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2 - Background 
This note is written in an attempt to understand exactly how Stirling’s approximation to ln(A!) 

works, and also to understand the GammaLn() workaround.  The context of my intended usage is 

the calculation of the entropy associated with a histogram derived from an agent-based model.  

For example, if you create a histogram of the distribution of wealth of a set of agents, there may 

be many bins with a small number of agents, and some bins with a lot of agents.  I need a 

formula that works well for numbers on the interval [0, ] with special emphasis on the very low 

segment of that domain [0, 10]. 

 

Ref A is a paper in which Yakovenko introduces some seminal ideas about calculating entropy in 

agent-based models.  Refs B through F is a series of diary notes in which I examine the nature of 

entropy as it applies to histograms of conserved quantities in agent-based models. 

 

Ref G is the MS Excel spreadsheet in which I tested some entropy equations and constructed the 

associated graphs for this diary note. 

 

Refs H, I and J are very informative online articles about the origins and nature of Stirling’s 

approximation for ln(x!) and the approximations of Spouge and Lanczos for ln((x)). 

 

Ref K is a book in which one can find short-cut algorithms for implementing ln(x!) and ln((x)) 

on a computer. 

 

3 - Purpose 
To understand the operational characteristics of the mathematical formulae used to approximate 

ln(x!) and GammaLn(x). 
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4 - Discussion 

4.1 - A Two-Part Problem 
I need to be able to evaluate ln(x!) under two different types of circumstances that are normally 

difficult: 

 Many computer programs (most) cannot calculate ln(x!) when x is greater than 170 due to 

overflow conditions.  The final answer is not too large to express, but, typically, the 

intermediate value is.  Standard computer implementations cannot handle x! for x greater 

than 170.  Ln(x!) rises faster than ln(x) but more slowly than x!.  The standard way to avoid 

this overflow problem is to approximate the answer using an alternate function which does 

not have to calculate x! first.  In particular, some variation of Stirling’s Approximation of 

ln(x!) is used. 

 But also, to calculate the maximum value of the entropy for a histogram, I will need to 

calculate the lawn of the factorial of a non-integer argument.  For example, I may need to 

calculate ln(3.2!), and the factorial function is defined only for integral arguments.  There is 

another function called the Gamma function (usually represented as (x)) which produces the 

same curve as x! when x is integral, but is also able to produce a smooth curve for non-

integral numbers in between.  They are related as x! = (x+1) for all integral x>=0.  What I 

will need is the lawn of the Gamma function, and in many computer mathematical libraries 

there is a function called GammaLn() which can be used to evaluate Ln(x!)  Ln([(x+1)). 

 

In short, I need a special replacement for ln(x!) for when x>170 or when xIntegers.  

 

Before I proceed with this, just for clarification purposes, Stirling’s Approximation comes into 

my deliberations in another similar but subtly different way.  Boltzmann’s version of the 

equation for entropy can be converted to Shannon’s version of the equation for entropy through 

the substitution of the basic form of Stirling’s approximation into Boltzmann’s equation, after the 

 is replaced with the multinomial coefficient  = 𝐴! ∏ [𝑎𝑖!]
𝐾
𝑖=1⁄ .  For a detailed mathematical 

derivation, and an exploration of the error this creates between the two famous formulae, see Ref 

F.  So, ‘Stirling’s Approximation’ plays some role in distinguishing between what I am calling 

the ‘Boltzmann regime’ and the ‘Shannon regime’.  I decided to go forward with the Boltzmann 

regime to avoid the systemic bias introduced into the analytic development of the Shannon 

regime.  Within the so-called Boltzmann regime, nevertheless, to evaluate the equations of the 

Boltzmann regime, I still need to depend on Stirling’s approximation to ln(x!) and/or the 

GammaLn() function.  I need to understand how this bias works, and how to minimize its effects. 

4.2 - Examination of Ln(x!) When x>170 

4.2.1 - Stirling’s Approximation – Basic Form 
This is the standard basic version of “Stirling’s approximation” for ln(A!): 

 

 ln(𝐴!) ≈ (𝐴 𝐿𝑛(𝐴)) − 𝐴 [1] 

 

It is used in the formulae for entropy when A! is too large to be calculated.  I say “basic” because 

Stirling’s formula is actually an infinite series of ever-more-accurate terms, but equation [1] is 

the version most often quoted. 
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4.2.2 - Definition of Entropy for ABM-Related Histograms 
This is the standard equation for the definition of entropy of a histogram within what I am calling 

the ‘Boltzmann regime’: 

 𝑆𝐵
 = 𝐶𝐵

 × ln () [2] 

 

where BC is a dimensionless scaling factor and  is the total number of possible microstates 

associated with one configuration of the histogram.   can be calculated using the multinomial 

coefficient from combinatorial mathematical theory: 

  = 𝐴!
∏ (𝑎𝑖!)

𝐾
𝑖=1

⁄  [3] 

in a K-bin histogram, where A is the number of agents, and ai is the number of agents in bin i of 

the histogram. 

 

 𝑆𝐵
 = 𝐶𝐵

 × 𝑙𝑛 (𝐴!
∏ (𝑎𝑖!)

𝐾
𝑖=1

⁄ ) = 𝐶𝐵
 [ln(𝐴!) − ∑ 𝑙𝑛(𝑎𝑖!)

𝐾
𝑖=1 ] [4] 

 

But neither MS Excel nor the C++ mathematical libraries can calculate ln(A!) if A170 due to 

overflow.  That means it requires too many bits to accurately store the number in the computer’s 

memory.  170 is a pretty small number.  Many runs of my ABMs have more than 170 agents.  

But what is much more concerning, almost all circumstances for which I calculate entropy, most 

of the bins contain less than 170 agents.  To usefully compare my analytical results (developed in 

MS Excel) with my experimental results (developed using C++ in the EiLab application), I need 

to consistently use Stirling’s approximation, but only whenever one of the following happens on 

any and all implementation platforms: 

 A  170; or 

 ai  170. 

4.2.3 - Error Evaluations 
Stirling’s approximation for the function ln(x!) is actually defined for the complex plane Z (the 

Arcand plane) and only the real portion is of interest to me.  Furthermore, it can be written as a 

rather complex infinite series that approximates the ln(x!) more and more closely as terms are 

added.  The most basic form of Stirling’s approximation is ln(x!)=(x ln(x)) – x.  I start there. 

 

If you calculate the exact value of ln(N!) for N 

in [1, 170], and Stirling’s approximation of 

ln(N!) for the same range of N, and take the 

difference as a % of ln(N!), you get a pair of 

interesting graphs.  In preparing the first graph 

(see Figure 01) I noted three things: 

 Ln(0!) is a troublesome value to compute, 

and I must provide a work-around for it; 

 The absolute error is rising; and 

 The logarithmic trend line produced by 

least squares techniques has parameters that 

can be useful as a correction to the basic 

form of Stirling’s Approximation. 

Figure 01
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The blue line is the absolute error.  The black 

line is a logarithmic trend line produced by MS 

Excel using a “least squares” technique, with 

the equation for the trend line.  I altered the 

formatting of the equation of the trend line to 

give me 16 digits of accuracy.  Note that the R-

squared value is very high. 

 

In the second graph (see Figure 02) the relative 

error is immense for small N, but when you get 

to N = 170 the relative error is 0.005%.  The 

absolute error is rising, but the value of ln(N!) 

is rising faster, so the relative error continues to 

decline as N gets larger.  But for small N, in the 

area where my ABMs will be active, the relative error in Stirling’s approximation can be quite 

large.  My decision to avoid the use of Stirling’s approximation for small A and small ai is based 

on these two graphs. 

 

Figure 01 suggests that an improvement on equation [1] might be: 

 

 ln(𝐴!) ≈ ( (𝐴 + 0.494257376544912) 𝐿𝑛(𝐴)) + (0.945592090819170 − 𝐴) [5] 

 

Figure 03 presents the graphs for absolute and relative error for equation [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Or more simply, equation [5] could be approximated by: 

 

 ln(𝐴!) ≈ ( (𝐴 + 0.5) 𝐿𝑛(𝐴)) + (1 − 𝐴) [6] 

 

Figure 04 presents the graphs for absolute and relative error for equation [6]. 

Figure 02 

 

Figure 03 – Absolute and Relative Error associated with Equation [5]. 
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I note that, however you present Stirling’s Approximation of ln(x!), the absolute error is the 

largest when x is near zero.  But in any histogram of a distribution of wealth there will almost 

always be some empty bins.  So, using Stirling’s approximation for values of ln(x!) when x is 

close to zero will cause serious distortions. 

 

I also note that the relative error, in all three cases, approaches zero as x approaches 170.  I 

should examine that more closely.  A couple of tables will clarify.  Looking at the results when N 

= 169 and 170, for both Stirling and revised Stirling, we get these two tables: 

 

N LN(FACT(N)) 

Stirling’s 

Approximation 

Equ [4] Absolute Error Relative Error 

169 701.4372638 697.9528828 3.484380987 0.004967488 

170 706.5730622 703.0857343 3.487327947 0.004935552 

 

N LN(FACT(N)) 

Revised 

Stirling’s 

Approximation 

Equ [5] Absolute Error Relative Error 

169 701.4372638 701.4339652 0.003298615 4.70265E-06 

170 706.5730622 706.5697327 0.003329594 4.71231E-06 

 

With the standard version of Stirling’s approximation of ln(N!) the absolute error is rising but the 

relative error is falling.  For the revised version of Sterling’s approximation, both the absolute 

and relative errors are rising.  This is not good. 

 

 

 

 

 

Figure 04 – Absolute and Relative Error associated with Equation [6] 
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But, curiously, if I use the two simple parameters, things are a little better. 

Using 0.5 and 1.0 as the two revised parameters: 

N LN(FACT(N)) 

Simply Revised 

Stirling’s 

Approximation 

Equ [6] Absolute Error Relative Error 

169 701.4372638 701.5178 -0.080568371 -0.000114862 

170 706.5730622 706.6536 -0.080571271 -0.000114031 

 

The absolute error is larger and climbing, not good, but the relative error is larger but falling, 

good.  In either case, when N ≈ 170, both sorts of revised formulae for Sterling’s approximation 

seem to perform better than the standard form.  This is true, of course, because they include one 

more term in the asymptotic series of improvements on the standard form.  (See Wikipedia 

article) 

 

Here’s another way to summarize it: 

 

Option 

Number Option 

Absolute Error 

at N=170 

Relative Error at 

N=170 

RMS Error on 

[1,170] 

1 

Stirling unrevised 

Equ [4] Rising falling 3.044133 

2 

Revised Stirling with 

precise parameters 

Equ [5] Rising rising 0.003146 

3 

Revised Stirling with 

{0.5, 1} as 

parameters Equ [6] Rising falling 0.078870 

The RMS error is computed as 

𝐸𝑟𝑚𝑠 = √
∑ 𝑒𝑟𝑟𝑜𝑟2170

𝑁=0
171

⁄
2

 

As expected, the standard version of Sterling’s formula performs less well on the interval [1, 

170] compared to the revised versions. 

4.2.4 - Summary for ln(x!) 
In summary: 

 Boltzmann over Shannon – For reasons of exactitude, I do not want to use Shannon’s 

formula for the definition of entropy because it distorts values calculated on sparsely-

populated histograms.  Therefore I MUST use Boltzmann’s version of the definition of 

entropy with the multinomial coefficient substituted in in place of . 

 Barrier at 170! – However, Boltzmann’s equation requires extensive use of the function 

ln(x!), which cannot be calculated exactly for any value of x greater than 170.  So a work-

around using Stirling’s Approximation needs to be implemented for histograms with heavily-

populated bins.  This work-around should only be used on those bins having more than 170 

agents.   
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 A revised version of Stirling’s approximation, as shown in equation [6] seems to perform 

best for numbers of the order of magnitude of [x>170], where many ABMs will be 

functioning, and for which MS Excel and C++ cannot provide exact answers.   

 For very large numbers (not shown here) Stirling’s approximation is good because the 

relative error declines as ln(N)/N and goes to zero as N rises.  

 

Then, I can implement this in both MS Excel when I do my analysis and also in C++  or 

NetLogo when I build my models. 

4.3 - Examination of GammaLn(x) 
When given the choice between (a) an accurate calculation using an approximate formula; or (b) 

an occasionally approximate calculation based on an accurate formula; I have chosen to work 

with the formula that gives precisely correct answers for the low range of inputs, and this 

requires that I use GammaLn() for the Smax calculation. 

 

GammaLn(x) is the combined formula for ln((x)) where ln(x) is the natural logarithm function 

and (x) is the Gamma function. 

 

The Gamma function is a peculiar function which in some ways is just “made-up”, not being the 

result of normal arithmetic.  The factorial function is defined for integers, but not for the 

rationals that fill the spaces between them.  The Gamma function was, I believe, constructed to 

fill that gap.  But, it has a VERY peculiar definition.   

4.3.1 - Lanczos Approximation of (X+1) 
Here’s an excerpt from the Ref I article: 

 

“In mathematics, the Lanczos approximation is a method for computing the 

gamma function numerically, published by Cornelius Lanczos in 1964. It is a 

practical alternative to the more popular Stirling's approximation for 

calculating the gamma function with fixed precision.  The Lanczos 

approximation consists of the formula 

 

 
 

z is a complex number from the Argand plane.  This function merely approximates the Gamma 

function.  What’s more, it is an incomplete expression.  The term at the end needs explanation: 

 

 
 

And, so it goes on, explaining the role of g, the role of the pi coefficients, etc.  And, since there 

are a lot of exponents in this approximate definition of the Gamma function, taking the logarithm 
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of (x+1) is a relatively easy next step.  I can actually follow the mathematical arguments made 

in these articles, but it is pretty dense stuff. 

 

But, the implementation on a computer is doable, because there are certain values of g and pi that 

make it converge quickly, and those parameters can simply be stored at great precision in an 

array, and called upon when needed.  The routines proposed in the Ref K book tend to be of that 

sort. 

4.3.2 - Spouge’s Approximation of (x+1) 
Similarly, at Ref J a new approach published in 1994 is similar to Lanczos’ approximation and is 

derived from the same source (Stirling’s approximation of x!).  It does not converge as quickly, 

but the coefficients are easier to calculate.  Here’s an excerpt from the Ref J article: 

 

“In mathematics, the Spouge's approximation is a formula for computing an 

approximation of the gamma function. It was named after John L. Spouge 

who defined the formula in a 1994 paper.[1] The formula is a modification of 

Stirling's approximation, and has the form 

 

 
 

Again, the mathematics is dense. 

4.3.3 - Numerical Recipe for GammaLn(X+1) 
The Ref K book makes a good argument.  It is better to implement the logarithm of the Gamma 

function because it is less likely to overflow.  Then, if you want Gamma(x) you simply calculate 

it as e
GammaLn(x)

.  On page 207 of the Ref J book is this version of GammaLn(): 

 
FUNCTION gammln(xx) 

REAL gammln, xx 

 Returns the value ln[(xx)] for xx > 0. 
INTEGER j 

DOUBLE PRECISION ser, stp, tmp, x, y, cof(6) 

 Internal arithmetic will be done in double precision, a nicety that you 

can omit if five-figure accuracy is good enough. 

SAVE cof, stp 

DATA cof, stp/76.18009172947146d0, -86.50532032941677d0,  

24.01409824083091d0, -1.231739572450155d0, .1208650973866179d-2, 

-.5395239384953d-5, 2.5066282746310005d0/ 

x=xx 

y=x 

tmp=x+5.5d0 

tmp=(x+0.5d0)*log(tmp)-tmp 

ser=1.000000000190015d0 

do j=1,6 
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     y=y+1.d0 

     ser=ser+cof(j)/y 

enddo 

gammln=tmp+log(stp*ser/x) 

return 

END 

 

This works in FORTRAN and can easily be translated to C++ or NetLogo or whatever computer 

platform is being used.  It is an implementation of Lanczos’ approximation. 

4.3.4 - Test of GammaLn(x) for Smax 
Ref L is an MS Excel spreadsheet in which I did various tests of calculations of entropy s, of 

maximum entropy smax, and of the entropic index IS.  I used custom functions for this test, as 

follows: 

 
' Module containing custom functions for use with entropic index calculations. 

 

'////////////////////////////////////////////////////////////////////////////////// 

'// Orrery Software; Garvin H Boyle; orrery@rogers.com 

'////////////////////////////////////////////////////////////////////////////////// 

 

'////////////////////////////////////////////////////////////////////////////////// 

'// This function computes ln(x!) (using the Stirling approximation when needed). 

'// Stirling's approximation is: ln(x!)~((x+0.5)*ln(x))+(1-x) 

'// MS Excel is not able to calculate x! if x > 170. 

'// So, when it can, this function does the exact calculation. 

'// And when it cannot do that, it uses the Stirling approximation 

'////////////////////////////////////////////////////////////////////////////////// 

Function LawnOfFactorial(x) 

    If x < 170 Then 

            LawnOfFactorial = Application.Ln(Application.Fact(x)) 

        Else 

            LawnOfFactorial = ((x + 0.5) * Application.Ln(x)) + (1 - x) 

    End If 

End Function 

 

'////////////////////////////////////////////////////////////////////////////////// 

'// This function computes an entropic index for a five-bin histogram.  i.e. K=5 

'////////////////////////////////////////////////////////////////////////////////// 

'  It uses 'LawnOfFactorial' for all factorials. 

'  It should be wrong when alpha is non-integral. 

 

Function FiveBinEntropicIndex01(a1, a2, a3, a4, a5) 

    K = 5 

    A = a1 + a2 + a3 + a4 + a5 

    S = LawnOfFactorial(A) 

    S = S - LawnOfFactorial(a1) 

    S = S - LawnOfFactorial(a2) 

    S = S - LawnOfFactorial(a3) 

    S = S - LawnOfFactorial(a4) 

    S = S - LawnOfFactorial(a5) 

    Alpha = A / K 

    Smax = LawnOfFactorial(A) - K * LawnOfFactorial(Alpha) 

    FiveBinEntropicIndex01 = S / Smax 

End Function 

 

 

'////////////////////////////////////////////////////////////////////////////////// 

'// This function computes an entropic index for a five-bin histogram.  i.e. K=5 

'////////////////////////////////////////////////////////////////////////////////// 

'  It uses 'LawnOfFactorial' for all factorials except alpha!. 

'  It should be correct. 

 

Function FiveBinEntropicIndex02(a1, a2, a3, a4, a5) 

    K = 5 

    A = a1 + a2 + a3 + a4 + a5 
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    S = LawnOfFactorial(A) 

    S = S - LawnOfFactorial(a1) 

    S = S - LawnOfFactorial(a2) 

    S = S - LawnOfFactorial(a3) 

    S = S - LawnOfFactorial(a4) 

    S = S - LawnOfFactorial(a5) 

    Alpha = A / K 

    Smax = LawnOfFactorial(A) - K * Application.GammaLn(Alpha + 1) 

    FiveBinEntropicIndex02 = S / Smax 

End Function 

 

 

'////////////////////////////////////////////////////////////////////////////////// 

'// This function computes the entropy for a five-bin histogram.  i.e. K=5 

'////////////////////////////////////////////////////////////////////////////////// 

'  It uses 'GammaLn()' for all factorials. 

'  It should be correct. 

 

Function FiveBinEntropy03(a1, a2, a3, a4, a5) 

    K = 5 

    A = a1 + a2 + a3 + a4 + a5 

    S = Application.GammaLn(A + 1) 

    S = S - Application.GammaLn(a1 + 1) 

    S = S - Application.GammaLn(a2 + 1) 

    S = S - Application.GammaLn(a3 + 1) 

    S = S - Application.GammaLn(a4 + 1) 

    S = S - Application.GammaLn(a5 + 1) 

    FiveBinEntropy03 = S 

End Function 

 

 

'////////////////////////////////////////////////////////////////////////////////// 

'// This function computes the maximum entropy a five-bin histogram.  i.e. K=5 

'////////////////////////////////////////////////////////////////////////////////// 

'  It uses 'GammaLn()' for all factorials. 

'  It should be correct. 

 

Function FiveBinEntropyMax03(a1, a2, a3, a4, a5) 

    K = 5 

    A = a1 + a2 + a3 + a4 + a5 

    Alpha = A / K 

    Smax = Application.GammaLn(A + 1) - K * Application.GammaLn(Alpha + 1) 

    FiveBinEntropyMax03 = Smax 

End Function 

 

 

'////////////////////////////////////////////////////////////////////////////////// 

'// This function computes an entropic index for a five-bin histogram.  i.e. K=5 

'////////////////////////////////////////////////////////////////////////////////// 

'  It uses 'GammaLn()' for all factorials. 

'  It should be correct. 

 

Function FiveBinEntropicIndex03(a1, a2, a3, a4, a5) 

    K = 5 

    A = a1 + a2 + a3 + a4 + a5 

    S = Application.GammaLn(A + 1) 

    S = S - Application.GammaLn(a1 + 1) 

    S = S - Application.GammaLn(a2 + 1) 

    S = S - Application.GammaLn(a3 + 1) 

    S = S - Application.GammaLn(a4 + 1) 

    S = S - Application.GammaLn(a5 + 1) 

    Alpha = A / K 

    Smax = Application.GammaLn(A + 1) - K * Application.GammaLn(Alpha + 1) 

    FiveBinEntropicIndex03 = S / Smax 

End Function 

 

These custom functions depended upon the built-in MS Excel function GammaLn(). 
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In the spread sheet I set up a five-bin histogram, and calculated the entropy, maximum entropy, 

and entropic index using different functions, as shown above. 

 

The results, in short: 

 GammaLn(x+1) is equal to Ln(x!) for all integer values of x  [0, 170]. 

 GammaLn(x+1) can handle all values, integer or otherwise, for x  [0, 10
307

]. 

5 - Conclusion 
GammaLn() is the preferred function to use in all calculations of entropy associated with agent-

based models. 

 


