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2 Purpose 
To progress my understanding of the proposed ubiquity of the power-efficiency curves that 

appear in the works of H. T. Odum.  My intent in this particular note is to explore the 

mathematics of such curves in association with the concepts and scenarios described in the Ref J 

NTF.   

3 Background 
Much of this background story is copied from the Ref J NTF.  This NTF continues that particular 

line of thought, but in a somewhat different direction, and using a different technique of analysis.  

So, this is NOT Part II of the study that I foresaw when I wrote Part I at Ref J. 

 

In my various NTFs I have referred to a set of relationships between the power and the efficiency 

of a system as (a) power-efficiency curves; (b) concave downwards unit maps; (c) CCD curve 

(concave downwards); (d) Goldilocks curves (not too hot, not too cold, just right); and, perhaps 

other names.  While working on this note I have had the startling realization that power-

efficiency relations are not all functions, and are not all CCD.  So, I am going to avoid the use of 

monikers b and c, and try to stick with a and d. 

 

I am trying to show that the maximum power principle (or MPP) is ubiquitous in all persistent 

forms of economic business activity that regularly produce profits.  I am using Odum’s 

definitions of biophysical power and efficiency, as he expressed them in his discussion of 

Atwood’s Machine (see Refs A-D) when considering flows of energy, to find analogous 

definitions of financial power and efficiency, when considering flows of capital (see Refs E-H). 

 

I need to make a careful and intentional distinction: 

 I strongly believe that, IF the MPP is ubiquitous in persistent thermodynamic systems, 

biophysical systems and ecosystems, then it is also ubiquitous in economic systems.   This 

conclusion is by mere reason of the fact that an economic system is, de facto, a 

thermodynamic engine of sorts.  I say “IF” in capitals, because its ubiquity in thermodynamic 

systems has NOT been proven, or even empirically researched, as far as I know, though I 

http://themarketmogul.com/persistence-galbraith
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think there is a strong logical argument that it MUST be ubiquitous.  So, there are three 

levels of my “beliefs” here that have not been proven.   

o I believe it applies to all thermodynamic, biological and ecological systems; and  

o I believe it also applies to the real biophysical (or thermodynamic) layer of economies.  

In my ModEco model I call this the lower layer, so that’s what I will call it here as well.   

o However, in recent years we have seen a phenomenon which is peculiar in the extreme.  

The upper layer of many national economies and of the global economic system as a 

whole – that layer in which such esoteric and insubstantial things such as guarantees, 

warranties, insurances, currencies, commodity risks, and investment risks are bought and 

sold – in that uppermost layer, the economy is much less a thermodynamic engine, and 

more of a logical mathematical engine.  This logical system has in many ways broken 

free of biophysical constraints, and functions on flows of disembodied currencies that 

exist only as flows and stores of digits in a global network of computers.  This is a self-

organizing and persistent sub-system of the real lower-level economy mentioned above, 

and, in its own right, must have an auto-catalyzing process that makes it self-organizing 

and persistent. 

 

In my ModEco documentation I 

refer to the upper and lower 

layers of the economy, but I am 

coming to think there are four 

nested economies, and a more 

accurate analogy for the 

financial part might be outer 

and inner respectively.  The 

biosphere is the complete 

economy of the Earth.  

Mankind’s global economy is 

within that, and is the “real” 

economy – that portion of the 

biosphere we now call the 

anthroposphere, which is a sub-

economy – a subsystem.  The 

“real” economy consists of 

flows and stores of matter and 

energy, converted to goods and services.  The outer financial economy facilitates the real 

economy, and exists in mirror image of the real economy, in that all transfers of mass and/or 

energy in one direction are mirrored in the outer financial economy by transfers of currency in 

the other direction.  This financial economy also seems to have two subsystems, as discussed 

above.  The outer portion of the financial system in which currency (of some sort) is exchanged 

for biophysical goods and services I consider the financial part of the real economy.  But the 

portion in which currencies are exchanged for other non-tangible currencies, or risk-based assets, 

or for the management and sale of such assets, that portion I consider to be a “logical” financial 

economy.  It is contained within the inner part of the “real” economy, and whether a particular 

transaction belongs to one or the other financial subsystem may be a matter of judgment.  I 

suppose it is a matter of degree of loosening the constraints of reality, and not absolute breakage 

of the linkage with reality.  Even the sale of the most abstract derivative instrument requires the 

consumption of some small amount of electricity as EFT (electronic funds transfer) protocols are 

 

 

BIOSPHERE – BIOPHYSICAL ECONOMY

ANTHROPOSPHERE –
REAL GLOBAL ECONOMY OF MANKIND

OUTER FINANCIAL ECONOMY

INNER FINANCIAL ECONOMY

GOODS AND SERVICES: CURRENCIES: DERIVATIVE INSTRUMENTS: 
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executed by computers, and bytes are altered in distant computer banks, so it is not totally de-

linked from the real system.  So, a rule of thumb to draw a line between the two might be this:  If 

no organism or biophysical machine other than computers expended energy to complete the 

transaction, then it is wholly within the logical financial system.  So, whether I call this the inner 

financial system, or the upper financial system, it is the logical financial system.   

 

So, my goal in these mathematical studies is to show that something like the MPP (a non-

thermodynamic but logical extension of the concepts of the MPP) is an ubiquitous agent causing 

economic self-organization in the capital flows of the lower economy, but, more importantly, 

also enabling the self-organization of the upper level of the financial system as well. 

 

I am hoping this particular note and exercise, and, perhaps others to follow, will help me to break 

through the mental blockage I have hit on my Ref E mathematical paper on the MPP.  My mind 

gets tangled in three or four kinds of problems: 

 Can you always find an analytic expression relating power and efficiency?  It seems not.  So 

any proof like I was attempting at Ref E must use logic that avoids specific analytic 

equations, but depends on the characteristics of imagined or presumed analytic relationships, 

in some fashion. 

 What are the proper analogies between energy flows in the AM and capital flows in an 

economy?  I have come to think that these three analogies are valid: 

o The total high-grade energy input (the gravitational potential energy in the large mass) in 

the AM is analogous to the total income resulting from an economic activity. 

o The energy that is converted to kinetic energy, and then expended as waste, in the AM is 

analogous to the costs of production associated with an economic activity. 

o The high-grade energy that is transferred (as gravitational potential energy in the small 

mass) in the AM is analogous to the benefits or 

profits that arise from the economic activity, 

that are then passed on to the next iteration of 

business activity. 

 Are all capital flows and stores reducible to 

thermodynamic flows and stores, or do they have 

additional power and effect beyond their use as 

biophysical proxies.  E.g. a dollar is a lien on 

future production.  When the total value of liens 

exceeds the total annual production for many 

years, this idea loses its meaning.  And yet, dollars 

and debts pile up in a self-creating persistent 

fashion.  I would guess that the laws of 

thermodynamics would have very little impact 

when the linkage between the upper layer of 

financial economy and reality is so weak and 

tenuous, but, nevertheless, there appears to be a 

strong influence towards self-organization in the 

upper layer.  Perhaps the influence is not “because 

of” the thermodynamic connection, but “just like” 

in thermodynamics.  What is it that influences both 

thermodynamic engines and logical engines to 

self-organize? 

Figure 01 – Three shapes of the AM 
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 How are the characteristics of quality of product and cost related?  In the language of 

information theory, the more time a person spends perfecting a product, the greater is the 

information content, and the less is the informational entropy content.  So, there is NOT just 

a thermodynamic “entropy tax” when a product is improved, there is also a peculiar dynamic 

by which internal informational entropy associated with that product is reduced, even as the 

external informational and thermodynamic entropy rises.  The expenditure of the workers 

thermodynamic energy causes a reduction in internal informational entropy.  This is a form 

of autocatalytic effect that crosses the boundary between the real economy and the logical 

economy. 

 

Here is a brief explanation of the files mentioned in the References section.   

 Ref A is a NTF in which I try to understand how Atwood’s Machine (the AM) could provide 

insight into the maximum power principle.  It is a naive item, first written in Sep 2014, and 

revised several times, but that is where I started.  It, in fact, does little to address the MPP 

itself, but focuses on the Newtonian mechanics surrounding the AM. 

 Ref B is a NTF in which I look closely at the power-efficiency function that comes out of the 

Ref A study of the AM.  This was essentially a mathematical study of the characteristics of 

the very strange function which was my first introduction to these Goldilocks curves. 

 In Ref C I revisit the AM, but this time with a focus on the connection to the MPP.  This is 

where my first real insight into the MPP starts to develop, greatly inspired by comments from 

Charles Hall, Dan Campbell and Sholto Maud. 

 In the Ref D NTF I examine closely how the three different power-efficiency curves arise 

from the dynamics of the AM, and figure out a way to show them all on a single graphic.  To 

do this I had to make four independent scatter graphs on the same graph.  It’s cool!  (See 

Figure 01.)  I have been able to build two agent-based models that demonstrate persistent 

evolutionary systems that evolve to maximum power for each of the two concave-downwards 

(CCD) curves shown in Figure 01.  Those models that followed the non-concave curve 

evolved and ultimately collapsed, and were not persistent.  

 At the Ref E PPR I attempted to produce a general mathematical argument as to why the 

MPP is active everywhere, and, in particular, in the upper layer or financial portion of 

economic systems.  This is a VERY DRAFT document that is seriously flawed, and I don’t 

know yet how to fix it.  However, I am working on that, and that is why I undertook this 

exercise. 

 In the Ref F paper I took the first significant step to resolving how to fix the Ref E paper by 

restating the Lotka-Odum MPP as three extremely general and falsifiable hypotheses.  This 

was helpful, as I came to realize that the Ref E paper is only addressing the second part of the 

three parts of the MPP, trying to show the ubiquity of CCD curves. 

 Ref G is my presentation powerpoint slide deck used to explain the Ref F paper at CANSEE 

2015, in the BPE track. 

 Ref H is the MP4 video that I used to demonstrate the MPP in action during the Ref G 

presentation, based on my assumptions in the Ref F paper, and using an agent-based 

computer model called MppLab I.   

 

My demonstration of the MPP at Refs G and H rests on the assumption in Ref F that hypothesis 

MPP#2 is correct.  I.e. that the hump-backed (i.e. CCD) power-efficiency curves are ubiquitous 

in all persistent systems.  But, now I need to show that this can be true.  And that is what I was 
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trying to do, in some sense, in the Ref E paper.  And that is what I am trying to do now, in a 

scaled down fashion, in this and subsequent notes.  

 

Refs I and J are the first part of a study of a constant-demand workshop which I did not finish, 

and which is the immediate predecessor of this exercise.  I got a better idea about how to analyze 

the cases or scenarios. 

 

Ref K is an article about Galbraith’s ideas that seems pertinent to the MPP. 

 

Refs L and M are the files in which the graphics for this note were developed. 

 

So, that’s a quick intellectual history of how and why I got to be here. 

4 Discussion 

4.1 Definitions and boundary conditions 

4.1.1 The Seven Primary Curve Types 

Let I(w), C(w) and T(w) be smooth curves defined on the interval w  [0, ] where: 

 I(w) represents income from a batch of widgets sold.   

 C(w) represents the costs associated with making that batch of widgets.   

 T(w) represents the duration of time required to make the batch of widgets. 

 

Let B(w), (w), P(w) and R(w) be four additional curves, derived from the first three as follows: 

 B(w) represents the profits, or benefits, that derive directly from the expenditures C(w), 

calculated as B(w)=I(w)-C(w).  It, in turn, is used to calculate the next three business 

indicator ratios. 

 P(w) represents the power of the benefits, calculated as P(w)=B(w)/T(w).  I also use 

something I call a “Power Index” which is a normalized data series calculated as 

(w)=P(w)/Pmax, where Pmax is the maximum value of P(w) on the interval w[0, ].  For my 

purposes, P(w) and (w) are interchangeable since I am interested in shapes of curves, and 

these two curves have similar shape and impact. 

 (w) represents efficiency, calculated as B(w)/I(w). 

 R(w) represents the return on investments and is calculated as R(w)=B(w)/C(w). 

4.1.2 It’s about time 

Together, for some business, these I(w), C(w) and B(w) curves represent the income, costs and 

profits associated with some control variable (w) such as, but not limited to, the number of 

workers hired, for example, to make the batch of widgets within a time duration T(w), which is 

also a function of w.  In the AM there is a complex relationship between the time required for the 

process to complete (the “drop time”) and the efficiency of the process.  That is a BIG issue that 

I have chosen NOT to include in this analysis, just because there are already too many 

complications.  I think that, because I am doing this at a high level, above the level of detail that 

I tried to put into the Ref J NTF, it will not damage my analysis.  But I am not certain of that.  

So, for the purposes of this exercise, I will assume that T(w) is in fact constant over the interval 

w [0, ], and can be denoted as T.  When I use it, I note that I am assuming it is “well-

behaved”, though I admit I am uncertain as to exactly what that means, at this point. 
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4.1.3 Conditions of Inclusion 

This, then, is a first background assumption, or constraint, or boundary condition, on my 

solutions described herein.  For internal purposes of reference, I am enumerating all of my 

assumptions of this kind. 

𝑇(𝑤) = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, sometimes denoted as just T Cond 00 

 

Define B(w) as: 

𝐵(𝑤) = 𝐼(𝑤) − 𝐶(𝑤) Equ 01 

where B(w) are the benefits associated with the sale of that batch of widgets.  In other words, 

B(w) represents the profits, as a function of w. 

 

Just as there are restrictions on T(w), there are other constraints to be noted.  Consistent with the 

idea that these income and cost numbers are associated with a persistent profitable business 

model, I(w) and C(w) are always positive or zero.    Also, I want to rule out those cases in which 

income or costs grow infinitely as w, since that strikes me as totally unrealistic.  I cannot 

imagine any instance in which arbitrarily large (or infinite) income or costs are made possible by 

allowing some parameter to rise to infinity.  So there are three more constraints for this exercise, 

for this NTF: 

 

∀𝑤[0, ∞]: [0 ≤  𝐼(𝑤) ≤ 𝐼𝑚𝑎𝑥] for some finite value Imax. Cond 01 

∀𝑤[0, ∞]: [0 ≤ 𝐶(𝑤) ≤ 𝐶𝑚𝑎𝑥] for some finite value Cmax. Cond 02 

∀𝑤[0, ∞]: [−𝐶𝑚𝑎𝑥  ≤ 𝐵(𝑤) ≤ 𝐼𝑚𝑎𝑥]. Cond 03 

 

The third condition is, of course, a logical consequence of the previous two conditions and the 

definition of B(w), and so is redundant, but I write it here for possible reference later.  In this 

NTF I am working with intervals a lot, and I use the notation (lower bound, upper bound) to 

indicate an interval on the real line, or of natural numbers.  Round parentheses indicate exclusion 

of the end point.  Square parentheses indicates inclusion of the end points.  In the above 

conditions, the first use of parentheses are examples of this, but the second use is just for 

parenthetical grouping.  I think I have been careful to use parentheses consistently and with care 

for their meanings throughout the entire NTF.  Watch for it on re-reading. 

4.1.4 The sets of curves G, P and  

At this point I have to ask myself just what these constraints are doing!  In my mind I imagine 

that there is some grand set G of smooth (differentiable) functions defined on the interval [0, ].  

Then there is some other grand set of ordered 4-tuples of elements GG that I can denote as P.  

Each element PP can be interpreted as ( G1, G2, G3, G4 ) = ( I(w), C(w), B(w), T(w)), where the 

position in the 4-tuple determines the role of the function in this analysis.  I refer to each 4-tuple 

“P” as an “ICBT Curve Set”.  Denote the set of all allowed curve sets as .  Then   P, and the 

conditions and constraints are meant to be rules for determining which curve sets in P are 

allowed to be included in .   

 

For example, Cond 00 is a constraint on what functions in  can be allowed as T(w).  I know that 

constraint is far too simple to be real, but I have made it simple so I can complete the analysis.  I 

suppose I will need to come back later and loosen that very tight constraint.  Also, Equ 01 is a 

constraint on what functions can be allowed for B(w), given I(w) and C(w).  Conds 01-02 are 
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constraints on what function can be allowed for I(w) and C(w), and Cond 03 is a further 

constraint on B(w), and, by implication, on I(w) and C(w).  My intention in stating these 

constraints is to winnow out and exclude those curve sets that do not have any association with 

the real-world concept of profits in a persistent business activity.  Admittedly, the resulting set of 

included ICBT curve sets would still be infinitely large.  But I can nevertheless group that set of 

included ICBT curve sets into cases based on common characteristics, and analyze them case by 

case (i.e characteristic by characteristic).  Then, for any given curve set, I can determine which 

characteristics it has, and figure out how it should behave. 

4.1.5 More Conditions of Inclusion 

So, continuing my list of exclusions and inclusions, i.e. my list of constraints, I also want to rule 

out those curve sets for which positive profits are not possible whatever the value of w.  So, I 

exclude those curve sets for which it is true that  
∀𝑤[0, ∞]: [−𝐶𝑚𝑎𝑥  ≤ 𝐵(𝑤) ≤ 0].  Which means, I include only those curve sets for which: 

 

𝐹𝑜𝑟 𝑆𝑜𝑚𝑒 𝑤[0, ∞]: [0 ≤ 𝐵(𝑤) ≤ 𝐼𝑚𝑎𝑥] Cond 04 

 

I am unsure whether T also needs to be bounded in this fashion.  Certainly it must be true that 

∀𝑤[0, ∞]: 𝑇(𝑤) > 0, but it is part of the intrigue of the Atwood’s Machine that some aspects 

of the energy transfer happen in association with infinite time, at perfect efficiency.  Certainly, I 

can imagine that it might take forever to make an absolutely perfect widget, so, it makes sense to 

me that T(w) has a lower bound of zero, but no upper bound.  The difficulty that I have some 

trouble with is this: the “perfect widget” is less associated with number of workers (w) and more 

with quality of product (say, q), a different variable.  So, perhaps T should be written as T(w,q) 

where q is some other control variable independent of w.  I will carry this somewhat clumsy 

notation for now, until I can sort out how to resolve the issue.  Certainly, if w is number of 

workers, and q is quality level, then for some constant q, T should fall as w increases, and for 

some constant w, then T should rise as q rises, so I might guess that 𝑇(𝑤) ∝ 𝑞𝑎 𝑤𝑏⁄  for some w, 

q, a and b  1.  But, I think it is best if I keep the notation T(w, q) for now, and sort it out later. 

 

I then have this weak boundary condition on T(w, q): 

∀𝑤[0, ∞]: [0 ≤ 𝑇(𝑤, 𝑞)] Cond 05 

 

At some time in the future when I relax Cond 00, then this Cond 05 might kick in, but, for now, 

Cond 00 is a much tighter constraint, admitting far fewer curve sets, forming a small subset of 

those admitted by this constraint, making this constraint redundant.  But, I leave it here for now. 

 

Then, there are the two standard definitions coming out of consideration of the Power-Efficiency 

curves of the MPP.  For each ICBT curve set in  I can define three more functions as follows: 

𝑃(𝑤) ≡ 𝐵(𝑤)/𝑇(𝑤) Equ 02 

(𝑤) ≡ 𝐵(𝑤) 𝐼(𝑤)⁄  Equ 03 

𝑅(𝑤) ≡ 𝐵(𝑤) 𝐶(𝑤)⁄  Equ 04 

 

Where P(w) is the power (of the profits) measured in dollars per unit time, and (w) is the 

efficiency of the profit-making process.  These are both intentionally calculated in a fashion 

analogous to the calculation of efficiency for the Atwood machine.  R(w) represents the concept 
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of return on investment (or ROI), the maximization of which is a key concept in economic 

literature. 

4.2 Rules for Using Limits 
The elements of an ICBT curve set are all differentiable.  That was an initial characteristic of the 

grand set G from which all of the curves are selected.  I need this to be able to use L’Hôpital's 

rule for evaluating indeterminate limits.  I use limits extensively in what follows, so, for 

reference, here are the seven rules for limits that I found online.  k is a constant. 

lim
𝑤→𝑐

𝑘 = 𝑘 Rule 01 

lim
𝑤→𝑐

𝑘𝑓(𝑤) = 𝑘 lim
𝑤→𝑐

𝑓(𝑤) Rule 02 

lim
𝑤→𝑐

[𝑓(𝑤) ± 𝑔(𝑤)] = lim
𝑤→𝑐

𝑓(𝑤) ± lim
𝑤→𝑐

𝑔(𝑤) Rule 03 

lim
𝑤→𝑐

[𝑓(𝑤) × 𝑔(𝑤)] = lim
𝑤→𝑐

𝑓(𝑤) × lim
𝑤→𝑐

𝑔(𝑤) Rule 04 

lim
𝑤→𝑐

[𝑓(𝑤)/𝑔(𝑤)] = lim
𝑤→𝑐

𝑓(𝑤)/ lim
𝑤→𝑐

𝑔(𝑤) Rule 05 

lim
𝑤→𝑐

[𝑓(𝑤)𝑛] = [lim
𝑤→𝑐

𝑓(𝑤)]
𝑛

 
Rule 06 

lim
𝑤→𝑐

𝑓(𝑤) = 𝑓(𝑤); if f(w)is continuous around c. Rule 07 

 

5 Evaluations – Case by Case 
Now, I need to break the analysis down into cases that cover all of the common characteristics, 

and label the cases so I can refer back to them easily.  I am going to depend heavily upon the 

variables wL and wU to separate the cases into logical groups: 

 wL is the least value of w for which B(w) transitions from negative to positive values; and 

 wU is the least value of w for which B(w) transitions from positive to negative values; 

 

where “L” stands for the lower bound on an interval, and “U” stands for upper bound on the 

interval.  Then ∀𝑤 [[𝑤𝐿 , 𝑤𝑈] ∩ [0, ∞]]:  𝐵(𝑤)  0.  wL < wU.  Then, wL  [0, ) and wU  (wL, 

]. 

 

I know I have not captured this quite right.  Sometimes either wL or wU may not exist, or there 

may be multiple times when B(w) crosses the w axis.  The above statement is true in most 

reasonable cases, but I go into some unreasonable cases where it is not exactly true. 

5.1 Cases for w = 0 

5.1.1 Case A: The Lower Extremity 

I will start with what happens at w = 0, and work towards the right.  I’ll call this Case A, but it 

can be broken down into several sub-cases and sub-sub-cases.  So, when w = 0 one of three 

conditions exist:  

 Sub-case A0 – costs exceed income, and benefits are less than zero.  In which case wL must 

exist, and must be > 0. 

 Sub-case A1 – costs equal income, and benefits are equal to zero, and wL is coincident with 

w = 0, i.e. wL = 0.  This can be broken down further into two parts. 
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 Sub-case A2 – income exceeds costs, and benefits are greater than zero.  In this case wL does 

not necessarily exist.  This can be broken down further into two parts. 

5.1.2 Case A0: C(0) > I(0) 

Occurs outside of an interval where B(w)>0, but it 

implies, together with Cond 04, that for some wL > 0 

C(wL) = I(wL).  See Case B for discussion of that 

circumstance.  See Annex – Case A0 for a not-very-

interesting example of this case. 

 

 

5.1.3 Case A1: C(0) = I(0) 

That is wL = 0.  This 

case has two sub-cases 

that I want to look at.  C 

and I may equal each 

other and equal a 

positive value, or they 

may equal each other, 

and equal zero.  I’ll call 

these sub-cases B1 and 

B2 respectively.  Since I know that, to the immediate right of wL, B(w) > 0, therefore I(w) > 

C(w) to the right of wL.  So, the two sub-cases look as shown.   

5.1.4 Sub-case A1a: I(0) > 0 

I can say something about the value of each of the seven functions of interest: 

 Income: I(0) > 0; defines the sub-case A1a. 

 Costs: C(0) = I(0); defines the case A1. 

 Benefits: B(0) = 0; defines the case A1. 

 Time: T(0) = positive constant T; a simplifying assumption. 

 Power: P(0) = B(0)/T(0) = 0/T(0) = 0; assuming that T(w) is well-behaved. 

 Efficiency: (0) = B(0)/I(0) = 0/I(0) = 0. 

 ROI: R(0) = B(0)/C(0) = 0/C(0) = 0. 

5.1.5 Sub-case A1b: I(0) = 0 

Again, I can say something about the value of each of the six functions of interest: 

 Income: I(0) = 0; defines the sub-case A1b. 

 Costs: C(0) = I(0) = 0; defines the case A1. 

 Benefits: B(0) = 0; defines the case A1. 

 Time: T(0) = positive constant T; a simplifying assumption. 

 Power: P(0) = B(0)/T(0) = 0/T(0) = 0; assuming that T(w) is well-behaved. 

 Efficiency: (0) = B(0)/I(0) = 0/0; an indeterminate value. 

 ROI: R(0) = B(0)/C(0) = 0/C(0) = 0/0; an indeterminate value. 

 

I must use limits to examine efficiency and ROI.  Starting with efficiency: 

 

$

w

CASE A0: C(0) > I(0)

 

$

w

CASE A1a: C(0) = I(0)

$

w

CASE A1b: C(0) = I(0)
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lim
𝑤→0+

(𝑤) =
lim

𝑤→0+
[𝐵(𝑤)]

lim
𝑤→0+

𝐼(𝑤)
=

lim
𝑤→0+

[𝐼(𝑤) − 𝐶(𝑤)]

lim
𝑤→0+

𝐼(𝑤)
 

 

 

 

Equ 05 

 

Simple substitution (Rule 07) results in the indeterminate value.  So, let me try for a linear 

approximation of I(w) and C(w) near w=0.  Let   (0, 1] be a positive real number very close to 

zero.  Then, since I(w) and C(w) are smooth functions of w, there is a  small enough such that 

I(w) and C(w) can be reasonably (arbitrarily closely) represented on the interval [0, ] by a linear 

function having intercepts at I and C respectively, and slopes I and C respectively.  

Assuming that B(w) is positive over this interval define functions I* and C* as: 

 

𝐼(𝑤) ≅ 𝐼∗(𝑤) ≡ 𝐼 + 
𝐼
𝑤 Equ 06 

𝐶(𝑤) ≅ 𝐶∗(𝑤) ≡ 𝐶 + 
𝐶

𝑤 Equ 07 

 

Where I
*
(w) and C

*
(w) are the approximating linear functions defined on [0, ].  I am using an 

asterisk notation to denote the linear approximations of smooth curves around the value w = 0. 

 

Substituting these into equation 05 I get: 

 

lim
𝑤→0+

(𝑤) =
lim

𝑤→0+
[𝐼 + 

𝐼
𝑤 − (𝐶 + 

𝐶
𝑤)]

lim
𝑤→0+

[𝐼 + 
𝐼
𝑤]

 

 

 

 

Equ 08 

 

lim
𝑤→0+

(𝑤) =
lim

𝑤→0+
[(𝐼 − 𝐶) + (

𝐼
− 

𝐶
)𝑤]

lim
𝑤→0+

[𝐼 + 
𝐼
𝑤]

 

 

 

 

Equ 09 

 

L’Hôpital’s rule says that, if the limits of both f and g are zero, then: 

 

lim
𝑤→0+

𝑓(𝑤)

𝑔(𝑤)
= lim

𝑤→0+

𝑓′(𝑤)

𝑔′(𝑤)
 

 

 

 

Equ 10 

 

Replacing both the numerator and denominator of equation 09 with their derivatives gives me: 

 

lim
𝑤→0+

(𝑤) =
lim

𝑤→0+
[

𝐼
− 

𝐶
]

lim
𝑤→0+

[
𝐼
]

=


𝐼
− 

𝐶


𝐼

 

 

 

 

Equ 11 

 

So the slopes of the income and cost curves at w = 0 determine the efficiency.  I note that the 

efficiency can be negative, according to this calculation.  Such negative efficiencies cannot 
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happen here given the restrictions placed on the curves so far.  For example, if I
*
(0) = 0 and 

C
*
(0) = 0, and if I

*
(w) > C

*
(w) for all w  [0, ], then I must be > C, and the limit must be 

positive.  This circumstance changes for the next case.   

 

Next, looking at ROI: 

 

lim
𝑤→0+

𝑅(𝑤) =
lim

𝑤→0+
[𝐵(𝑤)]

lim
𝑤→0+

𝐶(𝑤)
=

lim
𝑤→0+

[𝐼(𝑤) − 𝐶(𝑤)]

lim
𝑤→0+

𝐶(𝑤)
 

 

 

 

Equ 12 

 

 

 

 

Substitution equations 06 and 07 in here gives me: 

 

lim
𝑤→0+

𝑅(𝑤) =
lim

𝑤→0+
[(𝐼 − 𝐶) + (

𝐼
− 

𝐶
)𝑤]

lim
𝑤→0+

[𝐶 + 
𝐶

𝑤]
 

 

 

 

Equ 13 

 

Using L’Hôpital’s rule, again, to evaluate this I get: 

 

lim
𝑤→0+

𝑅(𝑤) =
lim

𝑤→0+
[

𝐼
− 

𝐶
]

lim
𝑤→0+

[
𝐶

]
=


𝐼
− 

𝐶


𝐶

 

 

 

 

Equ 14 

 

Now, I know that, over the interval [0, ], C(w) < I(w) so C must be less than I.  In fact the 

slope of the cost curve must be in the range 0 < C < I.  This implies that 

lim𝑤→0+ (𝑤)   (0, 1) and lim𝑤→0+ 𝑅(𝑤)  (0,).  Equations 11 and 14 are, I think, 

interesting results. 

5.1.6 Case A2: C(0) < I(0) 

For Case A, w = 0.  I am 

now looking at the 

instance wherein, if the 

costs equal the income, 

it occurs somewhere to 

the left of zero and there 

are positive benefits at 

the point w = 0.  Again, 

I want to break this into 

two sub-cases for when C(0) > 0 and when C(0) = 0 – sub-cases A2a and A2b respectively. 

5.1.7 Sub-case A2a: C(0) > 0 

I can say something about the value of each of the seven functions of interest: 

  

$

w

CASE A2a: C(0) > 0

$

w

CASE A2b: C(0) = 0
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 Income: I(0) > B(0) and C(0); defines the A2 case and the A2a sub-case. 

 Costs: 0 < C(0) < I(0); defines the A2 case and the A2a sub-case. 

 Benefits: I(0) > B(0) > 0; defines the A2 case. 

 Time: T(0) = positive constant T; a simplifying assumption. 

 Power: P(0) = B(0)/T(0) = a positive number; assuming that T(w) is well-behaved. 

 Efficiency: (0) = B(0)/I(0) = a positive number. 

 ROI: R(0) = B(0)/C(0) = a positive number. 

5.1.8 Sub-case A2b: C(0) = 0 

I can say something about the value of each of the seven functions of interest: 

 Income: I(0) = B(0) > 0; defines the A2 case and the A2b sub-case. 

 Costs: C(0) = 0; defines the A2b sub-case. 

 Benefits: B(0) = I(0) > 0; defines the A2b sub-case. 

 Time: T(0) = positive constant T; a simplifying assumption. 

 Power: P(0) = B(0)/T(0) = a positive number; assuming that T(w) is well-behaved. 

 Efficiency: (0) = B(0)/I(0) = 1. 

 ROI: R(0) = B(0)/C(0) = B(0)/0 = . 

 

Again, I can use limits to examine (0) a little more closely.  Equation 05 applies here, also.  

Although simple substitution (Rule 07) no longer results in the indeterminate value, it still 

provides an intractable formula that gives me little insight.  So, perhaps linear approximations 

will help me again.  So, let me again use the linear approximations I
*
 and C

*
 near w=0 that were 

shown in Equations 05 through 09.  I cannot use L’Hôpital’s rule this time because I don’t have 

an indeterminate limit. 

 

I repeat equation 09 here as equation 15, for reference: 

 

lim
𝑤→0+

(𝑤) =
lim

𝑤→0+
[(𝐼 − 𝐶) + (

𝐼
− 

𝐶
)𝑤]

lim
𝑤→0+

[𝐼 + 
𝐼
𝑤]

=
𝐼 − 𝐶

𝐼
 

 

 

 

Equ 15 

 

Substituting zero for w this time we get a ratio of intercepts.  This formula works for both sub-

cases A2a and A2b.   

5.2 The Cases for wL > 0 
I have now completed, I think, the analysis for the extremity when w = 0.  Now, I need to look at 

cases for w in the range 0 < w < .  By condition 5 there must be some wL, some least value of 

w, for which B(wL) > 0.  I.e. there must be some least value of w for which there is a benefit 

achieved.  This is true for cases B and C when w = 0, so, in those cases wL = 0.  In Case A0, 

however, wL must be > 0, due to condition 05.  So, at this point I need to return indirectly to Case 

A0 again and develop it further as Case B. 

5.2.1 Case B: I(wL) = C(wL), for wL > 0 
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wL is the least value of 

w for which there are 

benefits  0.  This case 

is closely related to Case 

A0, due to Cond 04, in 

that wL MUST exist, 

and whenever Case A0 

is extant, Case B must 

also be extant. 

 

This case is somewhat similar to Case A – differing only by reason of the fact that w is now non-

zero.  So, I expect much of the analysis from Case A also applies here. 

 

More formally, there is some least positive value of the parameter w, denoted by wL, and there is 

some positive number , such that the following three conditions are true: 

 w  [wL–, wL): I(w) < C(w) 

 I(wL) = C(wL) 

 w  (wL, wL+]: I(w) > C(w) 

 

So, I am looking for the value of w where the income first equals then exceeds the costs, and 

benefits start to flow.  Again, for the same reasons as before, I want to break this into two sub-

cases. 

5.2.2 Sub-case B1: I(wL) > 0 

In sub-case B1, interpretation at the point wL seems fairly straight-forward. 

 Income: I(wL) = C(wL) > 0; defines the B case and the B1 sub-case. 

 Costs: C(wL) = I(wL) > 0; defines the B case and the B1 sub-case. 

 Benefits: B(wL) = 0; defines the B case. 

 Time: T(wL) = positive constant T; a simplifying assumption. 

 Power: P(wL) = B(wL)/T(wL) = 0; assuming that T(w) is well-behaved. 

 Efficiency: ( wL) = B(wL)/I(wL) = 0/I(wL) = 0. 

 ROI: R(wL) = B(wL)/C(wL) = 0/C(wL) = 0. 

 

See Annex: Case B1 for an example. 

5.2.3 Sub-case B2: I(wL) = 0 

In sub-case B2, interpretation at the point wL is more tricky again. 

 Income: I(wL) = C(wL) = 0; defines the B case and the B2 sub-case. 

 Costs: C(wL) = I(wL) = 0; defines the B case and the B2 sub-case. 

 Benefits: B(wL) = 0; defines the B case. 

 Time: T(wL) = positive constant T; a simplifying assumption. 

 Power: P(wL) = B(wL)/T(wL) = 0/T(wL) = 0; assuming that T(w) is well-behaved. 

 Efficiency: ( wL) = B(wL)/I(wL) = 0/0; an indeterminate. 

 ROI: R(wL) = B(wL)/C(wL) = 0/0; an indeterminate. 

 

 

$

w

CASE B1: C(w
L
)=I(w

L
)

w
L



CASE B2: C(w
L
)=I(w

L
)

$
w

w
L


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So sub-case B2 results in an indeterminate  = 0 / 0 as before.  I think, therefore, that equations 

05-11 also apply here, and L’Hôpital’s rule can be used to evaluate the limit again. 

 

I copy Equ 11 here and renumber it as equation 16, for reference, changing the point at which the 

limit is evaluated from w=0 to w=wL: 

 

lim
𝑤→𝑤𝐿

+
(𝑤) =

lim
𝑤→𝑤𝐿

+
[

𝐼
− 

𝐶
]

lim
𝑤→𝑤𝐿

+
[

𝐼
]

=


𝐼
− 

𝐶


𝐼

 

 

 

 

Equ 16 

 

where I and C are the slopes of the lines I
*
(w) and C

*
(w) that approximate I(w) and C(w) over 

the delta interval [wL, wL+].  

 

The efficiency then is again a ratio of slopes.  It would appear that it is a positive value, being 

zero only if the costs are rising at an equal pace to the income.  But, if the costs are not rising at 

all over that delta interval, then the efficiency can be close to, or equal to, one. 

 

My conclusion then seems to be that 0  (wL)  1 for sub-case B2.  This defies my intuition.  

Case B2 has point values for I(wL) and C(wL) and is merely an extremity, a extreme version, of 

Case B1.  Why is it so dramatically different? 

 

It seems that, as I(wL) approaches zero the lower part of the loop becomes more and more 

closely asymptotic to the x axis, and the corner on the loop becomes closer and closer to a right 

angled turn, that when I(wL) is in fact equal to zero, the lower part of the loop has disappeared 

into the x axis, and the corner has become right angled.  It is no longer a loop, but a bona fide 

concave-downwards (CCD) Goldilocks curve.  Curiously, the right-most corner of such a curve 

need not be at the point (P, ) = (0, 1), but it seems  can have any value at all between 0 and 1.  

See Annex – Case B2 for an example. 

 

By similar logic, the return on investment, when expressed as a function of w  [e.g. R(w)], can be 

show to be: 

 

lim
𝑤→𝑤𝑈

−
𝑅(𝑤) =

lim
𝑤→𝑤𝑈

−
 [

𝐼
− 

𝐶
]

lim
𝑤→𝑤𝑈

−
 [

𝐶
]

=


𝐼
− 

𝐶


𝐶

 

 

 

 

Equ 17 

5.3 Cases for wU exists, and wU <  
That is, these are the cases for which wU is a finite number, and not infinite.  wU is the upper 

bound on the range of w that provides non-zero benefits.  I would expect that these cases would 

be similar in structure to Case B. 

5.3.1 Case C: I(wU) = C(wU), for wU <  
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This case is closely related 

to Case B, and is in some 

ways the flip side of Case 

B. 

 

More formally, for the 

parameter w there is some 

least positive value, 

denoted by wU, and there is 

some positive number , 

such that the following three conditions are true: 

 w  [wU–, wU): I(w) > C(w) 

 I(wU) = C(wU) 

 w  (wU, ]: I(w) < C(w) 

 

So, I am looking for the value beyond which the income no longer exceeds the costs, and 

benefits stop flowing.  Again, for the same reasons as before, I want to break this into two sub-

cases. 

5.3.2 Sub-case C1: I(wU) > 0 

In sub-case C1, interpretation at the point wU seems fairly straight-forward. 

 Income: I(wU) = C(wU) > 0; defines the C case and the C1 sub-case. 

 Costs: C(wU) = I(wU) > 0; defines the C case and the C1 sub-case. 

 Benefits: B(wU) = 0; defines the C case. 

 Time: T(wU) = positive constant T; a simplifying assumption. 

 Power: P(wU) = B(wU)/T(wU) = 0/T(wU) = 0; assuming that T(w) is well-behaved. 

 Efficiency: (wU) = B(wU)/I(wU) = 0/I(wU) = 0. 

 ROI: R(wU) = B(wU)/C(wU) = 0/C(wU) = 0. 

 

See Annex: Case C1 for an example. 

5.3.3 Sub-case C2: I(wU) = 0 

In sub-case B2, interpretation at the point wU is more tricky again. 

 Income: I(wU) = C(wU) = 0; defines the C case and the C2 sub-case. 

 Costs: C(wU) = I(wU) = 0; defines the C case and the C2 sub-case. 

 Benefits: B(wU) = 0; defines the C case. 

 Time: T(wU) = positive constant T; a simplifying assumption. 

 Power: P(wU) = B(wU)/T(wU) = 0/T(wU) = 0; assuming that T(w) is well-behaved. 

 Efficiency: (wU) = B(wU)/I(wU) = 0/0; an indeterminate. 

 ROI: R(wU) = B(wU)/C(wU) = 0/0; an indeterminate. 

 

As I thought, this is extremely similar to Case B.  So sub-case C2 results in an indeterminate  = 

0 / 0 as before.  Equations 05-11 also apply here, and L’Hôpital’s rule can be used to evaluate the 

indeterminate limit again. 

 

  

$

w

CASE C1: C(w
U
)=I(w

U
)

w
U



CASE C2: C(w
U
)=I(w

U
)

$
w

w
U


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I copy Equ 11 here and renumber it as equation 18, for reference, changing the point at which the 

limit is reached from w=0 to w=wU, and evaluating the limit from the left, instead of from the 

right. 

 

lim
𝑤→𝑤𝑈

−
(𝑤) =

lim
𝑤→𝑤𝑈

−
 [

𝐼
− 

𝐶
]

lim
𝑤→𝑤𝑈

−
 [

𝐼
]

=


𝐼
− 

𝐶


𝐼

 

 

 

 

Equ 18 

 

where I and C are the slopes of the lines I
*
(w) and C

*
(w) that approximate I(w) and C(w) over 

the delta interval [wL-, wL].  

 

The efficiency then is again a ratio of slopes.  It would appear that it is a positive value, being 

zero only if the costs are falling at an equal pace to the falling income.  But, if the costs are not 

falling at all over that delta interval, then the efficiency can be close to, or equal to, one.  My 

conclusion then seems to be that 0  (wU)  1 for sub-case C2.  See Annex – Case C2 for an 

example. 

 

By similar logic, the return on investment, when expressed as a function of w  [e.g. R(w)], can be 

showN to be: 

 

lim
𝑤→𝑤𝑈

−
𝑅(𝑤) =

lim
𝑤→𝑤𝑈

−
 [

𝐼
− 

𝐶
]

lim
𝑤→𝑤𝑈

−
 [

𝐶
]

=


𝐼
− 

𝐶


𝐶

 

 

 

 

Equ 19 

 

This is dramatically different from efficiency.  If the slope C is close to I then the R(wU) is 

close to zero.  However, if the slope C is close to zero, then R(wU) is close to infinite.  So 0  

R(wU)  .  That is peculiar, indeed.  I cannot think of a real-world economic circumstance that 

would lead to an infinite ROI like this, but the mathematics is intriguing. 

5.4 Cases involving w 
This where it gets really tricky.  The tricky part, I think, is not so much the mathematics as the 

laying out of cases that are very general, but that might have some reasonable meaning.  I 

somewhat arbitrarily set boundary conditions 01 and 02 so that I(w) and C(w) have upper bounds 

on their values for all w < infinity, and together they imply condition 03 – the restrictions on 

B(w).  By choosing those conditions, I may have excluded some interesting cases from 

discussion here, but I think they are reasonable conditions. 

 

Nevertheless, those three conditions, being quite general, still allow for all kinds of behaviour, of 

which Case C is merely one obvious example, in which the value of B(w) eventually goes 

negative at some finite value of w.  Now, it might go positive again and negative again many 

times, but Case C only looks at the least value of w for which it goes negative, and that is fine.  I 

cannot imagine any use in resolving crazy cases for which B(w) dips above and below zero two 

or more times as w increases, but I have done some experimentation with that.  For example, I 

could consider that for each interval of the domain of w over which B(w) crosses zero, rises to 

some height, falls back, and sinks below zero – for each such interval it can be considered an 
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interval that is described by Case B at the lower end and case C at the upper end.  I lump such 

this repetitive behaviour under Case D. 

5.4.1 Case D: Repeating intervals of Positive B(w) 

I played with this for a while and came up with one curve set that I found interesting.  I decided 

to make the income curve an attenuated sine curve with a formula like this:  𝐼 = 𝑎 𝑠𝑖𝑛(𝑏𝑤 −
𝑐) + 𝑑.  Similarly, the cost curve has a formula like this:  𝐼 = 𝑎 𝑠𝑖𝑛(𝑏𝑤 − 𝑐) + 𝑑.  This allows me 

to make the two curves interact repeatedly within the domain of my w parameter [0, 99].  And I can make 

them interact in different ways.  See Annex – Case D for an example. 

5.4.2 Case E: w[, ]: B(w)>0 

So, the only circumstances not yet covered are those for which B(w) rises above zero and stays 

above zero in some -neighbourhood of .  But it is still possible, within the bounds of 

conditions 01 and 02, for the B(w) curve to approach a limiting value, or to wander back and 

forth between zero and Imax in some sort of regular or chaotic fashion as w approaches infinity.  

There is still a huge amount of room for varied behaviour. 

 

I guess, at this point, I want to focus on the cases that stabilize, and exclude those that wander 

between the upper and lower bounds.  So, let me see if I can make my ideas a little more formal 

and find a way to classify the wide range of possible behaviours.    Once w is large enough that 

B(w) is positive for some -neighbourhood of , there are four main classes of behaviour.  

Denote lim𝑤→ 𝐼(𝑤) as I.   Denote lim𝑤→ 𝐶(𝑤) as C.  Each of these may exist, or may not 

exist.  So, Case E has the following sub-cases: 

 Sub-case E1: I exists, and C exists.   

 Sub-case E2: I exists, and C does not exist.   

 Sub-case E3: I does not exist, and C exists.   

 Sub-case E4: I does not exist, and C does not exist.   

5.4.3 Sub-case E1: Both I and C exist 

If both limits exist, then B also exists and B = I - C.  In sub-case E1, interpretation as w 

is relatively straightforward: 

 Income: I(w) = I; a constant; defines the E case and the E1 sub-case. 

 Costs: C(w) = C; a constant in the interval [0, I]; defines the E case and the E1 

sub-case.   

 Benefits: B(w) = I - C = B; a constant in the interval [0, I].  I note that B can be 

zero while B(w) is positive on the -neighbourhood of infinity. 

 Time: T(w) = positive constant T; a simplifying assumption. 

 Power: P(w) = B/T(w); assuming that T(w) is well-behaved over the interval 

w[, ]. 

 Efficiency: ( w) = B/I; a positive value in the interval (0, 1], or an indeterminate. 

 ROI: R(w) = B/C; a positive value in the interval (0, ], or an indeterminate. 

 

With respect to power, to this point, I have been intentionally dodging the issue of how I should 

characterize a “well-behaved” T(w) by simply assuming it is constant.  More generally, 

consistent with the uses I have made of it so far, I have assumed that it is a bounded function of 

w such that T(w)[Tmin, Tmax] where Tmin 0 and Tmax is finite.  I think that exploring the role of 
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time is a topic for a different NTF as this one is already very long.  Let me just make a few 

pertinent observations here: 

 The role of T(w) is extremely relevant to the shape of power-efficiency (or Goldilocks) 

curves as it is a factor of power.   

 T(w) might be well-behaved (e.g. have finite upper and lower bounds) on some interval 

w[wL, wU] of finite length, and that is not an unreasonable assumption, and is consistent 

with my analysis for Cases A, B, C and D.  However an assumption that T(w) is well-

behaved in that way on the interval w[, ] which has infinite length is far more tenuous. 

 But, perhaps more to the point, in my analysis of the AM I found that time can be expressed 

as a function of efficiency (i.e. ) having the form 𝑇() = 𝐶 × ( + 1) ( − 1)⁄ .  Then 

efficiency approaching 1 causes time to soar towards  and power to crash towards an 

indeterminate value of 0/ in many cases.  Such behaviour will alter the shape of all of the 

Goldilocks curves I have examined so far. 

 This is only slightly worrisome, as I think it will simply cause the Goldilocks curves to droop 

as 1, moving the point of maximum power to the left, but leaving the central thesis (that 

all such curves show maximum power at some intermediate level of efficiency) intact. 

 BUT, for now, I will continue on assuming that T(w) = finite positive constant is a workable 

characterization of the relation between time and w.  For this kind of analysis, I don’t need to 

model time exactly; I only need to know the restrictions on its general behaviour in various 

limiting situations. 

 

With respect to efficiency and ROI, there can be at least 

three sub-sub-cases:  

 Sub-sub-case E1a: I=0, B=0, which implies that 

C=I.  In addition, I(w) approaches the asymptote 

from above.   

o Power: P(w) = B/T(w) = 

0/T(w) = 0; assuming that T(w) is well-

behaved over the interval w[, ]. 

o Efficiency: ( w) = B/I = 0/0 = 

indeterminate. 

o ROI: R(w) = B/C = 0/0 = indeterminate. 

The I, C and B curves are all asymptotic to zero as w, so I don’t think I can make a linear 

approximation work (all of the slopes are zero) to evaluate limits.  I suppose I could use 

quadratic, trinomial, or higher orders of approximation, and apply LHôpital’s rule multiple times 

to examples to test whether it would work, but I am not sure what that would prove.  It is easy to 

think of examples of curve sets (e.g. exponentials for I and C) for which LHôpital’s rule cannot 

provide an answer.  So, I don’t know how one might analytically evaluate the indeterminate 

values for efficiency and for ROI, in this case.  I 

suppose the pragmatic answer is to graph them and 

estimate the value of the limit.  Perusal of the graphs at 

Annex E1a gives me some idea of the values.  ( 

w) = 1.  R(w) = 0. 

 

 Sub-sub-case E1b: I > 0, C = I and B = 0.  I 

necessarily approaches the asymptote from above.  

 

CASE E1a: C = I = 0

(Declining I)    .

$

w




I = 0

C= 0

B= 0

 

CASE E1b: C = I > 0

(Declining I)    .

$

w




I > 0

C= I

B= 0
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o Power: P(w) = B/T(w) = 0/T(w) = 0; assuming that T(w) is well-

behaved over the interval w[, ]. 

o Efficiency: ( w) = B/I = 0/I = 0. 

o ROI: R(w) = B/C = 0/C = 0. 

      There is no ambiguity about the values for efficiency 

and ROI. 

 

 Sub-sub-case E1c: I > 0, C < I and B > 0.  I 

necessarily approaches its asymptote from above.  

o Power: P(w) = B/T(w) = a 

positive number; assuming that T(w) is well-

behaved over the interval w[, ]. 

o Efficiency: ( w) = B/I = a positive 

number. 

o ROI: R(w) = B/C = a positive number. 

      Again, as in case E1c, there is no ambiguity about the values for efficiency and ROI. 

 

 Sub-sub-cases E1d and E1e: I  (0, Imax].  I.e. I > 

0, as in case E1a.  In addition, I(w) approaches the 

asymptote from below.   

o Costs: C(w) = C; 0  C  I; a 

constant in the interval [0, I]; defines the E1 

sub-case and the E1d and E1e sub-sub-cases. 

o Benefits: B(w) = I - C = B; a constant 

in the interval [0, I]. 

o Time: T(w) = positive constant T; a 

simplifying assumption. 

o Power: P(w) = B/T(w); zero or a 

positive number; assuming that T(w) is well-

behaved over the interval w[, ]. 

o Efficiency: ( w) = B/I; a value in the 

interval [0, 1]. 

o ROI: R(w) = B/C = (I - C)/C; a 

positive value in the interval [0, ]. 

 

See Annexes E1a, E1b and E1d for examples of these 

cases. 

5.4.4 Sub-case E2: I exists but C does not 

In sub-case E2, interpretation as w is as follows: 

 Income: I(w) = I; a constant in the interval [0, Imax]; defines the E case and the E2 

sub-case. 

 Costs: C(w) varies on the interval [0, I); defines the E case and the E2 sub-case.  

C(w) cannot equal I, or the curve set is in breach of the Case E requirement that B(w) > 0 in 

the -neighbourhood of . 

 Benefits: B(w) = I - C(w) varies on the interval (0, I]. 

 

 

CASE E1d: C = I > 0

(Inclining I)    .

$

w




I > 0

C= I

B= 0

CASE E1e: I > C > 0

(Declining I)    .

$

w




I > 0

C< I

B> 0

 

CASE E1c: I > C > 0

(Declining I)    .

$

w




I > 0

C< I

B> 0
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 Time: T(w) = positive constant T; a simplifying assumption. 

 Power: P(w) = B(w)/T(w); assuming that T(w) is well-behaved over the 

interval w[, ].  P(w) varies on an interval (0, Pmax]. 

 Efficiency: ( w) = B(w)/I varies in the interval (0, 1]. 

 ROI: R(w) = B(w)/ C(w) = [I - C(w)]/ C(w) varies in the 

interval (0, ]. 

 

That is, costs, benefits, power, efficiency and ROI all vary continuously as w.  This is highly 

unlikely as a real-world phenomenon, and not of any real interest, but does produce some 

fantastic scatter graphs, not entirely dis-similar to those of Case D. 

 

I have not provided an annex with an example for this case. 

5.4.5 Sub-case E3: I does not exist, but C does 

To think this through, I need a little specialized notation.  The -neighbourhood of  is written 

as [, ] and is a sub-set of the domain of the variable w.  I(w) must be between 0, at the very 

least, and Imax, at the very greatest.  So, within that -neighbourhood of , I(w) must have a 

minmum value of Imin,  and a maximum value of Imax,  where the interval [Imin, , Imax, ]  [0, 

Imax].  It is possible that the maximum value of Imax was attained outside of [, ], so Imax may be 

greater than Imax, .  I can simplify [Imin, , Imax, ] by writing it as [Imin, Imax], meaning the lower 

and upper bounds of the interval are determined by checking the variables within the -

neighbourhood of . 

 

In sub-case E3, interpretation as w is as follows: 

 Income: I(w) varies on the interval [Imin, Imax]; defining Case E3.   

 Costs: C(w) varies on the interval [0, Imax); defines the E case and the E3 sub-

case.  C(w) cannot equal Imax, , or the curve set is in breach of the Case E requirement that 

B(w) > 0 in the -neighbourhood of . 

 Benefits: B(w) = I(w) - C(w) varies on the interval (0, Imax, ]. 

 Time: T(w) = positive constant T; a simplifying assumption. 

 Power: P(w) = B(w)/T(w); assuming that T(w) is well-behaved over the 

interval w[, ].  P(w) varies on an interval (0, Pmax]. 

 Efficiency: ( w) = B(w)/ I(w) varies in the interval (0, 1]. 

 ROI: R(w) = B(w)/ C(w) = [I - C(w)]/ C(w) varies in the 

interval (0, ]. 

 

In this case, all six of the functions that vary with w continue to vary everywhere within the -

neighbourhood of . 

 

I have not provided an annex with an example for this case. 

5.4.6 Sub-case E4: Neither I nor C exist 

Intuitively, this will be similar to Case E3, except there might also be a set of lower and upper 

bounds on the variance of C(w).  I think it is not worth exploring, as case E3 was pretty much a 

bust. 
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I have not provided an annex with an example for this case. 

6 Summary 
Wow!  Here I am on page 19 of what I thought would be a short NTF, with another 20+ pages of 

graphs.  What can I say in summary?  I suppose I should do “lessons learned” and “yet to do” 

lists. 

6.1 Lessons Learned 
Here is a bulleted list of things that I did not know before I started the series of partial and faulty 

exercises that culminated in this NTF: 

 Not all of the power-efficiency curves coming out of this exercise can be converted to 

concave-downwards (CCD) unit maps, as I previously thought.  In fact, it is rather difficult to 

get a power-efficiency curve to go through both (P, ) = (0, 0) and (P, ) = (0, 1).  In this 

exercise, most power-efficiency curves 

are not CCD curves, but are loops.  

Loops are not Cartesian functions, and 

cannot be expressed as P() using 

Cartesian coordinates, but, rather, are 

relations that can only be easily graphed 

as scatter graphs.  Perhaps, they can be 

captured analytically using polar 

equations and polar coordinates, but I 

think that even those would have some 

problems.  For example, the figure to the 

right here shows one power-efficiency 

graph that is not a function in either 

Cartesian or polar coordinates. 

 All of the power-efficiency graphs that I 

have been able to produce so far, in this 

exercise, or in any other, are either CCD 

“hump-backed” curves, or loops.  But, in 

every case, the curve has the property that 

the maximum power occurs when 

efficiency is at some intermediate value 

of neither 0 nor 1.   So I have started 

referring to them as Goldilocks curves, 

being not too hot, not too cold, but just 

right. 

 Cases B and C are the most insightful, 

with strange things happening at the 

extremities of an interval denoted as 

w[wL, wU].  It is determined by the 

conditions B(wL) = 0; B(wU) = 0; and  

𝐵∀𝑤(𝑤𝐿 , 𝑤𝑈):  𝐵(𝑤) > 0.  At the 

critical end points the benefits are zero, 

and the power of the benefits is also 

A weird power-efficiency loop 

 

A CCD that does not go through (0, 1). 

 See Annex – Case A1b 

 

Typical graph of R vs . 
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therefore zero at those end points.  But, two sorts of things happen.  If the income and costs 

are greater than zero at these critical end points, then a Goldilocks loop occurs.  But, if the 

income and costs are also zero at the end points, then the efficiency ((w)) and return on 

investment (ROI(w), or just R(w)) are expressed as ratios of slopes:  (𝑤) = (
𝐼

− 
𝐶

) 
𝐼

⁄ ; 

and 𝑅(𝑤) = (
𝐼

− 
𝐶

) 
𝐶

⁄ .  This strange result allows for the end points of the loop to be 

anchored somewhere else on the interval [0, 1] other than at the origin where (P,)=(0,0).  It 

also allows for the ROI to be very large. 

 ROI and efficiency always peak for the same value of the controlling parameter w.  And 

points for R vs  always seem to fall on the same line.  A little math shows me that the 

definitions are not independent, and that, in fact, I can come up with an analytic expression 

for R in terms of :  𝑅 =  (1 − )⁄ . 

 However, power and ROI do not peak at the 

same value.  This leads directly to the ideas 

of John Kenneth Galbraith who argued 

(1967, 1972, and described by Mercadier at 

Ref K) that large modern firms no longer try 

to maximize ROI, but, rather, try to 

maximize their size and their probability of 

persistence.  They feed returns back into 

mergers, acquisitions, growth, expansion, 

research, and resilience, diverting some 

profits from returns to the investor.  This is 

an anomaly of economic theory and 

behaviour that I always thought existed, but 

did not understand before.  I now see this as 

an effect of the MPP working in persistent 

modern large firms. 

 I really need to figure out some way to allow time to vary, and see what the implications are.  

That will probably be another (hopefully shorter) note.  I have described the way I have 

handled time, and the consequences of that assumption in this NTF, in three places:  4.1.2, 

4.1.5, and 5.4.3. 

6.1.1 Diminishing Returns 

The whole purpose of this exercise, starting with the spreadsheet and NTF at Refs I and J, was to 

understand the connection between H. T. Odum’s MPP and the phenomenon of diminishing 

returns.   

 

Here, I need to remind myself that I am NOT dealing with diminishing returns as time proceeds.  

These results are all static, looking at w as a variable unrelated to time.  I am talking about 

diminishing returns associated with some parameter of a business model such as number of 

workers.   

 

Galbraith’s Concept Demonstrated

 
See Case B1. 
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So, here is a 

summary of what I 

think I have 

learned wrt that 

phenomenon: 

 Case C is 

entirely a study 

of diminishing 

returns.  For 

values of w 

less than wL 

B(w) is greater 

than zero, but 

smoothly 

dropping to zero at wL.  This case is divided into two sub-cases. 

 Sub-case C1 

addresses 

those curve 

sets for which 

I(wL) >0.  

This results in 

a Goldilocks 

loop, of sorts, 

as shown here 

to the right. 

 Sub-case C2 

addresses 

those curve 

sets for which I(wL)=0.  This results in a Goldilocks CCD, of sorts, as shown below the other.  

This is approaching the type of hump-backed curve I was (naively) expecting to find. 

 Sub-cases E1a, E1b and E1c are other cases that demonstrates diminishing returns, where 

lim𝑤→ 𝐵(𝑤) = 0.  In fact, every case for which B(w) peaks and then diminishes is a case of 

diminishing returns.  Power peaks when B(w) peaks (assuming T(w) is well-bahaved). 

6.1.2 Diminishing Marginal Returns 

When benefits 

continue to rise as 

w, but are 

asymptotic to some 

value B, then the 

returns are 

certainly not 

diminishing, but 

the rate of rise of 

the returns is 

diminishing.  This 

circumstance is 

Sub-cases C1 and C2 – Diminishing Returns 

 
                      Goldilocks Loop                            Goldilocks Hump 

Case E1b - I = 0, B = 0 – Diminishing Returns. 

 
                                                                       Goldilocks CCD Hump 

Case E1c - I > 0, C = I, I(w) rises to I – Diminishing Marginal Returns. 

 
                                                                    Goldilocks CCD Loopy Hump 
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called diminishing marginal returns.  You can think of this as a declining slope on the benefits 

curve.  So, the returns, per unit of investment, start to diminish as the point when dB(w)/dw = 

zero (at the peak, if there is one) and starts to turn negative. 

 

In the classic version, adding one more unit of cost (w = workers) “at the margin” causes an 

increase in profits, but the size of the increase diminishes, until the incremental increase in cost is 

larger than the incremental increase in profits.  This would be included in Case C, since, at some 

point, costs equal income and profits plummet to zero.  But whether extreme or classic, my goal 

in this exercise is to understand the connection to the MPP.  Case E1c is, I think, an extremely 

interesting case of diminishing marginal returns, as the Goldilocks curve has both both loop and 

hump characteristics, being a hybrid of the two.  Of course, power (using Odum’s definition, as 

applied by analogy to financial data) is at a maximum when the benefits curve (profit curve) is at 

a maximum, and this corresponds to the configuration of parameters for which marginal returns 

are maximized.  And, this seems to be in agreement with Galbraith’s opinions about large 

modern corporations. 

6.2 Yet-To-Do 
Figure how “nature’s time regulator” fits into this. 
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7 Annexes 
These annexes to the main NTF each contain material from the Ref L spreadsheet in which I 

experimented with various combinations of curves.  In each annex there are, at least, two kinds 

of figures: Control Panels, and Graphs. 

 

Control Panels – These figures are screen grabs from the spreadsheet showing the parameters 

for the particular curves used, and the first few data elements from each generated data series.  

Within each control panel there are the following elements: 

 A generic parameterized formula for each of income [I(w)] and costs [C(w)].  These 

formulae have small-letter variable names for the parameters, such as a, b, c, d, f, g.  I avoid 

using e, i and l for such parameters. 

 A parameter table for each of I(w) and C(w), allowing me to alter the shape and location of 

each curve as I will.  The yellowed cells are where values are entered to change the shape 

and location of the I and C curves. 

 A table of possibly relevant constants, such as e (Napier’s constant) and T (for time, or T(w), 

which in these cases is always a constant = 1). 

 A table of slopes of the I and C curves near relevant points.  This is not always of interest. 

 A data table for ICB line graphs with a header listing each data series: 

o W = number of workers, going from 0 to 99.  This is the independent variable that is 

varied and is the basis for calculating income and costs. 

o I = the number of dollars of income associated with this number of workers. 

o C = the number of dollars of cost associated with this number of workers. 

o B = (I-C) = the number of dollars of benefits (or profits) associated with this number of 

workers. 

o P = (B/T) = the power of the benefits in dollars per day. 

 A table for a scatter graph of power index (=P/Pmax) versus efficiency () listing each 

variable. 

 A table for a scatter graph of return on investment (ROI=B/C) versus power index () listing 

each variable. 

 A table for a scatter graph of return on investment (ROI=B/C) versus efficiency () listing 

each variable. 

 The first few elements of the data series for each variable in the above tables. 

 

Graphs – There are six standard graphs in most of the annexes, as follows: 

 Top left – An ICB curve set.  That is, a line graph showing income (I), costs (C), and benefits 

(B). 

 Top right – A R curve set.  That is, a line graph showing efficiency (), power index (), 

and return on investments (R). 

 Middle left – A power index vs efficiency scatter graph in which I plot all calculated points 

in the table, including those that are patently nonsensical.  For example, neither power index 

nor efficiency can be negative in the real world, but those values can be produced 

mathematically.  I want to see the hidden shape of that part of the curve. 

 Middle right – A power index vs efficiency scatter graph in which I plot only those points 

that have real-world interpretation.  That is, I restrict the graph to the first quadrant only.   

 Bottom left – A power index vs ROI scatter graph, restricted to the first quadrant. 

 Bottom right – An ROI vs efficiency scatter graph, restricted to the first quadrant. 
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7.1 Annex – Case A0 
 

 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I have decided, entirely arbitrarily, to exhibit this case using a parabola and an exponential curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This would be an example of an ICBT curve set that is excluded from .  Case A focuses on the 

part of the graph where w = 0, as circled.  But, throughout the domain of w, the income never 

exceeds the cost, and so this curve set is NOT in .  It is shown here as an example for which 

C(0) > I(0).  It is excluded from  because this business model fails to make a profit for all 

values of the parameter w, and so can not be indicative of a persistent business activity.  I.e. it 

does not meet Cond 05.  It is meaningless to calculate either the power of the benefits, or the 

efficiency of the business activity for the parameter value w = 0, in this circumstance. There are 

several other examples of ICBT curve sets having the Case A0 characteristic which have arisen 

while examining other characteristics, and which are included in .   

Case A0 – Control Panel 

 

Case A0 – Line Graphs 
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Since the graph on the right is restricted to the 1
st
 quadrant, and the graph on the left, from which 

it is taken, never enters the 1
st
 quadrant, the right-hand graph is blank. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These graphs are meaningless, but included for completeness. 

 

 

Case A0 – Goldilocks (Power-Efficiency) Graphs 

 

Case A0 – ROI Scatter Graphs 
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7.2 Annex – Case A1a 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I have arbitrarily decided to use a parabola and an exponential curve to demonstrate this 

characteristic. 

Focus on w=0.  I(0)>0; C(0)=I(0); B(0)=0; P(0)=0; (0)=0; R(0)=0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The curve set is an element of .   

The focus is on w=0.  I(0)>0.  C(0)=I(0).  B(0) = 0. 

 

 

 

Case A1a – Control Panel 

 

Case A1a – Line Graphs 
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Some of the data points are meaningless, falling elsewhere than in the 1
st
 quadrant.  The 

meaningful points are graphed to the right.    The shaded oval indicates the area of interest in the 

graphs. 

Focus on w = 0.  (0) = 0.  (0) = 0.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Only the 1
st
 quadrant is included in the graphs. 

Focus on w = 0.  (0) = 0.  (0) = 0.  R(0) = 0.  𝑅 =  (1 − )⁄ . 

 

 

 

 

Case A1a – Goldilocks Graphs 

 

Case A1a – ROI Scatter Graphs 
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7.3 Annex – Case A1b 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I have arbitrarily decided to use a parabola and an exponential curve to demonstrate this 

characteristic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The curve set is an element of . 

The focus is on w=0.  I(0)=0.  C(0)=I(0).  B(0) = 0. 

 

 

 

 

 

Case A1b – Control Panel 

 

Case A1b – Line Graphs 
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Some of the data points are meaningless, falling elsewhere than in the 1
st
 quadrant.  The 

meaningful points are graphed to the right.    The shaded oval indicates the area of interest in the 

graphs. 

Focus on w = 0.  (0) = 0.  (0) = (
𝐼

− 
𝐶

) 
𝐼

⁄ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Only the 1
st
 quadrant is included in the graphs. 

Focus on w = 0.  (0) = 0.  (0) = 0/0 = (
𝐼

− 
𝐶

) 
𝐼

⁄ .  R(0) = 0/0 = (
𝐼

− 
𝐶

) 
𝐶

⁄  =  (1 − )⁄ . 

 

Case A1b – Goldilocks  Graphs 

 

Case A1b – ROI Scatter Graphs 
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7.4 Annex – Case A2a 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I have arbitrarily decided to use a parabola and an exponential curve to demonstrate this 

characteristic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The curve set is an element of . 

The focus is on w=0.  I(0)>0.  C(0)>0.  B(0) > 0.  wL, if it exists mathematically, would be a 

virtual lower bound to the left of w = 0. 

 

 

 

 

Case A2a – Control Panel 

 

Case A2a – Line Graphs 
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Some of the data points are meaningless, falling elsewhere than in the 1
st
 quadrant.  The 

meaningful points are graphed to the right.    The shaded oval indicates the area of interest in the 

graphs.  I note that this forms part of a loop that could be closed at the origin. 

Focus on w = 0.  (0) > 0.  (0) = (𝐼 − 𝐶) 𝐼⁄ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Only the 1
st
 quadrant is included in the graphs.  

Focus on w = 0.  (0) > 0.  (0) = (𝐼 − 𝐶) 𝐼⁄ .  𝑅(0) = (𝐼 − 𝐶) 𝐶⁄ =  (1 − )⁄ . 

 

Case A2a – Goldilocks Graphs 

 

Case A2a – ROI Scatter Graphs 
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7.5 Annex – Case A2b 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I have arbitrarily decided to use a parabola and an exponential curve to demonstrate this 

characteristic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The curve set is an element of . 

The focus is on w=0.  I(0)= B(0)>0.  C(0)=0.  wL, the lower bound of the interval on which B(w) 

is positive, if it exists, is virtual, and is located to the left of w=0. 

 

 

 

Case A2b – Control Panel 

 

Case A2b – Line Graphs 

 



Orrery Software 35 NTF ICBT & PowEff 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some of the data points are meaningless, falling elsewhere than in the 1
st
 quadrant.  The 

meaningful points are graphed to the right.    The shaded oval indicates the area of interest in the 

graphs.  Note that this is no longer a loop.  Compare with case A2a. 

Focus on w = 0.  (0) > 0.  (0) = (𝐼 − 𝐶) 𝐼⁄ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Only the 1
st
 quadrant is included in the graphs.  

Focus on w = 0.  (0) > 0.  (0) = (𝐼 − 𝐶) 𝐼⁄ .  𝑅(0) = (𝐼 − 𝐶) 𝐶⁄ =  (1 − )⁄ . 

 

 

 

 

Case A2b – Goldilocks Graphs 

 

Case A2b – ROI Scatter Graphs 
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7.6 Annex – Case B1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I have arbitrarily decided to use a parabola and an exponential curve to demonstrate this 

characteristic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The curve set is an element of . 

The focus is on w=wL=5.  I(wL)=C(wL)>0.  B(wL) = 0.  wL, i.e. the lower bound of the interval 

on which B(w) is positive, is located at w=5. 

Case B1 – Control Panel 

 

Case B1 – Line Graphs 
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Some of the data points are meaningless, falling elsewhere than in the 1
st
 quadrant.  The 

meaningful points are graphed to the right.  The shaded oval indicates the area of interest in the 

graphs. 

Focus on w = 0.  (wL) = 0.  ( wL) = 0.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Only the 1
st
 quadrant is included in the graphs.  

Focus on w = 0.  (wL) = 0.  ( wL) = 0.  R(wL) = 0. 

 

 

 

 

Case B1 – Goldilocks Scatter Graphs 

 

Case B1 – ROI Scatter Graphs 
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7.7 Annex – Case B2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I have arbitrarily decided to use a parabola and an exponential curve to demonstrate this 

characteristic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The curve set is an element of . 

The focus is on w=wL=5.  I(wL)=0.  C(wL)=0.  B(wL) = 0.  wL, the lower bound of the interval on 

which B(w) is positive, is located at w=5.  (wL) and R(wL) are indeterminate. 

Case B2 – Control Panel 

 

Case B2 – Line Graphs 
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Some of the data points are meaningless, falling elsewhere than in the 1
st
 quadrant.  The 

meaningful points are graphed to the right.  The shaded oval indicates the area of interest in the 

graphs. 

Focus on w = 0.  (0) = 0.  (w𝐿) = (
𝐼

− 
𝐶

) 
𝐼

⁄ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Only the 1
st
 quadrant is included in the graphs.  

Focus on w = 0.  (0) = 0.  (w𝐿) = (
𝐼

− 
𝐶

) 
𝐼

⁄ .  R(w𝐿) = (
𝐼

− 
𝐶

) 
𝐶

⁄ =  (1 − )⁄ . 

 

 

 

 

 

Case B2 – Goldilocks Scatter Graphs 

 

Case B2 – ROI Scatter Graphs 
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7.8 Annex – Case C1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I have arbitrarily decided to use a parabola and an exponential curve to demonstrate this 

characteristic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The curve set is an element of . 

The focus is on w=wU=80.  I(wU)>0.  C(wU)=I(wU).  B(wU) = 0.  wU, the upper bound of the 

interval on which B(w) is positive, is located at w=80. 

Case C1 – Control Panel 

 
And, further down --- 

 

Case C1 – Line Graphs 
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Some of the data points are meaningless, falling elsewhere than in the 1
st
 quadrant.  The 

meaningful points are graphed to the right.  The shaded oval indicates the area of interest in the 

graphs. 

Focus on w = 80.  (wU) = 0.  (w𝑈) = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Only the 1
st
 quadrant is included in the graphs.  

Focus on w = 80.  (wU) = 0.  (wU) = 0.  R(wU) = 0.  

 

 

 

Case C1 – Goldilocks Scatter Graphs 

 

Case C1 – ROI Scatter Graphs 
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7.9 Annex – Case C2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I have arbitrarily decided to use two parabolic curves to demonstrate this characteristic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The curve set is an element of . 

The focus is on w=wU=80.  I(wU)=0.  C(wU)=0.  B(wU) = 0.  wU, the upper bound of the interval 

on which B(w) is positive, is located at w=80. 

Case C2 – Control Panel 

 
And, further down ... 

 

Case C2 – Line Graphs 
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Some of the data points are meaningless, falling elsewhere than in the 1
st
 quadrant.  The 

meaningful points are graphed to the right.  The shaded oval indicates the area of interest in the 

graphs. 

Focus on w = 80.  (wU) = 0.  (w𝑈) = (
𝐼

− 
𝐶

) 
𝐼

⁄ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Only the 1
st
 quadrant is included in the graphs.  

Focus on w = 80.  (wU) = 0.  (w𝑈) = (
𝐼

− 
𝐶

) 
𝐼

⁄ .  R(w𝑈) = (
𝐼

− 
𝐶

) 
𝐶

⁄ =  (1 − )⁄  

 

 

Case C2 – Goldilocks Scatter Graphs 

 

Case C2 – ROI Scatter Graphs 
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7.10 Annex – Case D 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I have arbitrarily decided to use two sine curves, each within its own declining exponential curve 

acting as an envelope to the amplitude, to demonstrate this characteristic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The curve set is an element of , but exhibiting recurring intervals of w over which B(w) is 

positive. 

The focus is on those intervals over which B(w) is positive, of which there are too many to 

highlight. 

 

 

 

 

Case D – Control Panel

 

Case D – Line Graphs 
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Some of the data points are meaningless, falling elsewhere than in the 1
st
 quadrant.  The 

meaningful points are graphed to the right. 

No particular focus.  Each interval of w over which B(w)>0 has produced its own Goldilocks 

looping curve.  If this were to represent a business model, there is clearly one interval that 

provides both high power and high efficiency, and that is the interval w[1, 9] where benefits 

are maximized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Only the 1
st
 quadrant is included in the graphs.  

In the left-hand graph, the point of maximal power coincides with the point of maximal ROI.  In 

the right-hand graph ROI and efficiency seem to have a characteristic relationship for all loops.  

I.e. 𝑅 = − (1 − )⁄ .  Interesting!  This is independent of w.  It is, of course, obvious once you 

see it, but I did not see it until I looked at this graph closely.  This seems to be true of ALL of 

these R vs  graphs for all cases.  I have gone back in revision mode and noted this for each. 

 

 

Case D – Goldilocks Scatter Graphs 

 

Case D – ROI Scatter Graphs 
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7.11 Annex – Case E1a 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I have arbitrarily decided to use two hyperbolic tangent curves to demonstrate this characteristic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The curve set is an element of , but exhibiting a -neighbourhood of  over which B(w) is 

positive and approaching zero.  The focus is on this -neighbourhood of .   

 

 

 

 

 

Case E1a – Control Panel 

 

Case E1a – Line Graphs 
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All of the data points are in the 1
st
 quadrant, so both graphs look the same.   

Focus on the -neighbourhood of . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Only the 1
st
 quadrant is included in the graphs.  

 

 

 

 

 

 

 

 

 

 

Case E1a – Goldilocks Scatter Graphs 

 

Case E1a – ROI Scatter Graphs 
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7.12 Annex – Case E1b 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I have arbitrarily decided to use two hyperbolic tangent curves to demonstrate this characteristic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The curve set is an element of , but exhibiting a -nighbourhood of  over which B(w) is 

positive, which is the focus. 

 

 

 

Case E1b – Control Panel 

 

Case E1b – Line Graphs 
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All of the data points are in the 1
st
 quadrant, so both graphs look the same.   

Focus on the -neighbourhood of . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case E1b – Goldilocks Scatter Graphs 

 

Case E1b – ROI Scatter Graphs 
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7.13 Annex – Case E1d 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I have arbitrarily decided to use two hyperbolic tangent curves to demonstrate this characteristic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The curve set is an element of , but exhibiting a -nighbourhood of  over which B(w) is 

positive, which is the focus. 

 

 

 

Case E1d – Control Panel 

 

Case E1d – Line Graphs 
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All of the data points are in the 1
st
 quadrant, so both graphs look the same.   

Focus on the -neighbourhood of . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case E1d – Goldilocks Scatter Graphs 

 

Case E1d – ROI Scatter Graphs 

 


