA_brf_cycle 
  GA_deliberate_cycle 
 
  if HA_Belief_Alpha-Seen = true [ 
      show "Deliberate - I See Alpha" 
      set HA_Belief_Alpha-Known true 
;      if (abs(xcor - HA_Belief_Alpha-X) < 4) and (abs(ycor - HA_Belief_Alpha-Y) < 4) [ 
;        show "I'm next to Alpha" 
;      ] 
  ] 
 
  if GA_Desire_Food = true [     ; this is the entry condition into the "Hunting Cycle" 
    if (HA_Belief_Hunt-Mode = "Rest") [ 
      set HA_Belief_Hunt-Mode "I Search for Prey" 
      show "I'm Searching For Prey" 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "I Search for Prey" [ 
    if HA_Belief_Heard-Call = true [ 
      set HA_Belief_Hunt-Mode "Pack Found Prey" 
      show "Pack Found Prey" 
    ] 
 
    if (HA_Belief_Prey-Seen = true) [ 
      set HA_Belief_Hunt-Mode "I See Prey" 
      set HA_Belief_Prey-Known true 
      show "I See Prey" 
      if (HA_Belief_Heard-Call = false) and (HA_Belief_Alpha-Seen = false) [ 
        HA_irf_communicate-prey_found 
      ] 
    ] 



82 

 
    if (HA_Belief_Prey-Seen = false) and (HA_Belief_Prey-Known = true)[ 
      set HA_Belief_Hunt-Mode "I Search for Prey at Last Known Location" 
    ] 
 
    if (HA_Belief_Heard-Call = 0) and (HA_Belief_Prey-Seen = false) [ 
      show "I move to search for prey" 
      HA_irf_search-prey 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Pack Found Prey" [ 
    HA_irf_move-alpha 
    set HA_Belief_Hunt-Mode "I Search for Prey" 
    show "Back to I Search For Prey" 
  ] 
 
  if HA_Belief_Hunt-Mode = "I Search for Prey at Last Known Location" [ 
;    if (HA_Belief_Prey-Seen = true) [ 
;      set HA_Belief_Hunt-Mode "I See Prey" 
;      set HA_Belief_Prey-Known true 
;      show "Last Known Location - I See Prey" 
;    ] 
    ifelse (HA_Belief_Prey-Seen = false) and (xcor = HA_Belief_Prey-X) and (ycor = HA_Belief_Prey-Y) [ 
      set HA_Belief_Prey-Known False 
      show "At Last Known Prey Location" 
    ][ 
      HA_irf_move-prey_fast 
      show "Moving to Last Known Prey Location" 
    ] 
    set HA_Belief_Hunt-Mode "I Search for Prey" 
  ] 
 
  if HA_Belief_Hunt-Mode = "I See Prey" [ 
    if (HA_Belief_Hunter-Prey_Distance >= 16) [ HA_irf_move-prey_fast ] 
    if (HA_Belief_Hunter-Prey_Distance < 16) and (HA_Belief_Alpha-Known = true) [ 
      set HA_Belief_Hunt-Mode "Encircle" 
      show "Move to Encircle" 
    ] 
   if (HA_Belief_Hunter-Prey_Distance < 16) and (HA_Belief_Alpha-Known = false) [ 
     HA_irf_search-alpha 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Encircle" [ 
    HA_brf_wolf-spatial_update 
    show [(word "Encircle-X - ("HA_Belief_Encircle-X") Encircle-Y - ("HA_Belief_Encircle-Y")"  )] of self 
    HA_irf_move-encircle 
    if (xcor = precision HA_Belief_Encircle-X 0) and (ycor =  precision HA_Belief_Encircle-Y 0) [ 
      HA_irf_face-prey 
      set HA_Belief_Hunt-Mode "Approach" 
      show "Move to Approach" 
    ] 
  ] 
 
;  if HA_Belief_Hunt-Mode = "Approach" [ 
 ;   if (HA_Belief_Prey-Seen = true) and (HA_Belief_Alpha-Known = true) [ 
 ;     show "Approach - I see Prey and Alpha" 
 ;     HA_brf_wolf-spatial_update 
 ;     HA_irf_move-prey_normal-linear 
 
;      if label = "Beta1" [ 
;        if HA_Belief_Beta1-Prey_Distance > (HA_Belief_Alpha-Prey_Distance - 5) [ 
;          HA_irf_move-prey_normal-linear 
;        ] 
; 
;        if HA_Belief_Beta1-Prey_Distance <= (HA_Belief_Alpha-Prey_Distance - 5) [ 
;          ; wait until Alpha moves closer to Prey. 
;        ] 
 
;      ] 
 
 ;     if label = "Beta2" [ 
  ;      if HA_Belief_Beta2-Prey_Distance > (HA_Belief_Alpha-Prey_Distance - 5) [ 
   ;       HA_irf_move-prey_normal-linear 
    ;    ] 
; 
 ;       if HA_Belief_Beta2-Prey_Distance < (HA_Belief_Alpha-Prey_Distance - 5) [ 
  ;        ; wait until Alpha moves closer to Prey. 
   ;     ] 
    ;  ] 
 
;      if (abs(HA_Belief_Hunter-Prey_Heading - HA_Belief_Hunter-Alpha_Heading) <= 20 ) [ HA_irf_move-prey_normal-linear ] 
;      if (HA_Belief_Hunter-Prey_Distance < 9) [ 
;        set HA_Belief_Hunt-Mode "Strike" 
;        show "Move to strike" 
;      ] 
;    ] 
;  ] 
 
  if HA_Belief_Hunt-Mode = "Approach" [ 
    if (HA_Belief_Prey-Seen = true) and (HA_Belief_Alpha-Known = true) [ 
      show "Approach - I see Prey and Alpha" 



83 

      HA_brf_wolf-spatial_update 
      if (HA_Belief_Hunter-Prey_Distance > (HA_Belief_Alpha-Prey_Distance)) [ 
        HA_irf_move-prey_normal-linear 
      ] 
    ] 
 
;      if (abs(HA_Belief_Hunter-Prey_Heading - HA_Belief_Hunter-Alpha_Heading) <= 20 ) [ HA_irf_move-prey_normal-linear ] 
 
 
    if (HA_Belief_Hunter-Prey_Distance < 9) and (HA_Belief_Alpha-Prey_Attack = true) [ 
      set HA_Belief_Hunt-Mode "Strike" 
      show "Move to strike" 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Strike" [ 
    HA_irf_move-prey_pounce 
    set HA_Belief_Hunt-Mode "Move to Kill" 
  ] 
 
  if HA_Belief_Hunt-Mode = "Kill" [ 
    if HA_Belief_Prey-atSource = true [ 
      HA_irf_kill-prey 
      set HA_Belief_Hunt-Mode "Move to Eat" 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Eat" [ 
    HA_irf_eat-prey 
    set HA_Belief_Hunt-Mode "Rest" 
  ] 
 
  if HA_Belief_Hunt-Mode = "Rest" [ 
    HA_brf_reset-beliefs 
  ] 
 
  show [(word "Beta Hunt State - ("HA_Belief_Hunt-Mode")")] of self 
 
end 
 
to HA_deliberate_wolf-omega 
  HA_brf_cycle 
  GA_deliberate_cycle 
 
  if HA_Belief_Alpha-Seen = true [ 
      show "Deliberate - I See Alpha" 
      set HA_Belief_Alpha-Known true 
  ] 
 
  if HA_Belief_Beta1-Seen = true [ 
    show "Deliberate - I See Beta1" 
    set HA_Belief_Beta1-Known true 
  ] 
 
  if HA_Belief_Beta2-Seen = true [ 
      show "Deliberate - I See Beta2" 
      set HA_Belief_Beta2-Known true 
  ] 
 
  if GA_Desire_Food = true [     ; this is the entry condition into the "Hunting Cycle" 
    if (HA_Belief_Hunt-Mode = "Rest") [ 
      set HA_Belief_Hunt-Mode "I Search for Prey" 
      show "I'm Searching For Prey" 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "I Search for Prey" [ 
 
    if HA_Belief_Heard-Call = true [ 
      set HA_Belief_Hunt-Mode "Pack Found Prey" 
      show "Pack Found Prey" 
    ] 
 
    if (HA_Belief_Prey-Seen = true) [ 
      set HA_Belief_Hunt-Mode "I See Prey" 
      set HA_Belief_Prey-Known true 
      show "I See Prey" 
      if (HA_Belief_Heard-Call = false) and (HA_Belief_Alpha-Seen = false) [ 
        HA_irf_communicate-prey_found 
      ] 
    ] 
 
    if (HA_Belief_Prey-Seen = false) and (HA_Belief_Prey-Known = true)[ 
      set HA_Belief_Hunt-Mode "I Search for Prey at Last Known Location" 
    ] 
 
;    show [(word "Heard-Call - ("HA_Belief_Heard-Call") Seen-Prey - ("HA_Belief_Prey-Seen")"  )] of self 
 
    if (HA_Belief_Heard-Call = 0) and (HA_Belief_Prey-Seen = false) [ 
      show "I move to search for prey" 
      HA_irf_search-prey 
    ] 
  ] 



84 

 
  if HA_Belief_Hunt-Mode = "Pack Found Prey" [ 
    HA_irf_move-alpha 
    set HA_Belief_Hunt-Mode "I Search for Prey" 
    show "Back to I Search For Prey" 
  ] 
 
  if HA_Belief_Hunt-Mode = "I Search for Prey at Last Known Location" [ 
    ifelse (HA_Belief_Prey-Seen = false) and (xcor = HA_Belief_Prey-X) and (ycor = HA_Belief_Prey-Y) [ 
      set HA_Belief_Prey-Known False 
      show "At Last Known Prey Location" 
    ][ 
      HA_irf_move-prey_fast 
      show "Moving to Last Known Prey Location" 
    ] 
    set HA_Belief_Hunt-Mode "I Search for Prey" 
  ] 
 
  if HA_Belief_Hunt-Mode = "I See Prey" [ 
    if (HA_Belief_Hunter-Prey_Distance >= 16) [ HA_irf_move-prey_fast ] 
    if (HA_Belief_Hunter-Prey_Distance < 16) and (HA_Belief_Alpha-Known = true) [ 
      set HA_Belief_Hunt-Mode "Encircle" 
      show "Move to Encircle" 
    ] 
   if (HA_Belief_Hunter-Prey_Distance < 16) and (HA_Belief_Alpha-Known = false) [ 
     HA_irf_search-alpha 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Encircle" [ 
    HA_brf_wolf-spatial_update 
;    show [(word "Encircle-X - ("HA_Belief_Encircle-X") Encircle-Y - ("HA_Belief_Encircle-Y")"  )] of self 
    HA_irf_move-encircle 
    if (xcor = precision HA_Belief_Encircle-X 0) and (ycor =  precision HA_Belief_Encircle-Y 0) [ 
;      HA_irf_face-prey 
      set HA_Belief_Hunt-Mode "Approach" 
      show "Move to Approach" 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Approach" [ 
;    if (HA_Belief_Hunter-Beta1_Distance < 7) or (HA_Belief_Hunter-Beta2_Distance < 7) [ 
;       HA_irf_face-prey 
;    ] 
;    if (HA_Belief_Prey-Seen = true) and (HA_Belief_Alpha-Known = true) [ 
;      show "Approach - I see Prey and Alpha" 
;      HA_brf_wolf-spatial_update 
;      HA_irf_move-prey_normal-linear 
;    ] 
 
;      if (abs(HA_Belief_Hunter-Prey_Heading - HA_Belief_Hunter-Alpha_Heading) <= 20 ) [ HA_irf_move-prey_normal-linear ] 
 
    HA_irf_face-prey 
 
    if (HA_Belief_Prey-Seen = true) and (HA_Belief_Alpha-Known = true) [ 
      if (HA_Belief_Hunter-Prey_Distance >= 9) [ 
        HA_irf_move-prey_normal-linear 
      ] 
 
      if (HA_Belief_Hunter-Prey_Distance < 9) and (HA_Belief_Alpha-Prey_Attack = true) [ 
        set HA_Belief_Hunt-Mode "Strike" 
        show "Move to strike" 
      ] 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Strike" [ 
    HA_irf_move-prey_pounce 
    set HA_Belief_Hunt-Mode "Move to Kill" 
  ] 
 
 if HA_Belief_Hunt-Mode = "Kill" [ 
    if HA_Belief_Prey-atSource = true [ 
      HA_irf_kill-prey 
      set HA_Belief_Hunt-Mode "Move to Eat" 
    ] 
  ] 
 
  if HA_Belief_Hunt-Mode = "Eat" [ 
    HA_irf_eat-prey 
    set HA_Belief_Hunt-Mode "Rest" 
  ] 
 
  if HA_Belief_Hunt-Mode = "Rest" [ 
    HA_brf_reset-beliefs 
  ] 
 
  show [(word "Omega Hunt State - ("HA_Belief_Hunt-Mode")")] of self 
end 
 
;;;;;;;;;;;;; Desire Review Function (DRF) ;;;;;;;;;;;;;;;; 
 
to HA_drf_desire 



85 

 
 
end 
 
;;;;;;;;;;;;;; Intention Review Function (IRF) ;;;;;;;;;;;; 
 
to HA_irf_communicate-prey_found 
  HA-action_talk-prey_found 
 
end 
 
to HA_irf_eat-prey 
  HA_action_eat-prey 
end 
 
to HA_irf_face-prey 
  HA_action_face-prey 
end 
 
to HA_irf_kill-prey 
  HA_action_kill-prey 
end 
 
to HA_irf_move-alpha 
  HA_action_move-alpha 
  HA_action_face-alpha_heading 
end 
 
to HA_irf_move-encircle 
  HA_action_move-encircle 
end 
 
to HA_irf_move-prey_fast 
 HA_action_move-prey_fast 
end 
 
to HA_irf_move-prey_normal-linear 
  HA_action_move-prey_normal 
end 
 
to HA_irf_move-prey_pounce 
  HA_action_move-prey_pounce 
end 
 
to HA_irf_search-alpha 
  HA_action-search-alpha 
end 
 
to HA_irf_search-prey 
  HA_action_search-prey 
end 
 
;;;;;;;;;;;;;; Perceptions ;;;;;;;;;; 
 
;  HA_Perceive_Visual-Scan            Perception: this is a list of perceived objects during a visual scan. 
;  HA_Perceive-Scent-Scan             Perception: this is a list of scents on the patches immediately surrounding the Hunter Agent. 
 
to HA_perception_scent-scan_atSource 
  set HA_Perceive-Scents [] 
 
  ask patch-here [ 
    let m [] 
    set m lput WA_Patch_State_Scent-Type m 
    set m lput WA_Patch_State_Scent-Level m 
    ask myself [set HA_Perceive-Scents lput m HA_Perceive-Scents] 
  ] 
 
end 
 
to HA_perception_scent-scan_box 
  set HA_Perceive-Scents [] 
 
  ask patch-ahead 1 [ 
    let m [] 
    set m lput WA_Patch_State_Scent-Type m 
    set m lput WA_Patch_State_Scent-Level m 
    ask myself [set HA_Perceive-Scents lput m HA_Perceive-Scents] 
  ] 
 
  ask patch-right-and-ahead 45 1 [ 
    let m [] 
    set m lput WA_Patch_State_Scent-Type m 
    set m lput WA_Patch_State_Scent-Level m 
    ask myself [set HA_Perceive-Scents lput m HA_Perceive-Scents] 
  ] 
 
  ask patch-right-and-ahead 90 1 [ 
    let m [] 
    set m lput WA_Patch_State_Scent-Type m 
    set m lput WA_Patch_State_Scent-Level m 
    ask myself [set HA_Perceive-Scents lput m HA_Perceive-Scents] 
  ] 
 



86 

  ask patch-right-and-ahead 135 1 [ 
    let m [] 
    set m lput WA_Patch_State_Scent-Type m 
    set m lput WA_Patch_State_Scent-Level m 
    ask myself [set HA_Perceive-Scents lput m HA_Perceive-Scents] 
  ] 
 
  ask patch-right-and-ahead 180 1 [ 
    let m [] 
    set m lput WA_Patch_State_Scent-Type m 
    set m lput WA_Patch_State_Scent-Level m 
    ask myself [set HA_Perceive-Scents lput m HA_Perceive-Scents] 
  ] 
 
  ask patch-right-and-ahead 225 1 [ 
    let m [] 
    set m lput WA_Patch_State_Scent-Type m 
    set m lput WA_Patch_State_Scent-Level m 
    ask myself [set HA_Perceive-Scents lput m HA_Perceive-Scents] 
  ] 
 
  ask patch-right-and-ahead 270 1 [ 
    let m [] 
    set m lput WA_Patch_State_Scent-Type m 
    set m lput WA_Patch_State_Scent-Level m 
    ask myself [set HA_Perceive-Scents lput m HA_Perceive-Scents] 
  ] 
 
  ask patch-right-and-ahead 315 1 [ 
    let m [] 
    set m lput WA_Patch_State_Scent-Type m 
    set m lput WA_Patch_State_Scent-Level m 
    ask myself [set HA_Perceive-Scents lput m HA_Perceive-Scents] 
  ] 
 
end 
 
to HA_perception_sound 
  set HA_Perceive-Sounds [] 
  let sender 0 
  let name "name" 
  let sound-x 0 
  let sound-y 0 
  let sound-level 0 
  let message "HA_perception_sound-message" 
  let n [] 
 
  ask patch-here [ 
    foreach WA_Patch_State_Sounds [ [m] -> 
      set sender (item 0 m) 
      set name (item 1 m) 
      set sound-x (item 2 m) 
      set sound-y (item 3 m) 
      set sound-level (item 4 m) 
      set message (item 5 m) 
 
      set n [] 
      if sound-level >= 1 [ 
        set n lput sender n 
        set n lput name n 
        set n lput sound-x n 
        set n lput sound-y n 
        set n lput sound-level n 
        set n lput message n 
 
        ask myself [set HA_Perceive-Sounds lput n HA_Perceive-Sounds] 
      ] 
    ] 
  ] 
;  show "HA_perception_sound" ; [(word "brf_sounds - ("message")")] of self 
 
end 
 
to HA_perception_visual-scan 
 
  set GA_Perceive_Visual-Scan [] 
 
;;;;; Scan Agent's Patch;;;;; 
 
  ask patch-here [ ; determines the patch that the Agent is standing on 
    let m [] 
    set m lput pcolor m 
    set m lput 0 m 
    set m lput 0 m 
    set m lput pxcor m 
    set m lput pycor m 
    set m lput WA_Patch_State_Agent-Number m 
    set m lput WA_Patch_State_Agent-Heading m 
    set m lput WA_Patch_State_Agent-Speed m 
    ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
  ] 
 
;;;;; Center Scan;;;;; 



87 

 
  set GA_State_Scan-Distance 1 
 
  let i GA_State_Scan-Distance 
 
  while [i <= 40] [ 
    ask patch-ahead i [ ; determines the patches in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
;;;;; Left Scan;;;;; 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-left-and-ahead 2.5 i [ ; determines the patches left by 5 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-left-and-ahead 5 i [ ; determines the patches left by 5 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-left-and-ahead 7.5 i [ ; determines the patches left by 5 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-left-and-ahead 10 i [ ; determines the patches left by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 



88 

      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-left-and-ahead 12.5 i [ ; determines the patches left by 5 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
     ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-left-and-ahead 15 i [ ; determines the patches left by 15 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-left-and-ahead 17.5 i [ ; determines the patches left by 5 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-left-and-ahead 20 i [ ; determines the patches left by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 



89 

 
  while [i <= 40] [ 
    ask patch-left-and-ahead 22.5 i [ ; determines the patches left by 5 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-left-and-ahead 25 i [ ; determines the patches left by 25 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 35] [ 
    ask patch-left-and-ahead 30 i [ ; determines the patches left by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 36) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 30] [ 
    ask patch-left-and-ahead 35 i [ ; determines the patches left by 35 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 31) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 25] [ 
    ask patch-left-and-ahead 40 i [ ; determines the patches left by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 



90 

      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 26) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 25] [ 
    ask patch-left-and-ahead 45 i [ ; determines the patches left by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 26) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 20] [ 
    ask patch-left-and-ahead 55 i [ ; determines the patches left by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 21) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 20] [ 
    ask patch-left-and-ahead 65 i [ ; determines the patches left by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 21) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 20] [ 
    ask patch-left-and-ahead 75 i [ ; determines the patches left by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 21) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 20] [ 
    ask patch-left-and-ahead 85 i [ ; determines the patches left by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 



91 

      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 21) ] 
    ] 
    set i (i + 1) 
  ] 
 
;;;;; Right Scan;;;;; 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-right-and-ahead 2.5 i [ ; determines the patches right by 5 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-right-and-ahead 5 i [ ; determines the patches right by 5 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-right-and-ahead 7.5 i [ ; determines the patches right by 5 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-right-and-ahead 10 i [ ; determines the patches right by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 



92 

  ] 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-right-and-ahead 12.5 i [ ; determines the patches right by 5 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
   ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-right-and-ahead 15 i [ ; determines the patches right by 15 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-right-and-ahead 17.5 i [ ; determines the patches right by 5 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-right-and-ahead 20 i [ ; determines the patches right by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-right-and-ahead 22.5 i [ ; determines the patches right by 5 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 



93 

      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 40] [ 
    ask patch-right-and-ahead 25 i [ ; determines the patches right by 25 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 41) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 35] [ 
    ask patch-right-and-ahead 30 i [ ; determines the patches right by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 36) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 30] [ 
    ask patch-right-and-ahead 35 i [ ; determines the patches right by 35 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 31) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 25] [ 
    ask patch-right-and-ahead 40 i [ ; determines the patches right by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 26) ] 
    ] 
    set i (i + 1) 
  ] 
 
  set i 1 
 
  while [i <= 25] [ 
    ask patch-right-and-ahead 45 i [ ; determines the patches right by 45 degrees in front of the Agent 



94 

      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 26) ] 
    ] 
    set i (i + 1) 
  ] 
 
 set i 1 
 
  while [i <= 20] [ 
    ask patch-right-and-ahead 55 i [ ; determines the patches right by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 21) ] 
    ] 
    set i (i + 1) 
  ] 
 
 set i 1 
 
  while [i <= 20] [ 
    ask patch-right-and-ahead 65 i [ ; determines the patches right by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
     if ((pcolor = green) or (pcolor = grey)) [ (set i 21) ] 
    ] 
    set i (i + 1) 
  ] 
 
 set i 1 
 
 while [i <= 20] [ 
    ask patch-right-and-ahead 75 i [ ; determines the patches right by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 25) ] 
    ] 
    set i (i + 1) 
  ] 
 
 set i 1 
 
  while [i <= 20] [ 
    ask patch-right-and-ahead 85 i [ ; determines the patches right by 45 degrees in front of the Agent 
      let h (remainder int ((towards myself) + 180) 360) 
      let m [] 
      set m lput pcolor m 
      set m lput h m 
      set m lput i m 
      set m lput pxcor m 
      set m lput pycor m 
      set m lput WA_Patch_State_Agent-Number m 
      set m lput WA_Patch_State_Agent-Heading m 
      set m lput WA_Patch_State_Agent-Speed m 
      ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
      if ((pcolor = green) or (pcolor = grey)) [ (set i 25) ] 
    ] 



95 

    set i (i + 1) 
  ] 
end 
 
;;;;;The following code was an attempt to simplify the visual perception using a sub-procedure;;;;;;;;;;;;;;;; 
 ;set GA_State_Scan-Distance 1 
 
 ; while [GA_State_Scan-Distance <= 20] [ 
 ;   ask patch-right-and-ahead 85 GA_State_Scan-Distance [ ; determines the patches right by 45 degrees in front of the Agent 
 ;     HA_perception_visual-scan_subcode 
 ;  ] 
 ;   set GA_State_Scan-Distance (GA_State_Scan-Distance + 1) 
;  ] 
;end 
 
;to HA_perception_visual-scan_subcode 
;  let h (remainder int ((towards myself) + 180) 360) 
;  let m [] 
;  set m lput pcolor m 
;  set m lput h m 
; set m lput GA_State_Scan-Distance m 
;  set m lput pxcor m 
 ; set m lput pycor m 
;  set m lput WA_Patch_State_Agent-Number m 
;  set m lput WA_Patch_State_Agent-Heading m 
;  set m lput WA_Patch_State_Agent-Speed m 
;  ask myself [set GA_Perceive_Visual-Scan lput m GA_Perceive_Visual-Scan] 
;  if ((pcolor = green) or (pcolor = grey)) [ (set GA_State_Scan-Distance 25) ] 
;end 
 
 

 

 

 


