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2 - Background 

In the Ref C diary note I pursue the question of 

efficiencies compounded along energy chains (or 

supply chains).  While working on that NTF I 

decided that I needed to go back and review the 

relationships between the three relevant formulae 

for efficiency, and now there are three related 

notes.  In the Ref A diary note I review the 

definition of I, B and C, as shown in Figure 01, and 

using those I define the three measures of efficiency , R and N.  I then develop the conversion 

formulae, for , R and N, as shown in Table 01.  Finally, I outlined the two paradigms implicit 

in the formulae for  and R. 

 

But, in the Ref A NTF I have barely addressed the issue of time.  Certainly time comes into the 

measurement of power, and time passes as energy is consumed, so the passage of time is implicit 

in all of the discussion there.  But I did not go into detail.   

2.1 - Two aspects of time 

There are two aspects of time are not addressed in that Ref A NTF: 

A) I did not address the recurring investments over time, generating recurring income and 

recurring benefits, by a single agent.  This would, for example, be the case for a single 

organism eating on a daily basis.  It would seem that there are two implied instances to look 

at: maximum possible growth, and maximum possible de-growth.  And then, there is 

everything in between. 

B) Nor did I address sequential transformations as energy (or capital) is transferred down a 

chain from agent to agent.  This would, for example, be the case for a trophic chain in which 

energy is passed from primary producers to apex predators.  Or it would describe a supply 

chain associated with a manufacturing firm.   

 

It is aspect A) of the passage of time (recurring investments over time) that is the topic of this 

NTF.  It is aspect B) of the passage of time that is the topic of the Ref C NTF.  In consideration, 

then, of what I am calling Aspect A, the two competing paradigms for efficiency that were 

identified in the Ref A NTF both play a role in this aspect of the effects of time.  I.e recurring 

Figure 01 – Diagram of I, B and C 

 
From the Ref A NTF.  I = B + C. 

TOTAL 
INCOME
[I]

BENEFITS [B]

COSTS [C]

 
From the Ref A NTF. 
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investments can lead to either growth or decay of the initial endowment of resources.  Here is the 

time-related issue that bothers me, as precisely as I can state it: 

 When Dr Hall talks about EROI, we start with a small input and end up with a larger output.  

It would seem that the concept of augmentation of the pre-existing pool of accessible energy 

is intrinsic to the definition of EROI, herein renamed as Gross ROI, and symbolized as R.  

He is not, obviously, creating energy out of nothing.  He is implicitly capturing or releasing 

energy from a pre-existing pool or flow of energy.  If one wants to take a systems view, one 

must encompass that pre-existing pool of energy within the boundaries of the system, model 

the draw against it, and determine the constraints on that draw. 

 But, when Dr Odum discussed efficiency, herein symbolized as , he was talking about the 

partial consumption of a pool or flow of energy that was already captured and under the 

control of the organism.  It would seem that the concept of diminution of the pre-existing 

pool of accessible energy is intrinsic to the definition of , herein called Odum’s efficiency.  

Again, to have a systems view of the process, we need to define a system boundary, and the 

flows and stores of energy in that context. 

 

Since N = R – 1 is a simple translation, I can focus on R and , thinking that N comes along for 

the ride.  I therefore don’t discuss N in this NTF. 

2.2 - Three NTFs 

So, in the Ref A NTF (Part I of a series of three NTFs), I have shown that these two definitions 

of efficiency, R and , are intimately related, and are interchangeable when it comes to analysis 

of power vs efficiency curves, and yet seem to be intrinsically at odds with one another. 

 

In this NTF (Part II of a series of three) I will examine Aspect A of the time-related dynamics 

that are implied in the formulation of R and . 

 

In the Ref C NTF (Part III of the series) I will focus on Aspect B of the two aspects of time-

related dynamics. 

 

3 - Purpose 

This NTF is a continuation of the Ref A NTF, and a prelude to the Ref C NTF.  The purpose is to 

explore and clarify the implicit time-related augmentation or diminution of energy pools that 

exists within the definitions of  and R, and to define the implications for relevant systems and 

system boundaries. 

4 - Discussion 

4.1 - Why Do This?  Where is it going? 

There are three reasons why I think it is important to explore the nature of growth, as formulated 

in the various formulae for efficiency that I am studying.   

 

First Reason:  Back in January Dr Hall asked me to comment on a fascinating draft paper on 

which he was working with Dr Brown, and that got me re-learning stuff about allometry.  Dr 

Hall’s question was: 
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Garvin 

In your maximum power work do you see any reason that power should scale to the 

¼ or ¾ power with organism size? 

Charlie 

His draft paper is at Ref D, my research into the question is at Ref E, and my comments on the 

draft paper are at Ref F.  The empirical data cited in his paper seems to show an obvious 

biosphere-wide allometric scaling of ¼.  I was able to come up with a scaling of 2/3, but not ¼, 

so I wasn’t much help, I suppose.   But this did get me thinking about allometric scaling of 

corporations.   That leads to questions about growth, maximum size, and possible constraints on 

size of corporations, and Galbraith. 

 

Second Reason:  In my reading about Galbraith’s “theory of the firm” (see Ref A for more 

details), I came to understand that the mechanisms that NCE theory claims provide constraints 

on the size of firms do not, in fact, have that effect.  Galbraith argues that large firms clearly 

operate in breach of NCE theory.  For example, they minimize the returns to shareholders as if it 

is a metabolic cost (represented by the i in the following analyses) and maximize the “retained 

earnings” to use them for persistence (e.g. growth and mergers and acquisitions).  This 

phenomenon is clearly a part of the physiological dynamics of most animals, and now seems to 

be part of the social dynamics of corporations.  In other words, it seems that the reasons that 

Galbraith cites for the different focus of a modern firm are closely associated with my 

understanding of the MPP.  So Galbraith’s arguments (a) show that NCE has a fault (cannot 

describe limits to corporate growth, nor the shift towards retained earnings), and also (b) show 

that Odum’s MPP has something to say to explain the dynamics that NCE cannot explain.  I 

explored this concept a little when preparing for the Ref G presentation to ISEE 2016, and I 

explored it a little further when writing the Ref A companion to this NTF. 

 

Third Reason:  Finally, there is something seriously wrong with the concept of the “time value 

of money”.  In my many years as a project manager I had a focus on discounted cash flows 

(DCFs).  A DCF is essentially just a recursive variation on an ROI.  It was considered 

professionally negligent for a project manager not to consider them.  But, they did not work very 

well, being at best an extremely blunt instrument, and most often a misrepresentation.  When I 

was studying for CATM certification via U Carleton, one professor proposed an improvement on 

DCFs by using different discount rates for income streams and cost streams, essentially including 

different risk premiums in each type of cash flow.  That made some sense, but it did not address 

my fundamental discomfort with the idea that “money grows”, essentially out of nothing, and 

that there is a “time value of money”.  This concept of growing money is, of course, based on the 

practice of charging interest on loans, but it appears to fly in the face of the 2
nd

 law of 

thermodynamics.  DCFs resolve the problem of the “diamond-water” paradox (see Ref H) by 

simply ignoring it. 

 

I wonder if a systems approach will help.  I am at a stage in the investigation for which I think I 

can define the system boundary.  Once I do that, the results will be comparable to my various 

economic models.  I.e. I wonder if a re-think of decay and/or growth from the ground up, from 

the perspective of biophysical phenomena with a systems view, might provide some insight into: 

 the allometric scaling of modern mega-firms; 

 the limits to growth of modern mega-firms; and 



Orrery Software 5 NTF On Efficiency and Growth 

 

 

 the means to find a replacement for DCFs in financial studies. 

4.1.1 - Some Generic Let Statements 

Recursive definitions of mathematical processes are not always useful, but sometimes they are.  

A recursive definition includes an initial value, and a means to calculate the next value from the 

previous value.  Here are some generic let statements for the recursive mathematical definitions 

that I can put together: 

 Time Markers: 

o Initialization – Let t0 represent the time marker at the start of the process, and  

o Recursion – Let t1, t2, … tn represent a sequence of time markers, for 0 <= i <= n.  The 

duration between markers (e.g. t2-t1) will vary, so time proceeds at varying paces.  The 

markers might mark, for example, the times when a fish feeds, and the durations would 

be periods of digestion and rest between feeding times.  For simplicity, all durations are 

non-zero and are sufficiently long to allow for complete digestion of ingested foods. 

 Gross ROI ratios – Let Ri represent the EROI of the feeding event that occurs at time ti.  No 

feeding event occurs, however for time marker t0.   

 Costs: 

o Investments or Costs – Let Ci represent the energy invested at time marker ti.  This 

includes energy invested in the hunt, and energy invested in digestion of the captured 

food. 

o Cumulative Investments or Costs – Let CCi represent the cumulative amount invested 

by hunt and capture and digestive processes from time markers t0 to ti. 

 Returns: 

o Gross Returns – Let Ii represent the total energy garnered due to the investment of Ci at 

time marker ti. 

o Cumulative Gross Returns – Let CIi represent the total energy garnered due to the 

investment of Ci from time markers t0 to ti. 

 Benefits: 

o Net Returns – Let Bi represent the net energy garnered due to the investment at time 

marker ti, such that Bi = Ii – Ci. 

o Cumulative Net Returns – Let CBi represent the accumulated benefits accessible from 

time marker t0 to ti. 

 Other Leakage: 

o Metabolic Leakage – Let i represent the energy degraded by metabolic processes 

during the duration or interval of time [ti-1 – ti) 

o Cumulative Metabolic Leakage - Let Ci represent the cumulative amount degraded by 

metabolic processes other than digestion. 

 

As indicated in the Ref A discussion of two paradigms, I think the growth paradigm is the more 

broad concept, so I will start with the decay paradigm, and nail that one down if I can, before 

moving on to the more general case. 

4.2 - Decay – Declining Values 

When using the efficiency ratio  one is in the frame of mind of expecting the value or potency 

of some pool of resources to decline or be diminished.  In such cases of declining value the 

terminology is usually about depreciation, decay, consumption, or, maybe, dispersion.  For 
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example we can talk about decay rates or half-lives of radio-active substances, of depreciation 

rates of the value of capital equipment, or the efficiency of power tools. 

4.2.1 - Decay in Terms of Degraded Energy () 

The most common interpretation of the concept of efficiency is derived, I think, from the work of 

Sadi Carnot (1824) and his study of thermal heat engines (see Ref I).  Further study of Carnot’s 

ideas was made by Clapeyron (1834, Ref J) and then Clausius (1857, Ref K) – two men out of 

whose work the modern concept of the second law of thermodynamics emerged.  However, the 

same formulae can be used in at least four contexts: 

 The degradation of a portion of a quantity of energy during its transformation; 

 Depreciation of the value of capital equipment and assets; 

 Decay of the potency of radio-active materials; 

 Consumption of non-renewable resources through regular or irregular harvesting. 

 

I will focus on the energy context, without any intended loss of generality. 

4.2.1.1 - A Shortage of Simple Examples 

It is difficult to think of a single simple example which can be used to explain the concept of 

efficiency of energy conversion: 

 I started with the workings of Carnot’s heat engine and found it far from simple.  It requires a 

rather comprehensive understanding of the trade-offs between pressure, temperature and 

volume, and an understanding of reversibility and irreversibility.  So I went looking for a 

more simple example.   

 Next I was working on a description of an electric drill, for which the efficiency would be the 

energy consumed as useful work divided by the total energy consumed (as in  = B/I).  But 

then I would need to get into philosophical questions such as “Who defines ‘useful’?” and 

“What do you mean by ‘consumed’?”  I needed to address electrical energy, mechanical 

energy, waste heat and the transformations between all of them.  The explanation started to 

sound somewhat artificial, since virtually all of the energy is ‘consumed’ in one way or 

another, which begs the question as to “What useful energy is conserved?”  And that example 

does little to avoid the complexities implicit in Carnot’s heat engine. 

 Then I thought a better explanation would come out of a transformation of energy from one 

common understanding of ‘useful’ to another common understanding of 'useful’ where the 

usefulness is still intact, i.e. conserved.  Such a condition exists when a litre of gasoline 

might be used to recharge an electric battery.  Gasoline can be ‘used’ to drive a lawn-mower.  

Electricity can also be ‘used’ to drive a lawn-mower.  The usefulness of the two types of 

storage are then directly comparable.   However, on thinking of it more carefully, this is also 

far from simple.  We start with a kind of Carnot heat engine (the internal combustion engine) 

that consumes gasoline (totally) and produces heat and drives an electric dynamo, which 

generates electricity that courses down a wire, that is then converted to chemical potential 

energy in the battery.  There are at least five different energy transformation involved, each 

with its own efficiency rating, and each with its own definition of ‘usefulness’.   

 Setting all of those aside, the best example I can think of is Atwood’s Machine (the AM).  In 

the example of the AM, energy stored in an elevated weight is ‘used’ to elevate another 

weight, and in the process, some energy is consumed.  This requires only a knowledge of 

Newtonian mechanics, and that is taught in grade 11 physics courses.   
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 But, if I want to model the iterated activities of decay, I need to pass energy from AM to AM, 

and return again to the need to imagine an open AM, or OAM.  That approach is certainly 

imaginative, and hardly simple.  So, it has its own difficulties.  However, I have already 

worked through those difficulties (Ref L and its Refs) and so am comfortable with them. 

 

In three years of study, I have travelled full circle and come back to the AM and OAMs.  In 

development of the Ref L application I modeled a quantity of Sunshine being absorbed by 

primary producers (plants) and then being passed down a chain of consumers.  The ideas 

developed there are the template from which the very simple diagram in Figure 02 is drawn. 

4.2.1.2 - The Energy Transformation Example 

My approach will be to describe a recursive process that starts with three value I0, C0 and B0, and 

on each iteration n, will produce a new set of three values: In, Cn and Bn.  Then I will produce a 

set of discrete-time formula by which the three values for any n can be computed directly, 

without the iterative process.   

 

The process of recursion requires a set of initial values, and a set of transition rules that produce 

the next set of values from the previous values.   

 

For the recursion 

process shown 

in Figure 02 I 

start with the 

initial 

endowment of 

energy I0, being 

the net return of 

some 

unspecified 

process that 

established the 

initial 

endowment.  

The area in blue 

represents the 

system internals, 

and the dotted 

line is the 

system boundary.  The external energy source is X-ed out (in orange), because the system is 

isolated from energy inputs throughout the decay process.  However, as energy is degraded, the 

waste heat produced is delivered into the external energy sink, as indicated by the red arrow.  

The “still useful” energy is calculated as 0I0 and denoted by B0, and the energy that was 

degraded and sent to the sink is calculated as I0–B0 and denoted by C0.  Then, I need a bridging 

equation for the third value in the form of I1=B0.  Finally the value of n is advanced from 0 to 1, 

and the set of transition rules is applied again in a never-ending cycle.   The size of the energy 

pool under control of the agent is In at discrete time marker tn. 

 

Figure 02 – Decay Paradigm – Exploded View  

 

Process – a recursive example:
 t0 – Initialization:
 I0 = Exists as an internal asset
 Source of new energy input is not relevant

 tn – Decay Cycle:
 Calculate net return as Bn-1  n-1In-1

 Degraded energy is Cn-1 = In-1–Bn-1

 Internal asset is now In = Bn-1

t0
t1

Energy Sink

Energy Source

0

I 1

I 0

B
0

C 0

I
1

 =
 B

0

=
 

0
I

0
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The first three iterations are shown in Table 02, and the discrete-time formulae derived from 

them are in Table 03. 

 

Table 02 - Formulae and Values for a Recursive Regime – Decay Paradigm. 

Initialization Values – Time Marker = t0: 

Values Explanations 

0 < 𝐼0 < ∞ Initial endowment of resources. 

0 < 
0

< 1 Pre-set value, along with all other i. 

Recursion Input Values and Formulae – Time Marker = ti: 

Values Explanations 

1 < 
𝑖

< ∞ A series of values indicating the expected efficiency during 

each iteration would be supplied.  This might be constant for 

all iterations, or vary with time, say, as declining or 

increasing efficiency.  In a financial application, the 

depreciation rate would be constant over all iterations.  

When applied to radioactive materials, the decay rate would 

be constant.  But if you are modeling a machine that wears 

out or clogs up with usage, the values would vary. 

Formulae Explanations 

𝐵𝑖−1 = 
𝑖−1

𝐼𝑖−1 Calculate the portion preserved. 

𝐶𝑖−1 = (𝐼𝑖−1 − 𝐵𝑖−1) Calculate the portion degraded. 

𝐼𝑖 = 𝐵𝑖−1 Bridge to next iteration. 

𝑖 = 𝑖 + 1 Advance to next iteration. 

Three Iterations – Time Marker = ti: 

Formulae Explanations 

𝐵0 = 
0

𝐼0 Calculate the portion preserved. 

𝐶0 = (𝐼0 − 𝐵0) Calculate the portion degraded. 

𝐼1 = 𝐵0 Bridge to next iteration. 

Formulae Explanations 

𝐵1 = 
1

𝐼1 B1 = 1(0I0) 

𝐶1 = (𝐼1 − 𝐵1) C1 = 0I0 – 1(0I0) 

𝐼2 = 𝐵1 I2 = 1(0I0) 

Formulae Explanations 

𝐵2 = 
2

𝐼2 B2 = 2(1(0I0)) 

𝐶2 = (𝐼2 − 𝐵2) C2 = 1(0I0) – 2(1(0I0)) 

𝐼3 = 𝐵2 I3 = 2(1(0I0)) 
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Table 03 – Discrete-Time Formulae – Time Marker = tn – Decay Paradigm. 

Formulae Explanations  

𝐵𝑛 ≡ 𝐼0 × ∏
𝑖

𝑛

𝑖=0

 
The net returns at each iteration suffer an 

exponential decline. 

Equ 01 

𝐶𝑛 ≡ 𝐼0(1 − 
𝑛

) ∏
𝑖

𝑛−1

𝑖=0

 

The energy degraded also suffers an exponential 

decline. 

Equ 02 

𝐼𝑛 ≡ 𝐼0 × ∏
𝑖

𝑛−1

𝑖=0

 

And, the energy available for use has an 

exponential decline.  I note that In = Bn + Cn. 

Equ 03 

 

These results are as expected.  When considering cumulative values, the only item of interest 

would be the cumulative value of C (denote it as CCn) as n approaches infinity.  Since there is no 

energy going into the system, the total that has left the system is the only sum that might be of 

interest. 

 

Table 04 – Cumulative Discrete-Time Formulae – CCn – Decay Paradigm. 

𝐶0 = (𝐼0 − 𝐵0) C0 = I0 – 0I0  

𝐶1 = (𝐼1 − 𝐵1) C1 = 0I0 – 1(0I0) 

𝐶2 = (𝐼2 − 𝐵2) C2 = 1(0I0) – 2(1(0I0)) 

𝐶3 = (𝐼3 − 𝐵3) C3 = 2(1(0I0)) – 3(2(1(0I0))) 

CC3 = C0+C1+C2+C3 CC3  =                I0 –                    0I0  

        +             0I0 –              1(0I0)  

        +       1(0I0) –        2(1(0I0))  

        + 2(1(0I0)) – 3(2(1(0I0))) 

𝐶𝑛𝐶 = 𝐼0 [1 + ∑ (∏ (
𝑗
)

𝑖

𝑗=0

)

𝑛−1

𝑖=0

− ∑ (∏ (
𝑗
)

𝑖

𝑗=0

)

𝑛

𝑖=0

] 

 

Equ 04 

𝐶𝑛𝐶 = 𝐼0 [1 − ∏(
𝑖
)

𝑛

𝑖=0

] 
 

Equ 05 

lim
𝑛→∞

𝐶𝑛𝐶 = 𝐼0   𝐼𝐹   lim
𝑛→∞


𝑖

≠ 1 
 

Equ 06 

 

Equation 04 simplifies to Equation 05.  As i approaches infinity, the product approaches zero, 

and CCn approaches I0.  This makes sense.  The limit of CCn =I0 in all cases except where the 

limit of 
𝑛

 exists and is equal to 1. 

 

4.3 - Simple Growth – Augmentation of Capture Rates 

When using the efficiency ratio R one is in the frame of mind of expecting a positive return on 

an investment.  In other words, the expected outcome is growth of the pool of resources.  When 

considering growth I then naturally turn to the ratio R, which usually goes by the names of 

EROI, or EROEI, or ROI, or the gross return on investment 
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4.3.1 - Simple Growth in terms of Gross Returns (R) 

As for the decay paradigm, the growth paradigm can be used in many contexts such as: 

 The growth of a cell after mitosis; 

 The growth of an organism after birth; 

 The growth of a corporation, city, or society; or 

 The growth of an investment portfolio. 

 

I will continue the discussion here using the context of energy consumption, choosing the 

context of the growth of an organism that feeds irregularly, using the terminology associated 

with EROI – i.e. energy returned on energy invested. 

 

When considering the use of the efficiency ratio R, one must invest some energy that is already 

under the control of the investor, in the hopes of later garnering a share of the as-yet-unexploited 

resource and bringing it under control.  So, consider a large pre-existing source (pool or flow) of 

energy that a species has not yet tapped, and is not yet under the control of the species.  An 

example would be a flow down a stream of edible insect larvae not yet eaten by trout. 

 

R is then a subjective measure of growth, from the perspective of the “investor”.  One must 

garner at least the amount invested or suffer a loss.  If one manages to garner more than the 

amount invested, then R will be greater than 1.  Otherwise, R will be less than 1.  In this 

analysis, R is always treated as greater than 1, but without loss of generality.  I.e. I believe the 

logic is the same when R is between 0 and 1. 

 

The presentation in this section will be very similar to the presentation in section 4.2. 

 

The process of recursion requires a set of initial values, and a set of transition rules that produce 

the next set of values from the previous values.   

 

For the recursion 

process shown 

in Figure 03 I 

start with the 

initial 

endowment of 

energy I0, being 

the net return of 

some 

unspecified 

process that 

established the 

initial 

endowment.  

The area in blue 

represents the 

system internals, 

Figure 03 – Simple Growth Paradigm – Exploded View  

 

Process – a recursive example:

 t0 – Initialization:
 Source exists as store of external assets
 I0 = Exists as internal asset

 tn – Growth Cycle:
 Relabel In-1 as investment “cost” Cn

 Expend as Cn as “investment”
 Calculate gross returns as In RnCn

 Calculate net return as Bn  In - Cn

t0 t1

Investment Sink

Returns Source

C 1 C
1

R1

I 0

B
1

I 1
= 
R

1
C

1
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and the dotted line is the system boundary.  The external energy source is active, because the 

system is open to energy inputs throughout the growth process, as indicated by the upper red 

arrow.  As energy is “invested”, the waste heat produced is delivered into the external energy 

sink, as indicated by the lower red arrow.  The “still useful” energy is calculated as R1C1 and 

denoted by I1, and the energy that was degraded and sent to the sink is the entirety of the 

resource available for investment, denoted by C1.  In the decay paradigm my bridging equation 

comes last, but in the simple growth paradigm is comes first, where In-1 is relabeled as Cn.  

Finally the value of n is advanced from 0 to 1, and the set of transition rules is applied again in a 

never-ending cycle.   The size of the energy pool under control of the agent is In at discrete time 

marker tn. 

 

The first three iterations are shown in Table 05, and the discrete-time formulae derived from 

them are in Table 06. 

Table 05 - Formulae and Values for a Recursive Regime – Simple Growth Paradigm. 

Initialization Values – Time Marker = t0: 

Values Explanations 

0 < 𝐼0 < ∞ Initial endowment of resources. 

0 < 𝑅0 < 1 Pre-set value, along with all other Ri. 

Recursion Input Values and Formulae – Time Marker = ti: 

Values Explanations 

1 < 𝑅𝑖 < ∞ A series of values indicating the expected EROI during each 

iteration would be supplied.  This might be constant for all 

iterations, or vary with time, say, as declining or increasing 

EROI.  In a financial investment such as a long-term bond, 

the ROI might be constant over all iterations.  But if you are 

modeling extraction of a non-renewable resource with a 

“best first” approach, the EROI will vary with time. 

Formulae Explanations 

𝐶𝑖 = 𝐼𝑖−1 Bridge from the previous iteration. 

𝐼𝑖 = 𝑅𝑖𝐶𝑖 Calculate the gross returns on the investment. 

𝐵𝑖 = 𝐼𝑖 − 𝐶𝑖 Calculate the net returns on the investment. 

𝑖 = 𝑖 + 1 Advance to next iteration. 

Three Iterations – Time Marker = ti: 

Formulae Explanations 

𝐶1 = 𝐼0 C1 = I0  

𝐼1 = 𝑅1𝐶1 I1 = R1I0  

𝐵1 = 𝐼1 − 𝐶1 B1 = R1I0 – I0  

Formulae Explanations 

𝐶2 = 𝐼1 C2 = R1I0  

𝐼2 = 𝑅2𝐶2 I2 = R2R1I0  

𝐵2 = 𝐼2 − 𝐶2 B2 = R2R1I0 – R1I0  

Formulae Explanations 

𝐶3 = 𝐼2 C3 = R2R1I0  

𝐼3 = 𝑅3𝐶3 I3 = R3R2R1I0  

𝐵3 = 𝐼3 − 𝐶3 B3 = R3R2R1I0 – R2R1I0  
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Using Table 05 I can construct discrete-time formulae for each of C, I and B, as shown in Table 

06. 

Table 06 – Discrete-Time Formulae – Simple Growth Paradigm. 

Formulae Explanations  

𝐶𝑛 ≡ 𝐼0 ∏ 𝑅𝑖

𝑛−1

𝑖=1

 

The costs undergo an exponential increase. Equ 07 

𝐼𝑛 ≡ 𝐼0 ∏ 𝑅𝑖

𝑛

𝑖=1

 
The gross returns undergo an exponential 

increase. 

Equ 08 

𝐵𝑛 ≡ 𝐼0(𝑅𝑛 − 1) ∏ 𝑅𝑖

𝑛−1

𝑖=1

 

And, the net returns undergo an exponential 

increase.  I note that In = Bn + Cn. 

Equ 09 

 

Again, these results are as expected.  Since the entirety of the assets currently under control (Cn) 

is invested, this represents some estimate of the maximal growth possible.  Any competition with 

other organisms for resources would be reflected in depressed values for Rn, so such depressed 

growth dynamics could be suitably modeled.  When considering cumulative values, all three 

associated cumulative values will rise exponentially.   

 

Table 07 – Cumulative Discrete-Time Formulae –Simple Growth Paradigm. 

CCn – Cumulative Costs. 

𝐶1 = 𝐼0 C1 = I0  

𝐶2 = 𝐼1 C2 = R1I0  

𝐶3 = 𝐼2 C3 = R2R1I0  

CC3 = C1+C2+C3 CC3  =                  I0  

        +             R1I0  

        +       R2(R1I0)  

𝐶𝑛𝐶 = 𝐼0 [1 + ∑ (∏(𝑅𝑗)

𝑖

𝑗=1

)

𝑛−1

𝑖=1

] 

 

Equ 10 

lim
𝑛→∞

𝐶𝑛𝐶 = ∞   𝐼𝐹   lim
𝑛→∞

𝑅𝑖 ≠ 1 
 

Equ 11 

CIn – Cumulative Gross Returns. 

𝐼1 = 𝑅1𝐶1 I1 = R1I0  

𝐼2 = 𝑅2𝐶2 I2 = R2R1I0  

𝐼3 = 𝑅3𝐶3 I3 = R3R2R1I0  

CI3 = I1+I2+I3 CI3  =               R1I0  

        +       R2(R1I0) 

        + R3(R2(R1I0))  

𝐼𝑛𝐶 = 𝐼0 ∑ (∏(𝑅𝑗)

𝑖

𝑗=1

)

𝑛

𝑖=1

 

 

Equ 12 

lim
𝑛→∞

𝐼𝑛𝐶 = ∞   𝐼𝐹   lim
𝑛→∞

𝑅𝑖 ≠ 1 
 

Equ 13 
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CBn – Cumulative Net Returns. 

𝐵1 = 𝐼1 − 𝐶1 B1 = R1I0 – I0  

𝐵2 = 𝐼2 − 𝐶2 B2 = R2R1I0 – R1I0  

𝐵3 = 𝐼3 − 𝐶3 B3 = R3R2R1I0 – R2R1I0  

CB3 = B1+B2+B3 CB3  =                R1I0 –                 I0  

        +            R2R1I0 –            R1I0  

        +       R3R2R1I0 –        R2R1I0  

𝐵𝑛𝐶 = 𝐼0 [∑ (∏(𝑅𝑗)

𝑖

𝑗=1

)

𝑛

𝑖=1

− ∑ (∏(𝑅𝑗)

𝑖

𝑗=1

)

𝑛−1

𝑖=1

− 1] 

 

Equ 14 

𝐵𝑛𝐶 = 𝐼0 [∏(𝑅𝑖)

𝑛

𝑖=1

− 1] 
 

Equ 15 

lim
𝑛→∞

𝐵𝑛𝐶 = ∞   𝐼𝐹   lim
𝑛→∞

𝑅𝑖 ≠ 1 
 

Equ 16 

 

Equation 14 simplifies to Equation 15 since many of the terms in the precursor simply cancel 

each other out.  Compare Equations 14 and 15 with Equations 04 and 05.  WRT Equ 16, in the 

limit, as n approaches infinity, the product approaches infinity, as long as Ri remains greater than 

1.  This makes sense. 

 

4.4 - Growth With Metabolic Costs – A Hybrid Paradigm 

On Page 55 of the Ref M text (Otto and Day, 2007) the authors describe a wide range of 

“classic” models in ecology and evolutionary biology.  I believe the models considered in 

sections 4.2 and 4.3 above fall into the categories of exponential growth or possibly logistic 

growth.  When I add metabolic leakage to the dynamics, we move into the category of consumer-

resource equations.  It would 

seem from a reading of the 

material in that Ref M text 

that this territory has been 

thoroughly trodden before, as 

these are now considered 

“classic” models.  But I am 

unsure whether the explicit 

use of gross returns ratio R 

was considered in those 

presentations.   Certainly, I 

find no mention of either 

gross returns or net returns in 

the glossary of the book, nor 

in the discussion of these 

classic models following 

page 55.  Furthermore, the 

presentations of those models 

in the text are all continuous-

Figure 04 – Hybrid Paradigm 

 

Metabolic Growth Paradigm – EXPLODED VIEW

t0 t1

Heat Sink

Energy Source

R1

C 1

I 0

C
1


1

C 1
B

1

I 1
= 
R

1
C

1

Process – a recursive example:
 t0 – Initialization:
 I0 = Exists as internal asset

 Source exists as store of external assets

 tn – Growth Cycle:
 Expend n while waiting for 

investment opportunity
 Expend as Cn = (In-1–n) as 

“investment”
 Calculate gross returns as In

 RnCn

 Calculate net return as Bn  In
- Cn
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time models, and the growth rates seem to be constants in the model.  I want to consider a 

varying EROI (e.g. best and easiest first) in a discrete-time model.  So, it seems, I need to 

wander away from the classic models as presented in the Ref M book. 

 

Figure 04 shows an exploded view of the recursive regime.  Time proceeds in asynchronous 

discrete steps along the bottom, with periods of inactivity between time markers, during which 

some waste heat is produced via metabolic maintenance.  The remaining energy Cn is invested in 

hunting and digestion (flowing to the heat sink), and the gross returns (In) are used to replace Cn 

and augment it by an amount Bn.  It is not lost on me that I could include 1 as the efficiency 

factor between I0 and C1, but it complicates the diagram and is not entirely necessary.  I decided 

to take n as input in place of n.  I may need to revisit that decision later. 

 

 “Growth with metabolic costs” is meant to be a generic phrase that includes related dynamics 

such as “growth with harvesting”.   In either case, you have growth phases inter-leaved with 

phases in which resources are removed out of the control of the investor.  The “metabolic costs” 

can be considered analogous to friction.  They are unavoidable costs that evolutionary pressures 

tend to minimize as the struggle for persistence continues. 

 

Table 08 - Formulae and Values for a Recursive Regime – Growth With Costs Paradigm. 

Initialization Values – Time Marker = t0: 

Values Explanations  

0 < 𝐼0 < ∞ Initial endowment of resources. Equ 17 

𝐶0 = 𝐵0 = 0 Set to zero. Equ 18 

𝑅0𝑎𝑛𝑑0 Not meaningful – not set. Equ 19 

Recursion Values and Formulae – Time Marker = ti: 

Values Explanations  

1 < 𝑅𝑖 < ∞ Expected gross return on investment.  The 

principle of “best and easiest first” might mean 

this declines with time.  But my focus on growth 

in this section means it is always greater than one. 

Equ 20 

0 < 𝑖 <  𝐼𝑖−1 This reduces the amount available for investment.  

It could be modeled as a fixed or variable fraction 

of Ii-1.  I have chosen to be more general and 

identify it as an input with range restricted by the 

size of Ii-1. 

Equ 21 

Formulae Explanations  

𝐶𝑖 = (𝐼𝑖−1 − 𝑖) The energy available for investment is the 

remaining pool from the previous hunt, less the 

metabolic costs of resting between hunts. 

Equ 22 

𝐼𝑖 = (𝑅𝑖 × 𝐶𝑖) The current pool is established as the gross 

returns on the investment Ci. 

Equ 23 

𝐵𝑖 = (𝐼𝑖 − 𝐶𝑖) Net returns on the investment Ci. Equ 24 
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Table 08  - Continued 

Cumulative Formulae – Basic Definitions – Time Marker = tn: 

Formulae Explanations  

𝐶𝑛𝐶 ≡ ∑ 𝐶𝑖

𝑛

𝑖=1
 

The energy available for investment is the 

remaining pool from the previous hunt, less the 

metabolic costs of resting between hunts. 

Equ 25 

𝐼𝑛𝐶 ≡ ∑ 𝐼𝑖

𝑛

𝑖=1
 

Gross returns on the investment Ci. Equ 26 

𝐵𝑛𝐶 ≡ ∑ 𝐵𝑖

𝑛

𝑖=1
 

Net returns on the investment Ci. Equ 27 

 

 

Figure 05 shows an exploded view 

of three iterations of the recursion 

process for the hybrid “Growth 

With Metabolic Costs” paradigm. 

 

I cannot use this recursive regime 

to produce analytic formulae that 

are continuous in time, since the 

duration of time between time 

markers is assumed to vary, with 

the intention of keeping the model 

as general as possible.  Also, the 

Ri and i series of inputs are not 

specified as functions of time, 

again with the intent of keeping this as general as possible.  However, I should be able to 

produce some non-recursive discrete-time equations.  In Table 06 I did this first with a simple 

growth process in which there is no degradation of energy for any reasons other than those 

encoded in the definition of R.  I.e. i = 0 for all i, and so there is no leakage of energy from the 

Ii pool of energy due to metabolic needs between feeding events.  I’ll do it again now but 

allowing for leakage.  I.e. 0 < i < Ii.  Compare Equ 28 with Equ 08. 

 

Table 09 – Growth – In Expressed Using R.  With metabolic leakage. 
Time 

Marker 
Energy Resulting From Feeding Event Symbolic Expression in R 

t0 e0 (no feeding happens at this time marker) I0  

t1 C1 = I0 – 1;  I1 = (R1 C1) I1 = R1(I0–1)  

t2 C2 = I1 – 2;  I2 = (R2 C2) I2 = R2(R1(I0–1)–2)  

t3 C3 = I2 – 3;  I3 = (R3 C3) I3 = R3(R2(R1(I0–1)–2)–3)  

 

 

tn 

Cn = In-1 – n;  In = (Rn Cn)  

 

Equ 28 
 

𝐼𝑛 = (𝐼0 ∏(𝑅𝑖)

𝑛

𝑖=1

) − ∑ (𝑖 ∏(𝑅𝑗)

𝑛

𝑗=𝑖

)

𝑛

𝑖=1

 

Figure 05 – Three Iterations of Recursion Process 

 


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That defines the growth curve for a given series of values for each of Ri and i.  The first term is 

the same as Equation 08, but the second term is the amount burnt off by metabolic needs, other 

than digestion. 

 

One way to simplify Equation 28 would be to assume that all of the Ri are the same, and all of 

the i are the same.  Then Equation 28 would become: 

 

𝐼𝑛 = 𝐼0𝑅𝑛 − ∑(𝑅𝑖)

𝑛

𝑖=1

 

 

 

 

Equ 29 

 

I may be able to produce a discrete-time non-recursive formula for each of the cumulative flows: 

Table 10 – Growth – Cumulative Values Expressed Using R.  With metabolic leakage. 
Time 

Mark 
Recursive Energy 

Formulae Resulting From 

Feeding Event 

Symbolic Expression in R 

t0 I0 > 0  I0  

C0 = 0  0 

B0 = I0–C0 = I0  I0  

CC0 = 0  0 

CI0 = I0  I0  

CB0 = CI0–CC0 = I0  I0  

t1 C1 = (I0–1) C1 = (I0–1)  

I1 = R1C1  I1 = R1(I0–1)  

B1 = I1–C1 = (R1-1)C1  B1 = (R1–1)(I0–1)  

CC1 = CC0+C1 = C1  CC1 = (I0–1)  

CI1 = CI0+I1  CI1 = I0+R1(I0–1)  

CB1 = CB0+B1  CB1 = I0+(R1–1)(I0–1)  

t2 C2 = (I1–2) C2 =R1(I0–1)–2 

I2 = R2C2  I2 = R2(R1(I0–1)–2)  

B2 = I2–C2 = (R2-1)C2  B2 = (R2–1)(R1(I0–1)–2)  

CC2 = CC1+C2  CC2 = (I0–1)+(R1(I0–1)–2)  

CI2 = CI1+ I2 CI2 = I0+R1(I0–1)+R2(R1(I0–1)–2) 

CB2 = CB1+B2 CB2 = I0+(R1–1)(I0–1)+(R2–1)+(R2–1)(R1(I0–1)–2) 

t3 C3 = (I2–3) C3 = R2(R1(I0–1)–2)–3 Equ 30 

I3 = R3C3  I3 = R3(R2(R1(I0–1)–2)–3)  Equ 31 

B3 = I3–C3 = (R3-1)C3  B3 = (R3–1)(R2(R1(I0–1)–2)–3)  Equ 32 

CC3 = CC2+C3  CC3 = (I0–1)+(R1(I0–1)–2) 

+ R2(R1(I0–1)–2)–3 

Equ 33 
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CI3 = CI2+ I3  CI3 = I0+R1(I0–1)+R2(R1(I0–1)–2) 

+R3(R2(R1(I0–1)–2)–3) 

Equ 34 

CB3 = CB2+B3 CB3 = I0+(R1–1)(I0–1)+(R2–1) 

+(R2–1)(R1(I0–1)–2) 

+(R3–1)(R2(R1(I0–1)–2)–3) 

Equ 35 

 

I have seen Equ 31 before, being the precursor to Equation 28.  To produce equation 28 I 

expanded the precursor, grouped terms by sets of factors (products of Ri) and used  and  

notation to make it compact and generalized for any value of n.  I proceed to do the same here, 

producing a discrete-time equation for each of equations 30 through 35, but skipping over 31.   

 

 

𝐶𝑛 = (𝐼0 ∏(𝑅𝑖)

𝑛−1

𝑖=1

) − 𝑛 − ∑ (𝑖 ∏(𝑅𝑗)

𝑛−1

𝑗=𝑖

)

𝑛−1

𝑖=1

 

 

 

Equ 36 

From 

Equ 30 

 

 

𝐵𝑛 = (𝑅𝑛 − 1) ((𝐼0 ∏(𝑅𝑖)

𝑛−1

𝑖=1

) − 𝑛 − ∑ (𝑖 ∏(𝑅𝑗)

𝑛−1

𝑗=𝑖

)

𝑛−1

𝑖=1

) 

 

Equ 37 

From 

Equ 32 

 

 

𝐶𝑛𝐶 = 𝐼0 (1 + ∑ (∏(𝑅𝑗)

𝑖

𝑗=1

)

𝑛−1

𝑖=1

) − 𝑛 − ∑ (𝑖 (1 + ∑ (∏ 𝑅𝑘

𝑗

𝑘=𝑖

)

𝑛−1

𝑗=𝑖

))

𝑛−1

𝑖=1

 

 

 

Equ 38 

From 

Equ 33 

 

 

𝐼𝑛𝐶 = 𝐼0 ∑ (∏(𝑅𝑗)

𝑖

𝑗=1

)

𝑛

𝑖=1

− ∑ (𝑖 ∑ (∏ 𝑅𝑘

𝑗

𝑘=𝑖

)

𝑛

𝑗=𝑖

)

𝑛

𝑖=1

 

 

 

Equ 39 

From 

Equ 34 

 

 

𝐵𝑛𝐶 = ∑ [(𝐼0 ∏(𝑅𝑖)

𝑘−1

𝑖=1

) − 𝑘 − ∑ (𝑖 ∏(𝑅𝑗)

𝑘−1

𝑗=𝑖

)

𝑘−1

𝑖=1

]

𝑛

𝑘=1

 

 

 

Equ 40 

From 

Equ 35 
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4.4.1 - Growth and Odum’s Efficiency () 

In Table 05 of the Ref A NTF is shown the conversion formula for R and  as R = 1/(1-).  It is 

relatively simple to substitute this conversion into all of the above formulae, and they will still be 

as valid as before.  But in normal practice,  is used when the accessible pool of energy is being 

consumed, and de-growth is the observable pattern.  So, I need to think about the meaning of 

such equations in which  occurs and growth is implied. 

 

For example, equations 13 and 21 are so transformed into equations 26 and 27: 

 

𝐼𝑛 = (𝐼0 ∏ (
1

1 − 
𝑖

)

𝑛

𝑖=1

) − ∑ (𝑖 ∏ (
1

1 − 
𝑗

)

𝑛

𝑗=𝑖

)

𝑛

𝑖=1

 

 

 

Equ 41 

From 

Equ 28 

 

 

𝐶𝑛 = (𝐼0 ∏ (
1

1 − 
𝑖

)

𝑛−1

𝑖=1

) − 𝑛 − ∑ (𝑖 ∏ (
1

1 − 
𝑗

)

𝑛−1

𝑗=𝑖

)

𝑛−1

𝑖=1

 

 

 

Equ 42 

From 

Equ 36 

 

Such substitutions could be done for all of the equations in the hybrid paradigm.  There is a 

potential source of confusion here that I need to note and keep in mind.  There are two sorts of  

implied in this hybrid paradigm: 

 The efficiency (n) that is implicitly associated with each n.  When metabolic leakage occurs 

(i.e. when n energy is lost to the sink) the existing resource pool is diminished, and there is 

an implicit efficiency associated with that loss.  I chose not to encode these as efficiencies in 

the above equations to preserve the distinction with the next type of efficiency. 

 The efficiency (1/(1-Rn))  that is implicitly associated with the gross returns ratio Rn. 

 

4.4.2 - A systems Boundary Diagram 

 

 

 

When considering the usual inputs and outputs of a “discounted cash flow” (DCF) calculation, 

there is only one sort of input (usually dollars) and one sort of output (dollars again) and the 

inflows are lumped together as income, and the outflows are lumped together as costs.  But in a 

biophysical system there are several large classes of both input and output – differing types of 

matter sources, sinks and cycles, and differing means of acquiring, burning and disposing of 

energy.   
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In all of the above discussion I have concentrated on energy inputs and energy outputs (or cash 

inputs and cash outputs), but I have taken one step towards this added complexity by including a 

new output channel.  The difference between the DCF model and my metabolic growth model is 

the added output channel for expenditures related to non-discretionary metabolic maintenance.  I 

have distinguished between output used for discretionary investments, and output caused by the 

demands of metabolic maintenance.  DCF and the simple growth model does not allow for that 

distinction, as all costs are lumped together as costs.  So we get several possible “system 

diagrams” 

shown at the 

top of Figure 

05.  I have not 

discussed the 

NYSE growth 

model to this 

point, but I 

include the 

system 

boundary 

diagram there.  

The system 

boundaries are 

the same, but 

the interaction 

of these flows 

inside or 

outside of the 

system 

boundaries are 

not visible in 

the diagram.   

 

In other words, perhaps two problems with DCF are the lack of wider context outside of the 

scope of control, and the lack of attention to the roles played by different flows inside of their 

accepted scope of control.  I think a better perspective is possible if an outer system boundary is 

also drawn which includes the impact on the sources and sinks, and the feedback from those 

impacts.  I believe that the lower diagram is a generic systems diagram in which the need to 

examine those impacts becomes more clear.  Growth cannot happen independently of the 

availability of the resources that make it possible, nor of the costs of maintaining increased size.  

Neither DCF nor any of the other individualized system boundaries are very sensitive to either of 

these concerns. 

 

5 - Comments and Ideas for Further Action 

 I have done my best to get these discrete-time formulae right, and to validate them using MS 

Excel, but they are difficult to implement in Excel due to interactions of the  and  

notations.  There is a function in Excel called “product” with syntax Product(x:y), but it 

Figure 05 – System Boundaries 
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really needs indirect references to be used to work with such formulae.  I will need to figure 

that one out. 

 On the other hand, the recursive formulae are dead easy to work with in MS Excel.  I could 

work up a demonstration using those. 

 It would be interesting to compare these formulae with the formulae for DCFs. 

 Would I get the same formulae if I do the analysis on growth from the bottom up using  in 

place of R?   I should get the same answers.  

5.1 - Some Doubts and Questions 

 Recursive formulae that involve three variables (like I, C and B) require at least one bridging 

formula for each step (accessing previous values) or some external input (such as i or Ri or 

i).  I have implemented both kinds (bridge and external guidance), giving the appearance of 

recursion but having significant external ‘guidance’ of the developing process from the 

sequence of efficiencies.  It is not a true determinate recursion such as the Fibonacci 

sequence.  In fact, there are unlimited degrees of freedom in my formulae and they can be 

used to emulate any curve, no matter how noisy.  So, there is not a lot of real meaning in 

them unless you restrict that stream of external inputs in some way, such as defining  as a 

function of time t.  The trick that would make the formulae more useful would be to find 

such a definition that makes the recursion more determinate.  Is there such a function, or set 

of functions (d(t), h(t) or R(t)) that make the complicated formulae both more simple and 

more useful. 

 That being said, within the recursive formulae there is an implied order in which the three 

variables I, C and B are calculated, and that order is somewhat arbitrary, altering the 

sequence of values slightly in each case.  There are six ways to order three variables 

(6=3x2x1) so the formulae developed in this note are possibly just one set of six possible 

sets.  Is there one of the six sets of potential formulae that is more useful, or more easy to 

work with? 

 It seems to me that recursion in time exists in two forms: repeated 

capture/degradation/dispersal by one organism, and repeated decay as energy passes through 

many organisms.  I have addressed both types in this note, but not clearly distinguishing 

between them.  The second is also analogous to a flow of energy from well-head to point of 

use.  The cumulative formulae from start to iteration n would be point-of-use formulae. 

 

 

 

 


