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Abstract: With the rise of interest in agent-based models in recent years, it has been shown that an 
analogy with the second law of thermodynamics seems to be exhibited in agent-based economic models 
that have little to do with thermodynamics.  This paper describes an extremely simple closed agent-
based capital exchange model, defines an entropic index for the histogram that is implicit in this model, 
and then explores the nature of this entropic index.  Techniques are developed to produce all 
microstates (or configurations) of an extremely small configuration space, to identify transition pairs of 
configurations, and to construct a directed graph and transition matrix for the associated Markov chain.  
In conclusion, generalized versions of the maximum entropy principle (MEP) and the maximum entropy 
production principle (MEPP) are hypothesized as active in all closed or open agent-based models 
respectively.  It is further hypothesized that agent-based models offer a precise and accessible means to 
explore the MEPP and build a solid understanding of this process that is expected to be operational in so 
many real-world open dynamic systems. 
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1. Introduction 
This is the first of a series of three articles examining the concept of an entropic index for agent-based 
models, all released with the software.  (Boyle 2015 a-e)  The use of agent-based models (ABMs) to 
simulate and study the reallocation of finite quantities of economic resources via conservative particle-
to-particle transmissions is relatively new.  ABMs are part of the tool set of an emerging branch of 
heterodox economics called Econophysics.  Now termed “capital exchange models”, the particular form 
of such models which is the focus of this paper was first described by E. Bennati (1988, 1993) and then 
rediscovered by Drăgulescu and Yakovenko (2000).  They defined a number of variations of the basic 
model, and analyzed the common behaviour of these variations at equilibrium.   Characterized as the 
BDY model by Scalas et. al. (Scalas, Garibaldi and Donadio 2006), a detailed mathematical analysis of the 
behaviour at equilibrium was undertaken and presented.  The variants that were described by 
Drăgulescu and Yakovenko in sufficient detail were recreated, using the computing language C++, as 
Models A through H of the application EiLab (Boyle 2015), with data capture facilities that record the 
actions of the model at each step prior to reaching an equilibrium state.  In addition to the capture of 
economic transactions within the model, the EiLab application also computes and captures the entropy 
associated with each model at each step of its execution, using formulae described herein.  “Model I” of 
the EiLab application is an additional variation of the BDY model, designed specifically for this study. 
 
This paper is written as part of a study of the dynamics of simple sustainable economies, as can be 
demonstrated in agent-based models (Boyle 2013a).  The purpose of this paper is to propose and begin 
to formalize general definitions of entropy and an entropic index for ABMs that: 
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a) Are consistent with other concepts of entropy, particularly those found in the study of 
thermodynamics, of information theory, and in the emerging field of study called Econophysics. 

b) Are credibly applicable to stochastic ABMs, particularly those that model economic activity. 
 
Entropy has long been defined in the context of thermodynamics and in the context of information 
theory.  During the 18th  and 19th centuries, natural philosophers, mathematicians, physicists, chemists, 
and engineers made slow but steady progress as they pieced together the puzzle of energy and entropy, 
which effort eventually culminated in the science of thermodynamics.  In the final years of the 19th 
century Ludwig Boltzmann, in the absence of proof of the existence of atoms, nevertheless successfully 
defended the “atomist” view.  When he died, at his own request, his formula for entropy was carved on 
his gravestone, to wit, S = k. log W.    Initially unaware of the close analogy with thermodynamic 
entropy, in 1948 Shannon developed a formula for “missing information” lost through static on a 
telephone line.  Eventually, in his ground-breaking article in which the field of information theory was 
founded, he called it entropy and it is now known as Shannon entropy (Shannon 1948).  Within these 
two very different disciplines, a very similar pair of formulae are used to compute a widely-
misunderstood quantity called entropy. 
 
I say widely-misunderstood.  There are, I suppose, hundreds of thousands of pages published on the 
topic of entropy, written by those with a deep understanding of the phenomenon.  But, there is also a 
lot of misunderstanding.  Many discussions of entropy are laced with talk of order and disorder, or use  
examples of shuffled decks of cards – discussions that are confusing, at best, and often just incorrect.  
Other discussions mistakenly equate entropy with waste heat.  And yet others discuss the entropy 
content of decayed matter as opposed to living matter, as if entropy were a substance, or an extensive 
property of matter.  All such presentations would seem to indicate a lack of understanding of the 
phenomenon.   So, it is with some caution that I, as a non-expert on the phenomenon, undertake the 
writing of these papers. 
 
But, given the existing confusion on the topic, why explore yet another definition of entropy?  There are 
two reasons. 
 
First:  Whatever the characteristic is that entropy measures, it seems that it is neither a uniquely 
thermodynamic characteristic nor a unique characteristic of telecommunications signals, but rather it 
seems that it is a consequence of dynamic stochastic processes acting on logical structures, which 
exhibits itself in similar ways in very different systems.  Recent work in the relatively new field of study 
called Econophysics has shown that those same probability distributions that are characteristic of the 
process of entropy production in thermodynamics are now being found in economic data (Yakovenko 
2010 a, b).  Now this may not seem surprising since an economy requires flows of mass and energy 
(making it a thermodynamic system) and flows of information (making it an information system), but 
such a reductionist dismissal of the emergence of entropy-like effects in widely varying fields of study is, 
I believe, too facile.  The variations on capital exchange models described by Drăgulescu and Yakovenko 
are highly abstracted and very simple models in which they were able to recreate these entropy-driven 
distributions of economic wealth.  These ABMs are distantly removed from thermodynamics and 
information processing, and only tenuously connected to economic processes, but they clearly exhibit 
the growth of entropy as the models approach their own equilibrium distributions. 
 
It is curious that this phenomenon of increasing entropy appears, not just in real-world energy 
distributions, information-loss distributions, and economic distributions, but also in highly abstracted 
extremely simple computer-based models in which no attempt has been made to model physical, 
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informational, or economic entropy production.  The production of entropy seems to be an emergent 
phenomenon in stochastic systems of many types.  ABMs, economies, information systems, and 
thermodynamic systems just happen to be four types of dynamic systems in which such entropy 
production exhibits itself.  It appears, then, that such entropy production is a characteristic of 
dynamically shifting probabilities, and it appears to shape the world in which we live.  If this alternate 
perspective on entropy is proven to be true, then it may be discovered to be at the root of Darwin’s 
“natural selection” and the forces of evolution; or it may be “the invisible hand” of Adam Smith’s vision 
of economic activity; or it may be the motive force behind H.T. Odum’s “Maximum Power” concept 
drawn from studies of biophysical systems (Hall (Ed.) 1995).   ABMs offer an excellent tool to develop a 
deeper understanding of this phenomenon of entropy production, and it is with the intention of 
enabling such that an appropriate definition of entropy is herein proposed.   
 
Second:  Sustainability is the most pressing issue facing the current generation.  The ultimate motivation 
for this study is to advance an understanding of sustainable economics.  In a study intended to identify 
the most effective tools for addressing policy issues around sustainable development, Boulanger and 
Bréchet analyzed six different approaches to modeling economic systems using computers.  In that 
study they determined that ABMs were, by far, the most effective tool (Boulanger & Bréchet 2005).  But 
the design of ABMs is still an emerging field of knowledge, and the rules and tools for analysis of the 
output of ABMs is not yet well-developed.  So, we have this problem that this potentially most effective 
tool to be used to study our most pressing issue is itself not yet well-developed or well-understood, and 
our need is urgent. 
 
It is the implicit hypothesis of this paper that all stochastic ABMs, regardless of the nature of the system 
they are modeling, move through their state space driven by a process of production of entropy, as 
measured by the index defined herein.  Therefore, to understand the inner workings of stochastic ABMs, 
we must understand such entropy production in the context of ABMs.  Furthermore, it is also an implicit 
hypothesis of this paper that all stochastic dynamic systems, whether real or logical, each move through 
their state space, driven by a process of entropy production.  While this paper does not directly test 
such hypotheses, it does begin to formulate a tool that can be used, ultimately, to test them.   
 
The approach in this paper is to describe an extremely simple ABM, to define an entropic index for this 
simple ABM, and then to explore the characteristics of this entropic index and entropy production in 
such an ABM.  You might view this paper as a high-level laboratory procedure which not only describes 
the results, but also describes the means by which the results were obtained.  The primary platform for 
data production and analysis is MS Excel 2010.  The techniques used to generate the data and tables are 
outlined at each step of the way.  In addition, the analysis was tested against an instance of the 
described model in the EiLab application implemented in C++ with MFC, as available in MS Visual Studio 
2010 (Boyle 2015e).  Although the focus of the analysis is on a specific simple example, some notation is 
developed which could possibly be generalized to address all ABMs.  Several open questions which are 
not answered in this paper are raised along the way.  Also, a few hypotheses are presented along the 
way, and at the end, that are meant to be challenged. 

2. Capital Exchange – “Model I”  
Consider a very simple highly abstracted agent-based capital exchange model implemented as “Model I” 
of the EiLab application, a variation of the models described by Bennati, Drăgulescu and Yakovenko.  
This variation is controlled by three parameters K (the number of bars or bins in a histogram) , A (the 
number of agents) and W (the total amount of money held by the A agents).  The A agents are each 
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allowed to hold an amount of money ranging from $1 to $K inclusively.  There are no partial dollars, and 
amounts below $1 or above $K are not allowed.  That is to say, there is a hard lower and upper bound 
on the wealth of each agent.  (Note that the models of Drăgulescu and Yakovenko did not have an upper 
bound on money held by an agent, leading to radically different distributions at equilibrium.)  To 
initialize the model, $W is distributed to the agents, $1 at a time, until all of the money has been 
distributed, and all agents have approximately the same wealth.  The model proceeds in discrete-time 
units called ticks.  During each tick the following four-step procedure is executed: 
 
• Action 1 – Two of the A agents are randomly selected from the pool of agents; 
• Action 2 – Of the two agents, one is randomly selected to be the “loser” and the other becomes the 

designated “winner” for this tick; 
• Action 3 – An exchange of capital is performed, if possible, as follows 

 If  
     [ { the loser has more than $1 }, and { the winner has less than $K } ] 
 Then 
     An exchange is made, as the loser pays the winner $1; 
 Else 
     An exchange is disallowed, so no exchange is made. 

• Action 4 – The two agents are returned to the pool and are available for selection in the next tick.  
The tick is completed. 

 
Consider a very simple instance of the model.  Suppose K = 4, A = 8, and W = 20.  In this instance of the 
model the state space consists of only 13 microstates (as will be demonstrated later).  It is therefore 
quite possible to examine the behavioural characteristics of the model in minute detail.  This instance of 
the model has a very simple behavior.  Regardless of the distribution of cash among the A agents on 
initialization, as the model develops, tick after tick, the cash very quickly becomes distributed more or 
less evenly across the four allowed amounts.  That is, the number of agents holding $1 is approximately 
equal to the number holding $4, or any amount in between.  We can say loosely that the model 
approaches its equilibrium distribution, and then maintains that distribution, apart from random 
fluctuations away from equilibrium from time to time.  When such a fluctuation happens and the model 
is temporarily perturbed, equilibrium is thereafter restored.  But, such fluctuations happen often, and, 
given the small state space, are relatively large.  This instance of the model will be the demonstration 
case for much of the analysis that follows. 

3. Definition: Entropic Index of a Histogram  
The state of the 4-value capital exchange model described above, for any given tick of time, can be 
captured in a simple histogram having four bins, labeled $1, $2, $3 and $4 (or just bin 1, bin 2, bin 3, and 
bin 4).  The height of the bar in each bin represents the number of agents having that amount of wealth 
(also called money or capital in this study).  Let xi represent the amount of wealth associated with bin i.  
Let ai represent the number of agents having an amount of wealth equal to xi.  Let K be the number of 
allowed values of agent wealth, or, in other words, the number of bins (or bars) in the histogram.  Let A 
be the total number of agents, and let W be the total wealth of all agents, when summed.  The 
quantities K, A and W are conserved in this closed system.   
 
The number of agents A(h) associated with histogram h is given by: 
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𝐴(ℎ) = ∑ 𝑎𝑖

𝐾

𝑖=1
 Equ (1) 

 
And the total wealth W(h) associated with configuration h is given by: 
 

𝑊(ℎ) = ∑ 𝑥𝑖𝑎𝑖

𝐾

𝑖=1
 Equ (2) 

 
Once the capital exchange model has been defined, the only change, as the model advances from tick to 
tick, is the number of agents located in each bin.  The state of the model, for any given tick, is fully 
described by a four-bin histogram (represented by a 4-tuple (a1, a2, a3, a4)) called a configuration of the 
system.  For reasons which will become clear later, any such state of the system can be represented by 
an assigned unique serial number h, its unique 4-tuple (a1,a2,a3,a4), or a combination of the two written 
as h(a1,a2,a3,a4).  More formally, mathematicians call such a histogram a partition of A and may denote it 
as ( A: a1, a2, a3, a4 ) but, for the purposes of this paper, I prefer the less formal notation developed here.  
For example, using my notation the histogram h that is associated with configuration 69(2,2,2,2) has 
serial number h=69, and has two agents in each of four bins.  “h” is the handle or serial number for the 
particular histogram, or configuration, or state of the system. 
 

Let (h) be the total count of the number of ways that A(h) agents can be arranged to form the given 
histogram h, where the order of the agents within each bin of h is unimportant.  (Yakovenko, 2012)  

Then (h) can be expressed using the standard combinatorial formula: 
 

(ℎ) =
𝐴(ℎ)!

∏ (𝑎𝑖!)𝐾
𝑖=1

 Equ (3) 

 
Admittedly, with some arbitrariness, we now define the entropy of the histogram h by: 
 

𝑠(ℎ) 𝑓 𝑙𝑛((ℎ)) Equ (4) 
 
where f is a dimensionless context-specific scaling constant analogous to Boltzmann’s constant k.  To 

simplify the notation, assuming that A(h), W(h), K(h) and (h) are all associated with a specific instance 
of a histogram, h, I can drop the argument and write this as: 
 

𝑠 𝑓 𝑙𝑛() Equ (5) 
 
which is Boltzmann’s famous equation for thermodynamic entropy.  Substituting Equ (3) into (5) we get 
this expression for the entropy in histogram ( h: a1, … aK ): 
 

𝑠 ≡ 𝑓 𝑙𝑛 [
𝐴!

∏ (𝑎𝑖!)𝐾
𝑖=1

] = 𝑓 [𝑙𝑛(𝐴!) − ∑ 𝑙𝑛(𝑎𝑖!)

𝐾

𝑖=1

] Equ (6) 

 

This entropy takes on its maximum value when all of the ai are of equal value at  = A / K.  The factorial 

formula requires an integer as input, so, for the moment, assume that A is a multiple of K and  is an 
integer.  Then the formula for smax would be given by: 
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𝑠𝑚𝑎𝑥 = 𝑓 𝑙𝑛 [
𝐴!

∏ (!)𝐾
𝑖=1

] = 𝑓 [𝑙𝑛(𝐴!) − 𝐾 𝑙𝑛(!)] Equ (7) 

 

Define the “entropic index” of this histogram as S(h)  s(h) / smax, now given by the equation: 
 

𝑆(ℎ) ≡  
[𝑙𝑛(𝐴!) − ∑ ln (𝑎𝑖!)𝐾

𝑖=1 ]

[𝑙𝑛(𝐴!) − 𝐾 𝑙𝑛(!)]
 Equ (8) 

 
Note the use of the capital “S” for the entropic index, and small “s” for entropy.  This formula is valid for 

any histogram, however it is difficult to calculate if A or  are large or small.  For application within an 
ABM, the arguments of the factorial function may be exceedingly large or exceedingly small.  To avoid 
this problem, as is done in thermodynamic formulae, we use a simple version of Stirling’s 
approximation: 
 

𝑙𝑛(𝑛!) ≅ (𝑛 × 𝑙𝑛(𝑛)) − 𝑛 Equ (9) 

 
Substitution equation 9 into equation 8 we have this more pragmatic formula for the entropic index: 
 

𝑆(ℎ) ≅
1

ln(𝐾)
∑ (

𝑎𝑖

𝐴
) × ln (

A

𝑎𝑖
)

𝐾

𝑖=1
 Equ (10) 

 
But the probability that a randomly selected agent will be in bin i is p(xi) = ai / A, so this expression for 
the entropic index can be written as: 
 

𝑆(ℎ) ≅
1

𝑙𝑛(𝐾)
∑ 𝑝(𝑥𝑖) × ln (

1

𝑝(𝑥𝑖)
)

𝐾

𝑖=1
 Equ (11) 

 
If we assume that the configuration having maximal entropic index is always the configuration for which 
all bins have equal numbers of agents, what is the maximal entropic index to which the system is able to 
rise?  If there are K bins, each having equal probability, then p(xi) = 1 / K for all xi.  Then the maximal 
entropic index Smax is: 
 

𝑆𝑚𝑎𝑥 =
1

ln (𝐾)
∑ (

1

𝐾
) ln (

K

1
)

𝐾

𝑖=1
=

1

ln (𝐾)
𝐾 (

1

𝐾
) × ln(𝐾) = 1 Equ (12) 

 
None of the terms of equ (11) can be less than zero.  The minimum value will occur when all terms in the 
sum equal zero.  If any bin contains all of the agents, then the factor ai/A = 0 for all empty bins, and the 
factor ln(A/ai) = 0 for the full bin, rendering all terms equal to zero, and the sum equal to zero.  So, 
equations (10) and (11) give us an intensive definition (as opposed to an extensive definition) of an index 
of entropy that falls within the interval [0, 1].   
 
Hypothesis:  Let ht be the configuration of the Model I system at time t.  As our simple capital exchange 
model approaches its stable equilibrium distribution, S(ht) will rise until it approaches a maximal value, 
and then will hover at or just below that maximal value, except for random fluctuations.  
 
We can further define the contribution of a single bin i in the histogram, using equation 11 as the basis, 
as: 
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𝑠𝑖(𝑝(𝑥𝑖)) ≅
1

𝑙𝑛(𝐾)
× 𝑝(𝑥𝑖) × ln (

1

𝑝(𝑥𝑖)
) Equ (13) 

 
This equation directly expresses the contribution of one bin to the entropic index as a function of the 
probability that a randomly selected agent is located in that bin.  In information theory, -ln(p(xi)) is 
known as a “surprisal”, a word first used by Martin Tribus in his book “Thermostatics and 
Thermodynamics” in which he explained thermodynamics using information theory (1961).  A surprisal 
can be interpreted, for example, as a measure of the amount of new information (or surprise, measured 
in fractions of a bit) contained in the next bit i as it arrives on a telecommunications line.  But, within a 
histogram this word “surprisal” is, at best, confusing.  It is therefore herein proposed that si as defined in 
equation 13 be called an indexicle – a contribution to an entropic index – when calculated in the context 

of a histogram associated with an ABM.  An unscaled line graph of ln(K)  s(p) vs. p shows us a very 
curious curve on the interval [0,1] which is concave downwards, passing through (0,0) and (1,0) and 
having its vertex at (1/e, 1/e) ≈ (0.36788, 0.36788).  See Figure 1. 
 

Figure 1. A line graph showing  and unscaled indexicle ln(K)  s(p) versus p (the probability 
that an agent will be selected from that bin). 
 

 

4. Three Nested Configuration Spaces  
We are going to define the configuration space (or state space) within which our capital exchange model 
exists by defining three spaces.  Like a set of nesting Russian dolls, the second space is a subspace of the 
first, and the third is a subspace of the second.  The elements of each set are K-tuples, representing K-
bin histograms.  The third innermost space is the state space of the capital exchange model, and each 
point represents a possible configuration of the model. 
 
Let HRect(K,E) denote the K-dimensional set of discrete points having extent E along each dimension, 
where E is set equal to A.  This is the outermost doll.  It defines a large class of histograms.  A single 
histogram, h, of this class of histograms can be represented as an ordered K-tuple (a1,a2, … aK) called a 
configuration, where each ai is an integer between 0 and A inclusively.  These configurations form points 
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contained within the discrete K-dimensional hypercube having extent E along each dimension and 
containing a total of EK discrete points or configurations.   
 
However, many of the points within this HRect(K,E) hypercube do not represent possible configurations of 
the model.  The model is constrained to those configurations for which the total number of agents is A.  
(See Eq. 1.)  These configurations form a (K-1) dimensional simplex that intersects the hypercube 
HRect(K,E) through the points (A, 0, … ,0 ), (0, A, … ,0 ), ..., (0, 0, … , A).  Denote this simplex, this subspace 
of HRect(K,E), as H(K,A).  This is the second doll.  There is an additional constraint, since the model is 
constrained to those configurations for which the total wealth is W.  (See Equ. 2.)  These form a 
subspace of H(K,A) denoted by H(K,A,W).  This is the third and innermost doll. 
 

𝐻𝑅𝑒𝑐𝑡(𝐾, 𝐸) ⊃ 𝐻(𝐾, 𝐴) ⊃ 𝐻(𝐾, 𝐴, 𝑊) Equ (14) 
 
The outermost space defines the overall scope of interest, but the two inner spaces are of the most 
direct interest in this study.  We start by looking carefully at the H(K,A) space. 

5. Generating the H(K,A) Configuration Space  
For the following discussion, we will use as examples the spaces for which K=4, but this can be 

generalized to any K  3 and any A = qK where q  1  and K, A and q are natural numbers.  When A is a 
multiple of K, the mathematics is tidy.  For other values of A, the mathematics is less tidy and has not 
been explored.  When 0 ≤ K ≤ 2 all configurations are limit points, and the system configuration is 
invariant. 
 
We can use the following construction rules to generate all possible configurations in the space H(4,A) in 
a repeatable order, enabling the assignment of a unique serial number h to each configuration.  Such 
serial numbers are useful handles when discussing the detailed structure of the state space, but have no 
other meaning.  Conceptually, we start with an initial standard configuration with all agents located in 
the left-most bin, and generate all others from it using a complicated iterative transition rule.  We start 
with all agents in bin 1, and we methodically move them, one agent at a time, and one bin at a time, to 
the right, until all agents are in bin 4.   
 
To initialize the sequence, start with the configuration having a first coordinate a1 equal to A, and all 
other coordinates equal to zero.  In H(4,A) the initial configuration is (A,0,0,0).  Arbitrarily assign this a 
configuration number of h = 1.  
 
Given the hth configuration h(ha1,ha2,ha3,ha4) in H(4,A), the next configuration in the series can be 
constructed using the iterative transition rule described in Table 1.   The number h plays two roles in the 
following algorithm.  h is the serial number, but it is also an index number, used in a left-hand subscript, 
and used to distinguish the coordinates of one configuration from those of the next. 
 

Table 1.  The transition rule to iteratively construct an ordered list of all of the elements 

of H(4,A), given an initial element (A,0,0,0), where A = 4q for some positive integer q  2. 
 

Steps to take in construction Description of each step 

To construct a new serial number (new)h: 

(new)h = oldh + 1; 
 

The new serial number (or configuration 
number) is one larger than the previous serial 
number. 
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Table 1 – Continued. 

Steps to take in construction  Description of each step 

To construct (h+1)a1: 
If( ha1 + ha4 = A)  

 then (h+1)a1 = ha1 – 1; 

 else (h+1)a1 = ha1; 

h is the old value of h.  Methodically reduce 
the size of a1, triggered by the placement of all 
other agents in bin 4.  A reduction in a1 is 
triggered when the configuration has the form 
(a1,0,0,A-a1).  

To construct (h+1)a2: 
If( ha1 = A)  

 then (h+1)a2 = 0; 

 else if( ha1 – (h+1)a1 = 1 ) 
o then (h+1)a2 = A – (h+1)a1 
o else if( (ha1+ha2+ha4)<>A 

 then (h+1)a2 = ha2 
 else (h+1)a2 = ha2 - 1 

 

h is the old value of h.  If all agents have been 
placed to the left of a2: 

 then a2 is zero 

 else if a1 has just transitioned 
o then a2 is the residual, a high 

number 
o else check for trigger and 

transition 
A reduction in a2 is triggered when the 
configuration has the form (a1,a2,0,A-a1-a2). 

To construct (h+1)a3: 
If( ha1 + ha2 = A)  

 then (h+1)a3 = 0; 

 else if( ha2 – (h+1)a2 = 1 ) 
o then (h+1)a3 = A – ( (h+1)a1 + (h+1)a2 ) 
o else if( (ha1+ha2+ha3+ha4)<>A 

 then (h+1)a2 = ha2 
 else (h+1)a2 = ha2 - 1 

h is the old value of h.  If all agents have been 
placed to the left of a2: 

 then a2 is zero 

 else if a2 has hust transitioned 
o then a3 is the residual, a high 

number 
o else check for trigger and 

transition 
A reduction in a3 is triggered in all cases. 

To construct (h+1)a4: 
If( ha1 + ha2 + ha3 = A)  

 then (h+1)a4 = 0; 

 else (h+1)a4 = ha4 + 1 

h is the old value of h.   
If all agents have been placed to the left of a4: 

 then a4 is zero 

 else a4 is increased by one 
 

 
One of the conditional triggers in the construction of a3 is triggered every time it is tested.   This is not an 
error.  It is done to maintain consistency with the steps of construction of a2.  This enables the easy 
expansion of the method to any configuration space in which K is greater than four.   In fact, the 
construction methods for a2 and a3 can be written as a single generalized algorithm for all interior bins, 
and then this set of algorithms can be generalized for any K>4.  (See the MS Excel code below in Table 
3.)  
 
The space H(4,8) contains 165 configurations that can be generated in this way, and each can be 
assigned a unique configuration number (or serial number) using these algorithms.  (See Table 1.)  In the 
first row you see configuration 1 with a1 = 8 and the other ai are zeros.  In the next three rows you see a1 
= 7, and a 1 in each of the other bins.  And so on.   It is possible to use Excel formulae to implement 
these algorithms and generate a complete table of all possible ways that A agents can be distributed 
across K bins. 
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Table 2.  The first 10 rows of output from the configuration generation algorithms for 
H(K,A)=H(4,8).  Each row can be interpreted as a 4-bin histogram, or as a 4-tuple. 
 

Config 
No 

Bin 1 Bin 2 Bin 3 Bin 4 

h ha1 ha2 ha3 ha4 

1 8 0 0 0 

2 7 1 0 0 

3 7 0 1 0 

4 7 0 0 1 

5 6 2 0 0 

6 6 1 1 0 

7 6 1 0 1 

8 6 0 2 0 

9 6 0 1 1 

10 6 0 0 2 

     

 
Note how the agents in the left-most bin appear to move towards the right-most bin as the transition 
rule is applied iteratively. 
 
The MS Excel formulae that were used to implement the construction methods are lengthy but 
straightforward, and can be replicated as follows (See Table 3 for the cell entries.): 

 The first configuration is placed in row 7 in cells C7, D7, E7, F7 and G7 and the formulae placed 
into those cells are simply the initial values of h and of the ai, that is, the numbers 1, 8, 0, 0, and 
0 (shaded pink).   

 Then the computational formulae shown in Table 3 (shaded blue) are entered into cells in row 8 
of the spreadsheet.   

 Then select the five formulae in row 8 and drag them down to row 172.  This will generate 165 
unique configurations, each with a uniquely assigned configuration number (or serial number).   

 
Table 3. The MS Excel formulae used to generate the configuration numbers and 
configurations for H(4,8).  The notational symbols correspond to those used in Table 1. 
 

Cell Symbol Excel Formula 

C7 1h 1 

D7 1a1 8 

E7 1a2 0 

F7 1a3 0 

G7 1a4 0 

C8 (j+1)h =C7+1 

D8 (j+1)a1 =IF(SUM($D7:D7)+$G7=$D$7,D7-1,D7) 

E8 (j+1)a2 =IF(SUM($D8:D8)=$D$7,0,IF(D7-D8=1,$D$7-SUM($D8:D8),IF(SUM($D7:E7)+$G7<>$D$7,E7,E7-1))) 

F8 (j+1)a3 =IF(SUM($D8:E8)=$D$7,0,IF(E7-E8=1,$D$7-SUM($D8:E8),IF(SUM($D7:F7)+$G7<>$D$7,F7,F7-1))) 

G8 (j+1)a4 =IF(SUM($D8:$F8)=$D$7,0,G7+1) 

 
The number of points in the configuration space H(K,A) is given by the formula: 
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Card(H(K, A)) = (∏(𝐴 + 𝑖)

𝐾−1

𝑖=1

) (𝐾 − 1)!⁄  Equ (15) 

 
where Card() is the counting function “cardinality”.  Card(H(K,A)) forms a straight line on a log-log plot.  
For a relatively small histogram, the number of possible configurations is nevertheless enormous.  For 
example, for a histogram with 30 bins (K=30) and 90 agents (A=90) the number of configurations 
exceeds 1027.   Another version of the same formula, but one which is easier to implement in MS Excel, 
is: 
 

Card(H(K, A)) =
(𝐴 + 𝐾 − 1)!

𝐴! (𝐾 − 1)!
 Equ (16) 

6. Levels of Total Wealth in H(K,A)  
We distinguish between personal wealth level and total wealth level in the model.  For any agent, its 
personal wealth level is xi corresponding to its assignment to bin i of the histogram.  The total wealth 
level in the model, on the other hand, is found by summing the personal wealth over all agents to find 
W(h) as per equation 2.   
 
For all h  H(K,A) there are many possible values for W(h).  For example, if you list the 165 
configurations for the H(4,8) configuration space and compute W(h) for each configuration, there are 25 
distinct values of W(h) which we shall call wealth levels.  They range from $8, for 1(8,0,0,0) to $32, for 
165(0,0,0,8).  That is, A ≤ W(h) ≤ KA. 
 
Since there are 165 configurations and only 25 discrete wealth levels, some levels must necessarily have 
multiple associated configurations.  Table 4 lists the cardinality of each of the wealth levels.  Note that 
the sum of the cardinalities is 165.  Note also that the wealth level having the largest cardinality is that 
for which W(h) = (AK+A)/2 = A(K+1)/2. 
 

Table 4.  All possible levels of wealth in H(4,8). 
 

Wealth 
Level - 
W(h) 

Cardinality of 
Wealth Level 

 Wealth 
Level - 
W(h) 

Cardinality of 
Wealth Level 

 Wealth 
Level - 
W(h) 

Cardinality of 
Wealth Level 

8 1  17 11  25 8 

9 1  18 12  26 7 

10 2  19 12  27 5 

11 3  20 13  28 4 

12 4  21 12  29 3 

13 5  22 12  30 2 

14 7  23 11  31 1 

15 8  24 10  32 1 

16 10       

 
 



Orrery Software 12 ModEco Project 

 

 

 

Given K and A, the formula for the number of wealth levels is: 

𝑁𝑊𝑒𝑎𝑙𝑡ℎ𝐿𝑒𝑣𝑒𝑙𝑠 = 1 + 𝐾𝐴 − 𝐴 = 1 + 𝐴(𝐾 − 1)  (17)  

Open question:  Is there a formula for the cardinality of a wealth level?  For example, if W(h) = 17, is 
there a formula that will indicate there are 11 configurations having this total wealth? 

7. Levels of the Entropic Index in H(K,A)  
Unlike wealth, for which it is clear that each agent holds an identifiable quantity of wealth, it is not at all 
clear that an agent holds an identifiable quantity of entropy.  Although it is mathematically possible to 
calculate the contribution of one agent to an indexicle using si/ai, we cannot say that an agent has a 
personal entropic index without reference to the entire state of the model in which the agent resides.  
But, similar to total wealth levels, if you calculate (using equation 11) the entropic index associated with 
all 165 configurations of H(4,8) you find that there are 15 distinctly different levels of entropic index.  
That is, the entropic index can be used to categorize the configurations of the state space into 15 
subsets, each subset having a cardinality, as shown in Table 5.   
 

Table 5.  All Possible Levels of The Entropic Index in H(4,8). 
 

Entropic 
Index 
Level - 

S(h) 

Cardinality of 
Entropic Index 

Level 

 Entropic 
Index 
Level - 

S(h) 

Cardinality of 
Entropic Index 

Level 

0.000000 4  0.750000 12 

0.271782 12  0.774397 4 

0.405639 12  0.780639 12 

0.477217 12  0.875000 12 

0.500000 6  0.905639 6 

0.530639 12  0.952820 12 

0.649397 24  1.000000 1 

0.702820 24    

   
Open Questions:  Is there a formula that can be used to calculate the number of discrete levels of the 
entropic index for H(K,A)?  For a given value of the entropic index, is there a formula that can be used to 
calculate the cardinality of the set of configurations having that entropic index? 

8. Intersecting Levels in H(K,A)  
Figure 2 shows the scatter plot of S(h) versus W(h) for all 165 configurations in H(4,8).  There are several 
interesting things to note about this graph.  The data points lie on a grid of intersecting horizontal and 
vertical lines, as is expected due to the finite number of discrete levels computable for each of the two 
variables.  Many of the 165 data points overlay each other, so there are not 165 data points visible on 
the scatter plot.  For each level of wealth, the maximal entropic index has been highlighted as a circled 
data point.  A quadratic trend line (solid black line) has been included for these maximal values, with a 
corresponding equation and R2 value.  These maximal values appear to be bounded by a curve forming a 
virtual envelope which, for the sake of discussion, we shall call the enveloping curve, or E-curve for 
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H(K,A).  Based on the shape of the trend line through the maximal values, this E-curve (dotted black 
line), is close to quadratic in shape, but is too narrow at the base and too blunt at the vertex.  Also, if 
you examine the pattern of points within the interior area of the graph, the mind’s eye sees apparent 
arcs sweeping between basal points.  These arcs are, in fact, scaled copies of the E-curve.  Using a line 
drawing facility in MS Excel, a trace of the E-curve was made and then scaled and translated to fit two of 
the smaller apparent curves.  They are the dashed blue traces in the interior, both of which each pass 
precisely through several data points.  It seems that the plotted points are located where a background 
set of continuous variously-scaled copies of the E-curve intersect with a grid of computed levels of 
wealth and computed levels of entropic index.  Note also that the vertex occurs at configuration 
69(2,2,2,2), the configuration that is distantly analogous to a state of thermodynamic equilibrium, 
having S(h) = 1. 
 

Figure 2. A scatter plot showing S(h) (levels of entropic index) versuss W(h) (levels of 
total wealth) for all 165 configurations in H(4,8).  The maximal values of S(h) for each 
W(h) are circled, and a quadratic trend line through these maximal values is shown in 
solid black.  The virtual enveloping curve (or E-Curve) is shown as a dotted black line.  
Two scaled and translated copies of the E-Curve are shown in dashed blue in the 
interior area. 
 

 
 
Open questions:  What is the analytic expression for the E-curve which forms the upper bounding 
envelope of the possible values of the entropic index?  What is the cause of the apparent self-similar 
pattern of overlays of this curve? 
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9. The H(K,A,W) Configuration Space  
Consider a specific configuration h(a1,a2,a3,a4)  H(K,A,W)  H(K,A)  HRect(K,A).  We define a nearest 
neighbour within the enveloping hypercube HRect(K,A) as a configuration which is a distance of one away 
from it.  Distance is measured here in “Manhattan” distance units.  If you change just one ai by ±1 then 
the new configuration is a nearest neighbour.  This corresponds to adding or removing an agent.  
However, since there is a constraint within H(K,A) such that the sum of all ai must be A, this nearest 
neighbour is not in H(K,A).  To be in the H(K,A) configuration space there must also be a compensating 
change in another bin.  For example, if one is added to one bin, one must be subtracted from another 
bin.  Therefore, for any h  H(K,A) the nearest neighbour within H(K,A) must be a distance of two 
Manhattan steps away.   This corresponds to removing an agent from a bin and then replacing the agent 
into a neighbouring bin.  Since moving an agent from one bin to a neighbouring bin implicitly changes 
the wealth they hold, to maintain constant wealth within the model, another agent must also move 
from bin to bin in the opposite direction, neutralizing the change in wealth.  So, for any h  H(K,A,W) 
the nearest neighbour within H(K,A,W) must be four Manhattan steps away. 
 
Returning to our example in which K=4 and A=8, in our capital exchange model, the total wealth is 
constant, at some value W.  Suppose we set W = 20 when we initialize the model.  Checking in Table 4 
we see that there are only 13 configurations within H(4,8) which have this total wealth level.  These 13 
configurations then form the configuration space H(4,8,20) of the model.  Our simple capital exchange 
model must operate within this type of highly constrained configuration space.  We now turn our 
attention to examine the nature of this configuration space. 
 
Within the capital exchange model two agents are always involved in every tick.  When the loser moves 
one bin to the left (requiring two Manhattan steps), the winner moves one bin to the right (requiring 
two more Manhattan steps).  The resultant configuration is a four-step Manhattan walk from the 
original configuration.  However, the last two steps can retrace the path of the first two, so it is possible 
to end the walk at the original configuration.  This would happen, for example, when a loser with $3 
pays $1 to a winner with $2.  The winner now has $3 and the loser now has $2. The agents have 
exchanged financial positions, as well as cash, and the overall wealth distribution has not changed.  
During a single tick of the model, all of the possible resultant configurations to be visited by our capital 
exchange model must be at a distance of 4 Manhattan steps from the current configuration. 
Call these four-step nearest neighbours “capital exchange nearest neighbours”.  Call a pair of capital 
exchange nearest neighbours a “transition pair” because a single tick of the capital exchange model can 
transition the system from one member of this pair of configurations to the other, or back again in the 
next tick.  As the capital exchange model operates, tick after tick, the system moves from configuration 
to configuration along paths formed by links between these transition pairs.   
 
Hypothesis:  All elements of the set H(K,A,W) form a single contiguous network of such transition pairs. 
 
Hypothesis:  The H(K,A) configuration space is formed by a set of non-overlapping H(K,A,W) sub-spaces 
that partition H(K,A). 
 
For a given configuration h, how many capital exchange nearest neighbours are there?  To how many 
transition pairs does it belong?  How many resultant configurations can be visited in one tick?  These are 
all different forms of the same equation.  In a K-bin histogram  in which all bins hold two or more agents 
there are K2 ways to choose two bins containing agents.  This puts an upper limit on the possible number 
of transition pairs in which a configuration can be a partner.  However, any selection of agents that 
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chooses a loser from bin 1 or a winner from bin 4 is disallowed and results in no capital exchange, and 
no change of configuration.  Of the K2 types of selection, only (K-1)2 are not disallowed by such a 
constraint.  So, (K-1)2 is a more severe upper limit on the number of allowed transitions.  Agents at the 
edges of the histogram have fewer opportunities to participate in the economy than those in the 
middle.  Such constraints are called edge effects.  Another type of edge effect occurs when a bin has 0 
agents or 1 agent.  These configurations have fewer than (K-1)2 allowed transitions.  Edge effects will 
reduce this number for some configurations.  With this variety of constraints, the number of transition 
pairs in which a configuration can be a partner varies. 
 
In our example, when K = 4, each configuration will have, at most, 9 capital exchange nearest 
neighbours, but, since the H(4,8,20) space is very small, edge effects will reduce this number for most 
configurations. 
 
Open question: Do these configurations in H(K,A,W) all lie on a (K-2) dimensional simplex? 
 
Hypothesis: The H(K,A,W) space forms a Markov chain that is: 
• Time homogeneous – the probability of transition between the two configurations of a transition 

pair does not change over time.  Such probabilities are stable. 
• Memoryless – the next transition is dependent only on the current configuration and the set of 

transition pairs of which it is a member, and is otherwise independent of previous transitions. 
• Irreducible – it is possible to get to any configuration from any other configuration within the 

network. 
• Aperiodic – all configurations can be revisited in one or two ticks due to the fact that transitions are 

bi-directional. 
 
Table 6 shows the 13 configurations that make up the space H(4,8,20).  Note that there are seven 
different levels of the entropic index so these 13 configurations appear as seven points, rather than 13, 
on the scatter plot of Figure 2.  The configuration numbers are those automatically assigned by the 
iterative generator algorithm of Table 1, and they are unique non-arbitrary identifiers, and so are quite 
useful, though having little apparent meaning. 
 

Table 6.  All Possible Configurations in H(4,8,20). 
 

Config 

No. 

Bin No. Entropic 

Index 

Level 

 Config 

No. 

Bin No. Entropic 

Index 

Level  1 2 3 4 1 2 3 4 

h a1 a2 a3 a4 h a1 a2 a3 a4 

78 2 0 6 0 0.405639 66 2 3 0 3 0.780639 

126 0 6 0 2 0.405639 73 2 1 4 1 0.875000 

35 4 0 0 4 0.500000 93 1 4 1 2 0.875000 

131 0 4 4 0 0.500000 49 3 1 1 3 0.905639 

100 1 2 5 0 0.649397 96 1 3 3 1 0.905639 

128 0 5 2 1 0.649397 69 2 2 2 2 1.000000 

53 3 0 3 2 0.780639       
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10. Generating Transition Pairs 
We can use MS Excel to generate transition pairs with associated probabilities of transition for any 
subspace H(K,A,W)  H(K,A) for which Card(H(K,A)) < 1,048,000, due to the limitations of MS Excel 2010.  
Unfortunately, very few interesting ABMs would meet this requirement.  The technique is documented 
below in the expectation that a less restrictive version can ultimately be developed, possibly on another 
analytic platform. 
 
In the capital exchange model, we choose agents randomly, but, indirectly, we are selecting the bins in 
which the agents are currently placed.  We can define a K-tuple transition template as a symbol that 
designates one possible way to select a winner and a loser from K bins.  W means the winner is chosen 
from this bin.  L means the loser is chosen from this bin.  W/L means both winner and loser are chosen 
from the same bin.  For a 4-bin model, there are four bins from which we can choose a winner, and four 
from which we can choose a loser, making 42 = 16 possible ways to choose the two bins.  The sixteen 4-
tuple transition templates are described in Table 7. 
 

Table 7.  The sixteen 4-tuple transition templates applicable to a generic configuration 

h  H(4,A), A = 4q for some positive integer q > 2. 
 

T# Template Discussion 

1 (W/L,-,-,-) Disallowed; Loser is in bin 1. 

2 (L,W,-,-) Disallowed; Loser is in bin 1. 

3 (L,-,W,-) Disallowed; Loser is in bin 1. 

4 (L,-,-,W) Disallowed; Loser is in bin 1; Winner is in bin 4. 

5 (W,L,-,-) Allowed; Reflexive; Winner and loser exchange situations. 

6 (-,W/L,-,-) Allowed. 

7 (-,L,W,-) Allowed. 

8 (-,L,-,W) Disallowed; Winner is in bin 4. 

9 (W,-,L,-) Allowed. 

10 (-,W,L,-) Allowed; Reflexive; Winner and loser exchange situations. 

11 (-,-,W/L,-) Allowed. 

12 (-,-,L,W) Disallowed; Winner is in bin 4. 

13 (W,-,-,L) Allowed. 

14 (-,W,-,L) Allowed. 

15 (-,-,W,L) Allowed; Reflexive; Winner and loser exchange situations. 

16 (-,-,-,W/L) Disallowed; Winner is in bin 4. 

 
In general, if a configuration h has ai > 2 for all i, then: 

 There are a total of K2 potential selections, of which: 
o 2K-1 are disallowed, after selection; and 
o (K-1)2 are allowed, of which: 

 K-1 are valid exchanges which do not alter the histogram configuration; and 
 (K-1)*(K-2) are valid transitions that change the configuration. 

 
Note that the nature of the template does not determine the probability that its application will be 
instantiated when the winner and loser are randomly selected.  For any given input configuration h, 
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edge effects will reduce the number of templates that may be applicable, thus altering probabilities of 
application.  For example, let’s examine the options for 78(2,0,6,0).   

 Due to the zeros in bins 2 and 4, those templates which indicate a selection from those bins will 
never be called up or applied to this configuration.  So the following templates will never be 
activated for this configuration: 2, 4, 5, 6, 7, 8, 10, 12, 13, 14, 15, and 16.  These templates have zero 
probability of being called up when the model is in configuration 78, thus increasing the 
probabilities of application of the other templates. 

 There are two ways to choose the two agents that result in no exchange: (L, ,W, ) and (W/L, , , ).  
Both result in no exchange because the loser has a single dollar and cannot give it away.  There is a 
clear opportunity to select agents that fit this template, but the transitions are disallowed. 

 There are only two allowed transitions.  78(2,0,6,0) transitions to 100(1,2,5,0) or it transitions to 
73(2,1,4,1).  A selection template can be constructed for each of these:  (W, ,L, ) and ( , ,W/L, ) 
respectively.   

 The total count is 16.  
 
What are the probabilities of such transitions?  There are four ways to choose the two agents, only two 
of which cause a transition.  Table 8 shows a transition table with the associated probability of selection 
for each of the four ways to choose two agents from 78(2,0,6,0).  Note that the denominator of the 
probabilities is A*(A-1) = 8*7 = 56.  There are two ways to choose a winner from bin 1, and 6 ways to 
choose a loser from bin 2.  2 * 6 = 12.  So, the probability of transitioning from 78 to 100 is 12/56.  Note 
that the probability of selecting a disallowed assignment of winner/loser combinations is not zero, so 
these non-effective results should be tabulated as part of the transition table for any configuration, as a 
technique to ensure that the probabilities have been correctly computed.   The probabilities in such a 
transition table should always add to 1.000.  Denote the weighted average entropic change for a 
configuration as the WAEC.   
 

Table 8. Transition table for 78(2,0,6,0). 
 

Winner/Loser 
Template 

Probability of 
Selection  

(p) 

Transition 
To 

Delta Entropic Index (Ei) Computation 
of WAEC 

(p*Ei) 

(W, -, L, - ) 12 / 56 100(1,2,5,0) 0.649397 – 0.405639 = +0.243758 0.052234 

(W/L, -, -, - ) 2 / 56 Disallowed 0.000000 0.000000 

(L, - W, - ) 12 / 56 Disallowed 0.000000 0.000000 

( -, -, W/L, - ) 30 / 56 73(2,1,4,1) 0.875000 – 0.405639 = +0.469360 0.251443 

   Total 56 / 56   0.303677 

 
The weighted average entropic change (WAEC) for h(a1,a2,a3,a4) = 78(2, 0, 6, 0) is calculated as the sum 
of the probabilities times the respective deltas in the entropic index, and is 0.303677.  Such a value 
might be useful in a computation of rates of entropy production.  But it also provides another 
perspective on the concept of equilibrium state.  For configuration 78, all allowed transitions increase 
the entropic index, so there is no way but up. 
 
Similar analysis can be done automatically for each of the 13 configurations in the H(4,8,20) space using 
an MS Excel table to generate the 16 template selections and their associated probabilities.  Figure 3 
shows the output for h = 78 with the results for all 16 templates.  The templates marked with a ‘d’ are 
disallowed.  The templates marked with an ‘s’ indicate an exchange of capital that does not change the 
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configuration.  A macro is used to cycle through the 13 input configurations.  The output is collected in a 
large table having 13 * 16 = 208 entries, 140 of which are discardable due to edge effects.  68 retained 
records are then paired, to produce 34 descriptions of transition pairs. 
 

Figure 3.  A picture of the MS Excel table used to generate all 16 potential selections 
for transition for a configuration h in H(4,8,20).  In this example, the input 
configuration has serial number h = 78. 
 

 
 
After a lengthy process, too lengthy to describe in detail here, that is mostly automatable using macros, 
these records can be formed into a table of transition pairs.  Table 9 shows the output of this process in 
which the 34 transition pairs are detailed, showing transitions in both directions.  For example, 
configuration 126 can transition to configuration 93 with a delta in the entropic index of 0.46936, with a 
probability of transition of 0.53571.  While 93 can transition in the opposite direction to 126 with the 
opposite delta in the entropic index, but with a much lower probability of 0.01786.  The ratio is a ratio of 
probabilities, with the probability of increased entropic index as numerator. 
 

Table 9.  Transition pairs for H(4,8,20), sorted in order of the ratio of probabilities of 
transition.  Transitions of configuration 78 are highlighted in blue. 
 

From h1 To 
h2 

Delta 
Entropic 

Index 

Proba-
bility 
(Pup) 

 From h2 To 
h1 

Delta 
Entropic 

Index 

Proba-
bility 

(Pdown) 

 Ratio  
(Pup / Pdown) 

126 to 93 0.46936 0.53571  93 to 126 -0.46936 0.01786  30 

78 to 73 0.46936 0.53571  73 to 78 -0.46936 0.01786  30 

131 to 96 0.40564 0.28571  96 to 131 -0.40564 0.01786  16 

35 to 49 0.40564 0.28571  49 to 35 -0.40564 0.01786  16 

128 to 96 0.25624 0.35714  96 to 128 -0.25624 0.05357  6.666667 

100 to 96 0.25624 0.35714  96 to 100 -0.25624 0.05357  6.666667 

Adjust Formulae in Red Cells Adjust Formulae in Red Cells

S T U V W X Y Z AA AB AC AD AE

This Configuration:

Hash No: 1072 Config No: 78 A*(A-1) 56

Ei: 0.405639 WAEC: 0.30367730 WAEC = Weighted Average Entropic Change in transitions Probability

8 1 2 3 4 Transition Hash Config Entropic Entropic Probability of Times

7 Flag 2 0 6 0 Template Nos Nos Index Change Transition Entropy

1 D D D D (W/L,-,-,-)d N/A N/A N/A 0.00000000 0.03571429 0.00000000

0 - - - - (W,L,-,-)s - - - - - -

1 1 2 5 0 (W,-,L,-) 680 100 0.64939747 0.24375841 0.21428571 0.05223394

0 - - - - (W,-,-,L) - - - - - -

0 - - - - (L,W,-,-)d - - - - - -

1 D D D D (L,-,W,-)d N/A N/A N/A 0.00000000 0.21428571 0.00000000

0 - - - - (L,-,-,W)d - - - - - -

0 - - - - (-,W/L,-,-) - - - - - -

0 - - - - (-,W,L,-)s - - - - - -

0 - - - - (-,W,-,L) - - - - - -

0 - - - - (-,L,W,-) - - - - - -

0 - - - - (-,L,-,W)d - - - - - -

1 2 1 4 1 (-,-,W/L,-) 1121 73 0.87500000 0.46936094 0.53571429 0.25144336

0 - - - - (-,-,W,L)s - - - - - -

0 - - - - (-,-,L,W)d - - - - - -

0 - - - - (-,-,-,W/L)d - - - - - -

1.000000000 0.303677304
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Table 9 – Continued. 

From h1 To 
h2 

Delta 
Entropic 

Index 

Proba-
bility 
(Pup) 

 From h2 To 
h1 

Delta 
Entropic 

Index 

Proba-
bility 

(Pdown) 

 Ratio  
(Pup / Pdown) 

126 to 128 0.24376 0.21429  128 to 126 -0.24376 0.03571  6 

78 to 100 0.24376 0.21429  100 to 78 -0.24376 0.03571  6 

128 to 93 0.22560 0.17857  93 to 128 -0.22560 0.03571  5 

100 to 73 0.22560 0.17857  73 to 100 -0.22560 0.03571  5 

66 to 69 0.21936 0.16071  69 to 66 -0.21936 0.03571  4.5 

53 to 69 0.21936 0.16071  69 to 53 -0.21936 0.03571  4.5 

131 to 128 0.14940 0.21429  128 to 131 -0.14940 0.08929  2.4 

131 to 100 0.14940 0.21429  100 to 131 -0.14940 0.08929  2.4 

66 to 49 0.12500 0.10714  49 to 66 -0.12500 0.05357  2 

73 to 69 0.12500 0.21429  69 to 73 -0.12500 0.07143  3 

93 to 69 0.12500 0.21429  69 to 93 -0.12500 0.07143  3 

53 to 49 0.12500 0.10714  49 to 53 -0.12500 0.05357  2 

66 to 93 0.09436 0.10714  93 to 66 -0.09436 0.07143  1.5 

49 to 69 0.09436 0.16071  69 to 49 -0.09436 0.07143  2.25 

96 to 69 0.09436 0.16071  69 to 96 -0.09436 0.07143  2.25 

53 to 73 0.09436 0.10714  73 to 53 -0.09436 0.07143  1.5 

73 to 96 0.03064 0.14286  96 to 73 -0.03064 0.10714  1.333333 

93 to 96 0.03064 0.14286  96 to 93 -0.03064 0.10714  1.333333 

131 to 131 0.00000 0.28571  131 to 131 0.00000 0.28571  1 

128 to 128 0.00000 0.21429  128 to 128 0.00000 0.21429  1 

100 to 100 0.00000 0.21429  100 to 100 0.00000 0.21429  1 

66 to 66 0.00000 0.10714  66 to 66 0.00000 0.10714  1 

53 to 53 0.00000 0.10714  53 to 53 0.00000 0.10714  1 

73 to 73 0.00000 0.14286  73 to 73 0.00000 0.14286  1 

93 to 93 0.00000 0.17857  93 to 93 0.00000 0.17857  1 

49 to 49 0.00000 0.12500  49 to 49 0.00000 0.12500  1 

96 to 96 0.00000 0.26786  96 to 96 0.00000 0.26786  1 

69 to 69 0.00000 0.21429  69 to 69 0.00000 0.21429  1 

 
 
Note that the probability of transition is asymmetric for almost every transition pair.  For example, the 
probability of a transition from configuration 78 to configuration 100 is six times as large as the 
probability of transition from configuration 100 to configuration 78.  In fact the only transitions that 
have symmetric probability of transition are those that do not change the entropic index, that is, those 
that do not change the configuration.  In every case, the transition that raises the entropic index is the 
more probable.  For some transitions, the asymmetry is enormous. 
 
This asymmetric probability of transition within transition pairs is one of the causes of the so-called 
“arrow of time”.  As time proceeds, this ABM is driven towards a configuration having ever greater 
entropic index, and then the probability that it can ever escape from that condition of high entropic 
index is relatively low.  It seems that, within the network of transition pairs, there is a monotonic 
gradient of entropic indices, associated with a monotonic gradient of probabilities of transition. 
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In the process that produced the above table, the WAEC was also tabulated and is shown in Table 10.   
Note that, for three configurations, the probabilities are slightly in favour of a decrease in the entropic 
index, while for some, the probabilities are greatly in favour of an increase.   Does this imply that the 
equilibrium value of the entropic index is less than the maximal value? 
 
 

Table 10. Weighted Average Entropic Change (WAEC) by configuration for h  
H(4,8,20).  The equilibrium configuration, a virtual configuration, is not coincident 
with the balanced configuration. 
 

 h WAEC 

Balanced configuration 69 -0.047006 

 96 -0.026098 

 49 -0.005471 

 93 0.007984 

 73 0.007984 

 53 0.058757 

 66 0.058757 

 100 0.109756 

 128 0.109756 

 35 0.115897 

 131 0.179924 

 78 0.303677 

Unbalanced configuration 126 0.303677 

11. Transition Matrix for the Markov Chain H(K,A,W) 
As a Markov chain, H(4,8,20) can be represented by a transition matrix in which the sum of the entries in 
each row add up to 1, implying certain transition.  However, in the capital exchange model, many 
exchanges are disallowed, and a selected pair of agents may be discarded with no transition, so a simple 
compilation of probabilities as calculated in the “Neighbour Generator” algorithm (see figure 3) does not 
produce a standard type of transition matrix.  To produce a standard transition matrix, the rows need to 
be normalized, by dividing each entry by the row sum. Table 11 is such a normalized transition matrix.  
Denote this matrix by M.  To understand the effects of the normalization calculation, compare the 
probabilities of transition for h = 78 in Tables 8 and 11.  In Table 11 we have the probabilities of the 
allowed transitions (only) divided by the sum of those probabilities.  
 
Such a matrix is called a one-step matrix.  For example, the pink cell in Table 9 contains the probability 
that configuration 49 will transition to configuration 53 in one step.  If we multiply M by itself, the 
resultant matrix M2 is a two-step matrix.  The cell for row 49 and column 53 would then contain the 
probability that configuration 49 could transition to configuration 53 in two steps.  If we continue and 

take M to a higher power, the matrix Mn approaches a stable value M asymptotically as n goes to 
infinity.  Table 12 shows the matrix M100.  Note that in all columns all cells are now the same.  This 
means that the overall probability distribution of the future state of the system is independent of the 
initial state, after sufficient ticks. 
 

Equilibrium 
Point 
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Table 11. Transition matrix M1, showing the probability of transition from 
configuration to configuration.  Transitions for configuration 78 are highlighted in 
blue.  The probability of a one-step transition from configuration 49 to configuration 
53 is highlighted in pink. 
 

From\To 35 49 53 66 69 73 78 93 96 100 126 128 131 

35 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

49 0.04 0.30 0.13 0.13 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

53 0.00 0.22 0.22 0.00 0.33 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

66 0.00 0.22 0.00 0.22 0.33 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 

69 0.00 0.13 0.06 0.06 0.38 0.13 0.00 0.13 0.13 0.00 0.00 0.00 0.00 

73 0.00 0.00 0.11 0.00 0.32 0.27 0.03 0.00 0.22 0.05 0.00 0.00 0.00 

78 0.00 0.00 0.00 0.00 0.00 0.71 0.00 0.00 0.00 0.29 0.00 0.00 0.00 

93 0.00 0.00 0.00 0.11 0.32 0.00 0.00 0.27 0.22 0.00 0.03 0.05 0.00 

96 0.00 0.00 0.00 0.00 0.21 0.14 0.00 0.14 0.35 0.07 0.00 0.07 0.02 

100 0.00 0.00 0.00 0.00 0.00 0.20 0.04 0.00 0.41 0.24 0.00 0.00 0.10 

126 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.00 0.00 0.00 0.29 0.00 

128 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.41 0.00 0.04 0.24 0.10 

131 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.21 0.00 0.21 0.29 

 
Table 12. Transition Matrix M100, showing the ultimate probability distribution of the 
model in its state space. 

From\To 35 49 53 66 69 73 78 93 96 100 126 128 131 

35 0.004 0.095 0.056 0.056 0.298 0.115 0.004 0.115 0.178 0.030 0.004 0.030 0.014 

49 0.004 0.095 0.056 0.056 0.298 0.115 0.004 0.115 0.178 0.030 0.004 0.030 0.014 

53 0.004 0.095 0.056 0.056 0.298 0.115 0.004 0.115 0.178 0.030 0.004 0.030 0.014 

66 0.004 0.095 0.056 0.056 0.298 0.115 0.004 0.115 0.178 0.030 0.004 0.030 0.014 

69 0.004 0.095 0.056 0.056 0.298 0.115 0.004 0.115 0.178 0.030 0.004 0.030 0.014 

73 0.004 0.095 0.056 0.056 0.298 0.115 0.004 0.115 0.178 0.030 0.004 0.030 0.014 

78 0.004 0.095 0.056 0.056 0.298 0.115 0.004 0.115 0.178 0.030 0.004 0.030 0.014 

93 0.004 0.095 0.056 0.056 0.298 0.115 0.004 0.115 0.178 0.030 0.004 0.030 0.014 

96 0.004 0.095 0.056 0.056 0.298 0.115 0.004 0.115 0.178 0.030 0.004 0.030 0.014 

100 0.004 0.095 0.056 0.056 0.298 0.115 0.004 0.115 0.178 0.030 0.004 0.030 0.014 

126 0.004 0.095 0.056 0.056 0.298 0.115 0.004 0.115 0.178 0.030 0.004 0.030 0.014 

128 0.004 0.095 0.056 0.056 0.298 0.115 0.004 0.115 0.178 0.030 0.004 0.030 0.014 

131 0.004 0.095 0.056 0.056 0.298 0.115 0.004 0.115 0.178 0.030 0.004 0.030 0.014 

 
All of the preceding analysis has been done using MS Excel.  We now have a predictive “model”, using 
MS Excel, of the behaviour of “Model I” of the EiLab application.  We can compare this with an actual 
run of an ABM and so validate the above analysis.  
 
An interpretation of Table 12 is easiest using a bar graph.  (See Figure 4.)  The blue bars represent the 
data from Table 12.  On the other hand, Model I was run until over 300,000 allowed transitions were 
noted and the actual distribution of expressed states was recorded, and is represented by the red bars.  
Note that configuration 69, the “balanced” state, is the most probable state, but, in this very simple 
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system, random perturbations can take the system out of pure equilibrium for a significant percentage 
of ticks (i.e. 70% of the time). 
 

Figure 4. The predicted probability distribution of the configurations of Model I in the 
space H(4,8,20), computed as M100, and the empirically obtained probability 
distribution, as determined over more than 300,000 allowed transitions. 

 
 
We are comparing two distinctly different computer models of a single stochastic process.  One model is 
static and built using MS Excel.  The other is a dynamic ABM built using C++.  The technologies are 
radically different, as are the conceptual tools used to construct the models and analyze the results.  
Nevertheless, the results are dramatically similar, not to say indistinguishable from the perspective of 
statistical theory. 
 
There is one other common means to view a Markov chain and that is as a directed graph.  In Figure 5 
we have a simplified directed graph of the configuration space H(4,8,20), in which all transitions are 
bidirectional.  Note that there is only one way to get to configuration 35(4,0,0,4) and that is through 
49(3,1,1,3) via a very low probability transition.  The global and local minima (green coloured 
configurations) form a ratchet that makes it difficult for the system to return to the lowest value of the 
entropic index.  These minima all have at least one co-ordinate equal to zero.  These local cul-de-sacs 
ensure that many forays towards a low value of the entropic index are turned back.  Such a structure 
helps to explain why the climb from lower entropic index to higher entropic index in larger systems 
tends to be monotonically increasing.  This is the second cause of the “arrow of time”. 
 
Hypothesis:  H(K,A,W) spaces for which the ratio A / K ≤ 3 (arbitrarily) will have many such local minima, 
while those for which this ratio is larger will have relatively fewer. 
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Figure 5. A simplified directed graph of the configuration space H(4,8,20).   All 
transitions are bidirectional, with the ratio of probabilities of transition shown.  The 
“arrow of time” is an effect of the asymmetric probabilities of transition between 
transition pairs, and the ratchet-like nature of some parts of the graph. 
 

 
 

12. Conclusions 
We are now in a position to state two significant hypotheses.  The first is analogous to the second law of 
thermodynamics, but is applicable to all stochastic ABMs without reference to either thermodynamic 
theory, or information theory.   
 
López-Ruiz, Sañudo and Calbet (2009) showed that the probability distributions that are characteristic of 
entropy-driven processes can be developed from purely geometrical arguments.  This work supports the 
idea that entropy is fundamentally a mathematical phenomenon having physical manifestations, and 
implies that entropy can be defined for ABMs, and so was an inspiration for this hypothesis. 
 

Equilibrium 
Point 
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MEP Hypothesis for ABMs:  In any stochastic agent-based model (ABM) in which the number of agents 
is conserved and a measured variable characteristic of the agents (e.g. wealth) is also conserved, for all 
transactions as well as at the system level, a histogram displaying the distribution of that conserved 
quantity among the agents will exhibit a rising entropic index, which rises to a value at which the WAEC 
is equal to zero, and remains there, except for minor fluctuations. 
 
In other words, the entropic index of a conserved quantity in a closed stochastic ABM will increase 
asymptotically to an equilibrium value, in an analogous fashion to the rise of entropy in a closed 
thermodynamic system. 
 
Martyushev (2010) proposed that the Maximum Entropy Production Principle (MEPP) is the appropriate 
version of the MEP to be applied to open systems as they approach stationary states far from 
equilibrium.  The MEPP has not yet been widely accepted as a real-world phenomenon, partly due to the 
difficulty of defining entropy production in an open system.  However, when viewing the entropic index 
as a characteristic of a histogram, it becomes an easy matter to identify actions that alter the entropic 
index of the system, and then measure the rate of increase in the entropic index.  We believe that the 
formulation of the entropic index described in this paper, with emphasis on the associated concept of an 
indexicle, opens the way for serious study of the concept of the MEPP.  In our example, if neither the 
number of agents, nor the total wealth are conserved in the capital exchange model, we can still 
calculate the change in entropy each time an agent is removed from or added to the system, or each 
time wealth is removed from or added to the system. 
 
MEPP Hypothesis for ABMs:  In any open stochastic agent-based model (ABM) in which a measured 
variable characteristic of the agents can be displayed as a histogram showing the distribution of that 
characteristic among the agents, the rate of increase of the entropic index will rise to a pseudo-
stationary value, and will remain there, except for minor fluctuations. 
 
It is believed that the study of the MEPP using agent-based models will eventually lead to insights that 
establish that this phenomenon plays a major role in the operation of all open stochastic dynamic 
systems, including physical, chemical, biological, economic, social and informational systems. 

Summary 
This paper began with a brief explanation of why this project was undertaken, followed by a description 
of Model I.  The concept of entropic index for Model I was then defined, and notation was introduced 
for discussion of the configuration space in which an instance of Model I operates, the H(K,A,W) space, 
as well as the super space H(K,A) of which H(K,A,W) forms a single part.  Techniques were described for 
generating all of the configurations in the space H(K,A) using MS Excel, and for generating all of the 
possible pairs of configurations between which transitions may occur during a run of the model.  The 
two concepts of asymmetric probabilities of transition and weighted average entropic change (WAEC) 
were then developed and explored.  These concepts were brought together in a directed graph. 
 
Using the EiLab software, a run of Model I was executed for over 300,000 ticks, and data was collected 
respecting the relative rate of occurrence of each configuration.  A transition matrix T was constructed 
using the analytic tools developed above, and the matrix was T100 was computed.  Comparison of the 
theoretical results and the empirical results showed they were in agreement. 
 
Finally, a version of the MEP and MEPP were presented as hypotheses. 
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