
Orrery Software i NTF FactLn() and GammaLn()

NOTE TO FILE:

Garvin H Boyle

Dated: R4: 180214

About Error in FactLn() and GammaLn() Implementations

Frontispiece

Figure 01

Orrery Software i NTF FactLn() and GammaLn()

Table of Contents
1 - References ... 1

2 - Background .. 1
3 - Purpose .. 1
4 - Discussion .. 2

4.1 - A Two-Part Problem ... 2
4.2 - Examination of Ln(x!) When x>170 .. 2

4.2.1 - Stirling’s Approximation – Basic Form .. 2
4.2.2 - Definition of Entropy for ABM-Related Histograms .. 3
4.2.3 - Error Evaluations ... 3
4.2.4 - Summary for ln(x!) .. 6

4.3 - Examination of GammaLn(x) ... 7

4.3.1 - Lanczos Approximation of (X+1) ... 7

4.3.2 - Spouge’s Approximation of (x+1) .. 8
4.3.3 - Numerical Recipe for GammaLn(X+1) ... 8
4.3.4 - Test of GammaLn(x) for Smax .. 9

5 - Conclusion ... 11

Orrery Software 1 NTF FactLn() and GammaLn()

1 - References
A. A. Drăgulescu and V.M. Yakovenko (2000) “Statistical mechanics of money”, Eur. Phys. J.

B 17, 723-729.

B. 140218 Email from Yakovenko R1.pdf

C. 140409 NTF Discussion With Dr Yakovenko R1.pdf

D. 150527 PPR - Definition of EI R17.pdf

E. 180118 NTF Custom Functions in Excel R3.pdf

F. 180210 NTF Shannon Vs Boltzmann R3.pdf

G. 180115 XLS Stirling's Approximation R4.xlsm

H. https://en.wikipedia.org/wiki/Stirling%27s_approximation

I. https://en.wikipedia.org/wiki/Spouge%27s_approximation

J. https://en.wikipedia.org/wiki/Lanczos_approximation

K. Press, Teukolsky, Vetterling and Flannery (1986) “Numerical Recipes in Fortran”,

Cambridge, pp 206-209

L. 180219 Test of GammaLn for Entropic Index R2.xlsx

2 - Background
This note is written in an attempt to understand exactly how Stirling’s approximation to ln(A!)

works, and also to understand the GammaLn() workaround. The context of my intended usage is

the calculation of the entropy associated with a histogram derived from an agent-based model.

For example, if you create a histogram of the distribution of wealth of a set of agents, there may

be many bins with a small number of agents, and some bins with a lot of agents. I need a

formula that works well for numbers on the interval [0, ] with special emphasis on the very low

segment of that domain [0, 10].

Ref A is a paper in which Yakovenko introduces some seminal ideas about calculating entropy in

agent-based models. Refs B through F is a series of diary notes in which I examine the nature of

entropy as it applies to histograms of conserved quantities in agent-based models.

Ref G is the MS Excel spreadsheet in which I tested some entropy equations and constructed the

associated graphs for this diary note.

Refs H, I and J are very informative online articles about the origins and nature of Stirling’s

approximation for ln(x!) and the approximations of Spouge and Lanczos for ln((x)).

Ref K is a book in which one can find short-cut algorithms for implementing ln(x!) and ln((x))

on a computer.

3 - Purpose
To understand the operational characteristics of the mathematical formulae used to approximate

ln(x!) and GammaLn(x).

Orrery Software 2 NTF FactLn() and GammaLn()

4 - Discussion

4.1 - A Two-Part Problem
I need to be able to evaluate ln(x!) under two different types of circumstances that are normally

difficult:

 Many computer programs (most) cannot calculate ln(x!) when x is greater than 170 due to

overflow conditions. The final answer is not too large to express, but, typically, the

intermediate value is. Standard computer implementations cannot handle x! for x greater

than 170. Ln(x!) rises faster than ln(x) but more slowly than x!. The standard way to avoid

this overflow problem is to approximate the answer using an alternate function which does

not have to calculate x! first. In particular, some variation of Stirling’s Approximation of

ln(x!) is used.

 But also, to calculate the maximum value of the entropy for a histogram, I will need to

calculate the lawn of the factorial of a non-integer argument. For example, I may need to

calculate ln(3.2!), and the factorial function is defined only for integral arguments. There is

another function called the Gamma function (usually represented as (x)) which produces the

same curve as x! when x is integral, but is also able to produce a smooth curve for non-

integral numbers in between. They are related as x! = (x+1) for all integral x>=0. What I

will need is the lawn of the Gamma function, and in many computer mathematical libraries

there is a function called GammaLn() which can be used to evaluate Ln(x!)  Ln([(x+1)).

In short, I need a special replacement for ln(x!) for when x>170 or when xIntegers.

Before I proceed with this, just for clarification purposes, Stirling’s Approximation comes into

my deliberations in another similar but subtly different way. Boltzmann’s version of the

equation for entropy can be converted to Shannon’s version of the equation for entropy through

the substitution of the basic form of Stirling’s approximation into Boltzmann’s equation, after the

 is replaced with the multinomial coefficient  = 𝐴! ∏ [𝑎𝑖!]
𝐾
𝑖=1⁄ . For a detailed mathematical

derivation, and an exploration of the error this creates between the two famous formulae, see Ref

F. So, ‘Stirling’s Approximation’ plays some role in distinguishing between what I am calling

the ‘Boltzmann regime’ and the ‘Shannon regime’. I decided to go forward with the Boltzmann

regime to avoid the systemic bias introduced into the analytic development of the Shannon

regime. Within the so-called Boltzmann regime, nevertheless, to evaluate the equations of the

Boltzmann regime, I still need to depend on Stirling’s approximation to ln(x!) and/or the

GammaLn() function. I need to understand how this bias works, and how to minimize its effects.

4.2 - Examination of Ln(x!) When x>170

4.2.1 - Stirling’s Approximation – Basic Form
This is the standard basic version of “Stirling’s approximation” for ln(A!):

 ln(𝐴!) ≈ (𝐴 𝐿𝑛(𝐴)) − 𝐴 [1]

It is used in the formulae for entropy when A! is too large to be calculated. I say “basic” because

Stirling’s formula is actually an infinite series of ever-more-accurate terms, but equation [1] is

the version most often quoted.

Orrery Software 3 NTF FactLn() and GammaLn()

4.2.2 - Definition of Entropy for ABM-Related Histograms
This is the standard equation for the definition of entropy of a histogram within what I am calling

the ‘Boltzmann regime’:

 𝑆𝐵
 = 𝐶𝐵

 × ln () [2]

where BC is a dimensionless scaling factor and  is the total number of possible microstates

associated with one configuration of the histogram.  can be calculated using the multinomial

coefficient from combinatorial mathematical theory:

  = 𝐴!
∏ (𝑎𝑖!)

𝐾
𝑖=1

⁄ [3]

in a K-bin histogram, where A is the number of agents, and ai is the number of agents in bin i of

the histogram.

 𝑆𝐵
 = 𝐶𝐵

 × 𝑙𝑛 (𝐴!
∏ (𝑎𝑖!)

𝐾
𝑖=1

⁄) = 𝐶𝐵
 [ln(𝐴!) − ∑ 𝑙𝑛(𝑎𝑖!)

𝐾
𝑖=1] [4]

But neither MS Excel nor the C++ mathematical libraries can calculate ln(A!) if A170 due to

overflow. That means it requires too many bits to accurately store the number in the computer’s

memory. 170 is a pretty small number. Many runs of my ABMs have more than 170 agents.

But what is much more concerning, almost all circumstances for which I calculate entropy, most

of the bins contain less than 170 agents. To usefully compare my analytical results (developed in

MS Excel) with my experimental results (developed using C++ in the EiLab application), I need

to consistently use Stirling’s approximation, but only whenever one of the following happens on

any and all implementation platforms:

 A  170; or

 ai  170.

4.2.3 - Error Evaluations
Stirling’s approximation for the function ln(x!) is actually defined for the complex plane Z (the

Arcand plane) and only the real portion is of interest to me. Furthermore, it can be written as a

rather complex infinite series that approximates the ln(x!) more and more closely as terms are

added. The most basic form of Stirling’s approximation is ln(x!)=(x ln(x)) – x. I start there.

If you calculate the exact value of ln(N!) for N

in [1, 170], and Stirling’s approximation of

ln(N!) for the same range of N, and take the

difference as a % of ln(N!), you get a pair of

interesting graphs. In preparing the first graph

(see Figure 01) I noted three things:

 Ln(0!) is a troublesome value to compute,

and I must provide a work-around for it;

 The absolute error is rising; and

 The logarithmic trend line produced by

least squares techniques has parameters that

can be useful as a correction to the basic

form of Stirling’s Approximation.

Figure 01

Orrery Software 4 NTF FactLn() and GammaLn()

The blue line is the absolute error. The black

line is a logarithmic trend line produced by MS

Excel using a “least squares” technique, with

the equation for the trend line. I altered the

formatting of the equation of the trend line to

give me 16 digits of accuracy. Note that the R-

squared value is very high.

In the second graph (see Figure 02) the relative

error is immense for small N, but when you get

to N = 170 the relative error is 0.005%. The

absolute error is rising, but the value of ln(N!)

is rising faster, so the relative error continues to

decline as N gets larger. But for small N, in the

area where my ABMs will be active, the relative error in Stirling’s approximation can be quite

large. My decision to avoid the use of Stirling’s approximation for small A and small ai is based

on these two graphs.

Figure 01 suggests that an improvement on equation [1] might be:

 ln(𝐴!) ≈ ((𝐴 + 0.494257376544912) 𝐿𝑛(𝐴)) + (0.945592090819170 − 𝐴) [5]

Figure 03 presents the graphs for absolute and relative error for equation [5].

Or more simply, equation [5] could be approximated by:

 ln(𝐴!) ≈ ((𝐴 + 0.5) 𝐿𝑛(𝐴)) + (1 − 𝐴) [6]

Figure 04 presents the graphs for absolute and relative error for equation [6].

Figure 02

Figure 03 – Absolute and Relative Error associated with Equation [5].

Orrery Software 5 NTF FactLn() and GammaLn()

I note that, however you present Stirling’s Approximation of ln(x!), the absolute error is the

largest when x is near zero. But in any histogram of a distribution of wealth there will almost

always be some empty bins. So, using Stirling’s approximation for values of ln(x!) when x is

close to zero will cause serious distortions.

I also note that the relative error, in all three cases, approaches zero as x approaches 170. I

should examine that more closely. A couple of tables will clarify. Looking at the results when N

= 169 and 170, for both Stirling and revised Stirling, we get these two tables:

N LN(FACT(N))

Stirling’s

Approximation

Equ [4] Absolute Error Relative Error

169 701.4372638 697.9528828 3.484380987 0.004967488

170 706.5730622 703.0857343 3.487327947 0.004935552

N LN(FACT(N))

Revised

Stirling’s

Approximation

Equ [5] Absolute Error Relative Error

169 701.4372638 701.4339652 0.003298615 4.70265E-06

170 706.5730622 706.5697327 0.003329594 4.71231E-06

With the standard version of Stirling’s approximation of ln(N!) the absolute error is rising but the

relative error is falling. For the revised version of Sterling’s approximation, both the absolute

and relative errors are rising. This is not good.

Figure 04 – Absolute and Relative Error associated with Equation [6]

Orrery Software 6 NTF FactLn() and GammaLn()

But, curiously, if I use the two simple parameters, things are a little better.

Using 0.5 and 1.0 as the two revised parameters:

N LN(FACT(N))

Simply Revised

Stirling’s

Approximation

Equ [6] Absolute Error Relative Error

169 701.4372638 701.5178 -0.080568371 -0.000114862

170 706.5730622 706.6536 -0.080571271 -0.000114031

The absolute error is larger and climbing, not good, but the relative error is larger but falling,

good. In either case, when N ≈ 170, both sorts of revised formulae for Sterling’s approximation

seem to perform better than the standard form. This is true, of course, because they include one

more term in the asymptotic series of improvements on the standard form. (See Wikipedia

article)

Here’s another way to summarize it:

Option

Number Option

Absolute Error

at N=170

Relative Error at

N=170

RMS Error on

[1,170]

1

Stirling unrevised

Equ [4] Rising falling 3.044133

2

Revised Stirling with

precise parameters

Equ [5] Rising rising 0.003146

3

Revised Stirling with

{0.5, 1} as

parameters Equ [6] Rising falling 0.078870

The RMS error is computed as

𝐸𝑟𝑚𝑠 = √
∑ 𝑒𝑟𝑟𝑜𝑟2170

𝑁=0
171

⁄
2

As expected, the standard version of Sterling’s formula performs less well on the interval [1,

170] compared to the revised versions.

4.2.4 - Summary for ln(x!)
In summary:

 Boltzmann over Shannon – For reasons of exactitude, I do not want to use Shannon’s

formula for the definition of entropy because it distorts values calculated on sparsely-

populated histograms. Therefore I MUST use Boltzmann’s version of the definition of

entropy with the multinomial coefficient substituted in in place of .

 Barrier at 170! – However, Boltzmann’s equation requires extensive use of the function

ln(x!), which cannot be calculated exactly for any value of x greater than 170. So a work-

around using Stirling’s Approximation needs to be implemented for histograms with heavily-

populated bins. This work-around should only be used on those bins having more than 170

agents.

Orrery Software 7 NTF FactLn() and GammaLn()

 A revised version of Stirling’s approximation, as shown in equation [6] seems to perform

best for numbers of the order of magnitude of [x>170], where many ABMs will be

functioning, and for which MS Excel and C++ cannot provide exact answers.

 For very large numbers (not shown here) Stirling’s approximation is good because the

relative error declines as ln(N)/N and goes to zero as N rises.

Then, I can implement this in both MS Excel when I do my analysis and also in C++ or

NetLogo when I build my models.

4.3 - Examination of GammaLn(x)
When given the choice between (a) an accurate calculation using an approximate formula; or (b)

an occasionally approximate calculation based on an accurate formula; I have chosen to work

with the formula that gives precisely correct answers for the low range of inputs, and this

requires that I use GammaLn() for the Smax calculation.

GammaLn(x) is the combined formula for ln((x)) where ln(x) is the natural logarithm function

and (x) is the Gamma function.

The Gamma function is a peculiar function which in some ways is just “made-up”, not being the

result of normal arithmetic. The factorial function is defined for integers, but not for the

rationals that fill the spaces between them. The Gamma function was, I believe, constructed to

fill that gap. But, it has a VERY peculiar definition.

4.3.1 - Lanczos Approximation of (X+1)
Here’s an excerpt from the Ref I article:

“In mathematics, the Lanczos approximation is a method for computing the

gamma function numerically, published by Cornelius Lanczos in 1964. It is a

practical alternative to the more popular Stirling's approximation for

calculating the gamma function with fixed precision. The Lanczos

approximation consists of the formula

z is a complex number from the Argand plane. This function merely approximates the Gamma

function. What’s more, it is an incomplete expression. The term at the end needs explanation:

And, so it goes on, explaining the role of g, the role of the pi coefficients, etc. And, since there

are a lot of exponents in this approximate definition of the Gamma function, taking the logarithm

Orrery Software 8 NTF FactLn() and GammaLn()

of (x+1) is a relatively easy next step. I can actually follow the mathematical arguments made

in these articles, but it is pretty dense stuff.

But, the implementation on a computer is doable, because there are certain values of g and pi that

make it converge quickly, and those parameters can simply be stored at great precision in an

array, and called upon when needed. The routines proposed in the Ref K book tend to be of that

sort.

4.3.2 - Spouge’s Approximation of (x+1)
Similarly, at Ref J a new approach published in 1994 is similar to Lanczos’ approximation and is

derived from the same source (Stirling’s approximation of x!). It does not converge as quickly,

but the coefficients are easier to calculate. Here’s an excerpt from the Ref J article:

“In mathematics, the Spouge's approximation is a formula for computing an

approximation of the gamma function. It was named after John L. Spouge

who defined the formula in a 1994 paper.[1] The formula is a modification of

Stirling's approximation, and has the form

Again, the mathematics is dense.

4.3.3 - Numerical Recipe for GammaLn(X+1)
The Ref K book makes a good argument. It is better to implement the logarithm of the Gamma

function because it is less likely to overflow. Then, if you want Gamma(x) you simply calculate

it as e
GammaLn(x)

. On page 207 of the Ref J book is this version of GammaLn():

FUNCTION gammln(xx)

REAL gammln, xx

 Returns the value ln[(xx)] for xx > 0.
INTEGER j

DOUBLE PRECISION ser, stp, tmp, x, y, cof(6)

 Internal arithmetic will be done in double precision, a nicety that you

can omit if five-figure accuracy is good enough.

SAVE cof, stp

DATA cof, stp/76.18009172947146d0, -86.50532032941677d0,

24.01409824083091d0, -1.231739572450155d0, .1208650973866179d-2,

-.5395239384953d-5, 2.5066282746310005d0/

x=xx

y=x

tmp=x+5.5d0

tmp=(x+0.5d0)*log(tmp)-tmp

ser=1.000000000190015d0

do j=1,6

Orrery Software 9 NTF FactLn() and GammaLn()

 y=y+1.d0

 ser=ser+cof(j)/y

enddo

gammln=tmp+log(stp*ser/x)

return

END

This works in FORTRAN and can easily be translated to C++ or NetLogo or whatever computer

platform is being used. It is an implementation of Lanczos’ approximation.

4.3.4 - Test of GammaLn(x) for Smax
Ref L is an MS Excel spreadsheet in which I did various tests of calculations of entropy s, of

maximum entropy smax, and of the entropic index IS. I used custom functions for this test, as

follows:

' Module containing custom functions for use with entropic index calculations.

'//

'// Orrery Software; Garvin H Boyle; orrery@rogers.com

'//

'//

'// This function computes ln(x!) (using the Stirling approximation when needed).

'// Stirling's approximation is: ln(x!)~((x+0.5)*ln(x))+(1-x)

'// MS Excel is not able to calculate x! if x > 170.

'// So, when it can, this function does the exact calculation.

'// And when it cannot do that, it uses the Stirling approximation

'//

Function LawnOfFactorial(x)

 If x < 170 Then

 LawnOfFactorial = Application.Ln(Application.Fact(x))

 Else

 LawnOfFactorial = ((x + 0.5) * Application.Ln(x)) + (1 - x)

 End If

End Function

'//

'// This function computes an entropic index for a five-bin histogram. i.e. K=5

'//

' It uses 'LawnOfFactorial' for all factorials.

' It should be wrong when alpha is non-integral.

Function FiveBinEntropicIndex01(a1, a2, a3, a4, a5)

 K = 5

 A = a1 + a2 + a3 + a4 + a5

 S = LawnOfFactorial(A)

 S = S - LawnOfFactorial(a1)

 S = S - LawnOfFactorial(a2)

 S = S - LawnOfFactorial(a3)

 S = S - LawnOfFactorial(a4)

 S = S - LawnOfFactorial(a5)

 Alpha = A / K

 Smax = LawnOfFactorial(A) - K * LawnOfFactorial(Alpha)

 FiveBinEntropicIndex01 = S / Smax

End Function

'//

'// This function computes an entropic index for a five-bin histogram. i.e. K=5

'//

' It uses 'LawnOfFactorial' for all factorials except alpha!.

' It should be correct.

Function FiveBinEntropicIndex02(a1, a2, a3, a4, a5)

 K = 5

 A = a1 + a2 + a3 + a4 + a5

Orrery Software 10 NTF FactLn() and GammaLn()

 S = LawnOfFactorial(A)

 S = S - LawnOfFactorial(a1)

 S = S - LawnOfFactorial(a2)

 S = S - LawnOfFactorial(a3)

 S = S - LawnOfFactorial(a4)

 S = S - LawnOfFactorial(a5)

 Alpha = A / K

 Smax = LawnOfFactorial(A) - K * Application.GammaLn(Alpha + 1)

 FiveBinEntropicIndex02 = S / Smax

End Function

'//

'// This function computes the entropy for a five-bin histogram. i.e. K=5

'//

' It uses 'GammaLn()' for all factorials.

' It should be correct.

Function FiveBinEntropy03(a1, a2, a3, a4, a5)

 K = 5

 A = a1 + a2 + a3 + a4 + a5

 S = Application.GammaLn(A + 1)

 S = S - Application.GammaLn(a1 + 1)

 S = S - Application.GammaLn(a2 + 1)

 S = S - Application.GammaLn(a3 + 1)

 S = S - Application.GammaLn(a4 + 1)

 S = S - Application.GammaLn(a5 + 1)

 FiveBinEntropy03 = S

End Function

'//

'// This function computes the maximum entropy a five-bin histogram. i.e. K=5

'//

' It uses 'GammaLn()' for all factorials.

' It should be correct.

Function FiveBinEntropyMax03(a1, a2, a3, a4, a5)

 K = 5

 A = a1 + a2 + a3 + a4 + a5

 Alpha = A / K

 Smax = Application.GammaLn(A + 1) - K * Application.GammaLn(Alpha + 1)

 FiveBinEntropyMax03 = Smax

End Function

'//

'// This function computes an entropic index for a five-bin histogram. i.e. K=5

'//

' It uses 'GammaLn()' for all factorials.

' It should be correct.

Function FiveBinEntropicIndex03(a1, a2, a3, a4, a5)

 K = 5

 A = a1 + a2 + a3 + a4 + a5

 S = Application.GammaLn(A + 1)

 S = S - Application.GammaLn(a1 + 1)

 S = S - Application.GammaLn(a2 + 1)

 S = S - Application.GammaLn(a3 + 1)

 S = S - Application.GammaLn(a4 + 1)

 S = S - Application.GammaLn(a5 + 1)

 Alpha = A / K

 Smax = Application.GammaLn(A + 1) - K * Application.GammaLn(Alpha + 1)

 FiveBinEntropicIndex03 = S / Smax

End Function

These custom functions depended upon the built-in MS Excel function GammaLn().

Orrery Software 11 NTF FactLn() and GammaLn()

In the spread sheet I set up a five-bin histogram, and calculated the entropy, maximum entropy,

and entropic index using different functions, as shown above.

The results, in short:

 GammaLn(x+1) is equal to Ln(x!) for all integer values of x  [0, 170].

 GammaLn(x+1) can handle all values, integer or otherwise, for x  [0, 10
307

].

5 - Conclusion
GammaLn() is the preferred function to use in all calculations of entropy associated with agent-

based models.

