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M.  

2 - Background 

This series of diary notes is a rework of a set of notes partially completed in 2013-2014.  In 2000 

Dr Victor Yakovenko and his student (Drăgulescu ) published a set of eight capital exchange 

models which have come to be known as the BDY model (for Benatti-Drăgulescu-Yakovenko).  

Later, on his website, Dr Yakovenko had produced a demonstration of rising entropy in his BDY 

models, and I decided to do the same in my own agent-based models (ABMs).  This was all with 

the goal of understanding the role of the Maximum Entropy Principle (MEP) and Maximum 

Entropy Production Principle (MEPP) in ABMs such as ModEco or PSoup.  That study and the 

associated diary notes were set aside for a while as I studied Odum’s MPP.  Now, in 2018, I want 

to review, update, and complete this set of diary notes.   

 

Ref A is the paper in which I first saw the BDY models described, and Ref B is a series of email 

in which I discuss entropy with a friend, with comments from Dr Yakovenko.  I had opportunity 

in April 2014 to meet with Dr Yakovenko in Toronto, and Ref C captures my discussion with 

him, and a set of thoughts that occurred to me over the four hours as I drove home again. 

 

Ref D is a draft paper in which I develop a measure of entropy as exhibited in operating ABMs 

similar to the BDY models.  This series of NTFs is being (re-)written in support of that 

document. 

 

Ref E is a technical diary note describing how to write a custom function in MS Excel.  This skill 

is needed to pursue a study of entropy in ABMs. 
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Ref F is a diary note in which I use the combinatorial multinomial coefficient and the basic form 

of “Stirling’s Approximation” of ln(A!) to derive Shannon’s equation for entropy [1] from 

Boltzmann’s equation [2], as described briefly in Yakovenko’s papers at Refs I, J and K.   

 

I then have two definitional formulae that can be used to calculate the entropy of any histogram 

(preferably of a conserved quantity) in an agent-based model.  One (equation [1]) is based 

directly on the work of Shannon, and the other (equation [2]) is based on the work of Boltzmann. 

 

Based on Shannon: 

 

𝑆𝑆
 = 𝐶𝑆

 × [− ∑ (𝑝𝑖 × ln[𝑝𝑖])
𝑘

𝑖=1
] 

 

 

[1] 

 

Based on Boltzmann: 

 
𝑆𝐵
 = 𝐶𝐵

 × [𝑘𝐵 ln()] 
 

 

[2] 

 

Where 𝐶𝑆
  and 𝐶𝐵

  are scaling constants each associated with what I am calling the “Shannon 

regime” of equations, and the “Boltzmann regime”.   In the Boltzmann regime, 𝐶𝐵
  would be 

Boltzmann’s constant.  I am not sure what 𝐶𝑆
  would be in the Shannon regime.   

 

In analytical terms, these two equations are related by first replacing , the multiplicity of 

microstates, with the multinomial coefficient  = 𝐴! ∏ [𝑎𝑖!]
𝐾
𝑖=1⁄ , and second, by approximating 

the function ln(x!) with x ln(x) – x, a simple version of Stirling’s approximation for ln(x!).  This 

results in the analytical expression in equation [3], where the (  ) symbol is meant to imply 

equality over most of the domain of interest S  [0, ].   

 

Boltzmann in terms of Shannon: 

 

𝑆𝐵
 ≈ [

𝐶𝐵
 

𝐶𝑆
 ] × 𝐴 × 𝑆𝑆

  

 

 

[3] 

 

Unfortunately, these formulae diverge as S approaches zero, and that is the portion of the domain 

of most interest to me when studying ABMs.  I have therefore decided, somewhat arbitrarily, to 

use the equation that comes from the Boltzmann regime when calculating entropy in ABMs.  The 

principle reason is because the Boltzmann regime does not explicitly use the Stirling 

approximations when the numbers of agents is small, or when some bins have a small number of 

agents.  However, since there is a need to use the GammaLn() function, and it introduces its own 

approximations that I have not entirely explored, I may gain little by this decision.  In any case, 

my preference, at the moment, is for the Boltzmann regime. 
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But, for the purposes of this diary note, I will still look at both of equations [1] and [2]. 

 

One confusing aspect of the Ref F note is the units of measure for the two formulae for entropy.  

In the Ref G diary note I examine the nature of the units of measure used for entropy in both 

thermodynamic theory and in information theory and come to two conclusions: (1) that all units 

of measure for entropy are dimensionless numbers; and (2) that the formula I used for calculating 

entropy in an ABM is most closely associated with nats (units of measure from information 

theory) when the number of agents is very large, but diverges from nats when the number of 

agents is of more practical size.   I therefore name my units of measure hnats, and the prepended 

‘h’ stands for ‘histogram’. 

 

In Ref H I try to closely examine the two functions ln(x!) and GammaLn(x) that are intimately 

connected to my definition of entropy in histograms, and in agent-based models. 

 

All of this was preparatory work needed to undertake the work on this diary note, and it is all 

background to the Ref D draft paper. 

 

Ref L is an MS Excel spreadsheet associated with this diary note. 

 

3 - Purpose 

The purpose of this diary note is to present a consolidated description of how to calculate the 

entropic index of some conserved quantity within an agent-based model.  I am going to do this 

using the two different base equations for entropy in each of the two “regimes” of thought 

explored at Ref F. 

4 - Discussion 

In this diary note I am going to develop the equations for Smax in each of the two regimes of 

thought explored in the Ref F diary note, and, following that, develop the equations for Sindex in 

each of the two regimes.  I do this noting that it is my intention to only use the Boltzmann regime 

in the future for reasons mentioned above, but I want to continue to explore the connection 

between the two at the same time.  Why?  Because, when (1) the number of agents in a model is 

large and (2) when the histograms are not sparsely populated, then the distortion introduced by 

Stirling’s approximation disappears and the two regimes of thought should be identical in 

practical outcome. 

4.1 - Smax?  

In my various readings about entropy, I admit that I have only come across the concept of 

“maximum entropy” in reference to closed systems.  With that in mind, I am uncertain how these 

ideas apply to open systems.  So, all of the discussion in this diary note is meant explicitly to 

apply to closed systems, but its applicability to open systems has yet to be determined. 

 

In a closed system, in which some quantity is conserved in all transactions and merely 

transferred from agent to agent, then a history of the collective ownership of that quantity can be 

constructed as a time series of histograms, and there is a maximum possible value of entropy 
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associated with each such time series.  An economic version of the second law of 

thermodynamics would tell us that the entropy of such a time series should rise towards that 

maximum value and hover in that vicinity.  But, there are several design characteristics of an 

ABM and of the entropy measurement regime that might affect the actual value of entropy 

calculated for any histogram, or for any time series of histograms.  Using “money” as the 

conserved quantity, as an example, these design characteristics include: 

 Maximum debt allowed per agent; 

 Maximum wealth allowed per agent; 

 The number of wealth bins in each histogram; 

 The width of the bins in each histogram; 

 The number of empty bins beyond the lower and upper bounds on the wealth of agents; 

 How edge effects are handled. 

 

Rather than trying to address all possible variations for all possible ABMs at once, I need some 

simplifying assumptions.  Then, when I get answers for one type of ABM, under one set of 

assumptions, I may be able to expand the ideas to apply to others.  Since I know that some of 

these assumptions work for “Model I” of the EiLab application, I will start there. 

 

I was introduced to Yakovenko’s so-called BDY models (see Ref A) when I was looking for an 

explanation of the entropic origins of the distribution of wealth in my ModEco models.  

Eventually a friend asked me to reproduce the BDY models from Ref A, and I did that in models 

A through H of the EiLab C++ application.  Those models have a single constraint on the 

boundary of wealth – a minimum wealth allowed per agent.  I decided to build a variant on the 

BDY model with this one simple addition, an upper bound on wealth.  So, instead of a single 

boundary, I had two boundaries – so I called it a doubly-bounded BDY model.  It is “Model I” of 

EiLab. 

 

In a closed system, the entropy will be at a maximum value when all bins of the histogram 

contain precisely the same number of agents.  That is to say, when the distribution of the quantity 

has a uniform distribution.  Practical constraints on the operation of the model may prevent the 

entropy of the system from ever approaching this maximum value, and that is when you get 

entropy-induced distributions that are other than uniform.  Yakovenko has written a number of 

papers about such non-uniform distributions of wealth.  However, when you add the second 

upper boundary, the model may then approach a uniform distribution as it runs.  This, then, is 

where I need to start in trying to understand the existence and role of Smax for some time series of 

histograms that may be produced by an ABM. 

 

For the following discussion: 

 Let A be the number of agents in the ABM.  A is an integer greater than zero.  The number of 

agents is conserved, so A is constant.   

 Each agent can hold wealth in units of $1 – no fractional dollars being considered. 

 Assume that the total wealth of all agents, W, is conserved throughout a run of the model.  

I.e. W is constant. 

 Let Wmin be the minimum wealth any agent can hold, and let Wmax be the maximum wealth 

any agent can hold. 
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 Let K be the number of equally sized ($1) non-overlapping bins that cover the range of 

possible wealth of agents [Wmin, Wmax].  K is a constant.  The bins can be enumerated using 

the variable i, having values from 1 to K, and the number of agents in each bin is ai.    

 

We then get the equation: 

 

𝐴 = ∑(𝑎𝑖)

𝐾

𝑖=1

 

 

 

 

[4] 

 

In any histogram, for given A and K, entropy is at a maximum when the distribution is uniform 

and the number of agents in each bin is equal to A/K agents per bin.  Let  be defined as: 

 

 

 ≡
𝐴

𝑘
 

 

 

 

[5] 

 

Since I must, later, calculate the value of factorial alpha (i.e. !), and since the factorial function 

is only valid for positive natural numbers, for now we must assume that   .  This restricts A 

to whole number multiples of K.  Ultimately, I will be able to use the GammaLn() function to 

replace the factorial function, as per the discussion at Ref H, and that resolves that restriction. 

4.2 - BSmax – Boltzmann Regime 

The multinomial coefficient is: 

 

 =
𝐴!

∏ [𝑎𝑖!]𝐾
𝑖=1

 

 

 

 

[6] 

 

Inserting this into equation [2] we get the expression for entropy of a histogram in the 

“Boltzmann regime”, as discussed in Ref F. 

 

This is my standard equation for the definition of entropy of a histogram, as it stood at the end 

of discussion in Ref F (I am going to adjust the scaling factor BC as I work through this): 

 

𝑆𝐵
 = 𝐶𝐵

 × [ln(𝐴!) − ∑(𝑙𝑛(𝑎𝑖!))

𝐾

𝑖=1

] 

 

 

[7] 

 
where BC is a dimensionless scaling constant.   
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Substituting equation [5] into equation [7] we get:   

 

𝑆𝐵
 

𝑚𝑎𝑥 = 𝐶𝐵
 × [ln(𝐴!) − ∑(𝑙𝑛(!))

𝐾

𝑖=1

] 

 

 

 

[8] 

 

Which resolves to: 

 

𝑆𝐵
 

𝑚𝑎𝑥 = 𝐶𝐵
 × [ln(𝐴!) − 𝐾 ln(!)] 

 

 

[9] 

 

At the Ref L spreadsheet I explored the implications of this formula, as shown in the following 

figures.  In Figure 01 I show a table in which A was held constant, and K was allowed to vary.  I 

chose a value for A=10! such that A/K is always a whole integer, and so the value of ! can be 

calculated exactly using the factorial function, and ln(!) is therefore easily calculated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The table and graph in Figure 01 lead to two interesting facts, only one of which is obvious.  

First, note that the rising value of BSmax has a trend line (generated from MS Excel using “least 

squares” techniques) that is logarithmic with an R2 value of precisely 1.  This means that if I 

divide BSmax by ln(K) I should get a constant that is independent of K.  My dimensionless scaling 

factor now has some use.  Suppose I make the scaling factor BC equal to 1/ln(K) then BSmax 

should be constant, independent of K.  Making that change to equation [9] gives me: 

 

𝑆𝐵
 

𝑚𝑎𝑥 =
1

ln(𝐾)
× [ln(𝐴!) − 𝐾 ln(!)] 

 

 

 

[10] 

 

 

Figure 01 – Table of values – BSmax as K varies 
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When the divisor is applied to the two terms of the numerator, this resolves to: 

 

𝑆𝐵
 

𝑚𝑎𝑥 =
ln(𝐴!) − 𝐾 ln(!)

ln(𝐾)
= log𝐾(𝐴!) − 𝐾 log𝐾(!) 

 

 

[11] 

 

But, there is another interesting thing to be found here.  When I use the MS Excel spreadsheet to 

divide the computed values of BSmax by ln(K), the constant that I get is very close to A. 

 

See Figure 02 for a version of the above table of values with BSmax / ln(K) added, and the 

difference between that number and A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, some distortion must come into the calculations of BSmax due to the necessary use of 

Stirling’s approximation for all calculations for which  is greater than 170.  That would be all 

of them.  But, in all cases the modulated value of BSmax is within 0.001% of the value of A.  This 

leads to the final equation for BSmax: 

 

𝑆𝐵
 

𝑚𝑎𝑥 = 𝐴 

 

 

[12] 

 

Now, I do not have the mathematical skill to show the analytical arguments that would prove that 

A is the correct answer.  But, practically speaking, this seems to be true.  The small difference 

seems to be described by equation [13] with R
2
 value of 0.9998, again based on a ‘least squares’ 

type of trend line produced by MS Excel. 

 

𝐷𝑖𝑓𝑓 = −0.0616𝐾2  +  2.7283𝐾 +  8.7822 

 

 

[13] 

 

Figure 02 – Table of values – BSmax as K varies – modulated by 1/ln(K) 
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4.3 - Sindex? 

I arbitrarily define the entropic index to be calculated using the following formula.   

 

𝑆𝑖𝑛𝑑𝑒𝑥 
   

𝑆 
 

𝑆𝑚𝑎𝑥 
 

 

 

 

 

[14] 

 
It only makes sense to define an entropic index in those instances for which there exists a 

maximum value of calculated entropy.  Denote that maximum value as Smax.  Assuming that such 

a thing is possible, there are, it seems, two types of maximum entropy that might be considered 

as the benchmark on which the index is built.  Consider a time-series of histograms produced by 

a run of some ABM.  It is clear that the entropy associated with a histogram is highest when all 

bins are exactly equal.  Call this a theoretical maximum.  But, does this ever happen?  We can 

identify two possible circumstances: 

 Pragmatic maximum possible – the configuration of the model does not allow for a uniform 

distribution of the conserved quantity to appear, so the largest possible value for entropy that 

can be achieved falls short of the theoretical maximum that is possible.  For example, in most 

of the BDY models studied by Dr Yakovenko, a uniform distribution is not possible, so the 

maximum entropy that can be exhibited is less than the theoretical maximum. 

 Theoretical maximum possible – the configuration of the model enables the possibility of a 

uniform distribution of the conserved quantity, and the theoretical maximum can be 

achieved.  One obvious prerequisite for this is a finite number of bins together with a finite 

number of agents.  Model I of EiLab is able to show a uniform distribution, if the right 

amount of money is put into the model, and then the theoretical maximum is achievable. 

 

Using the pragmatic maximum as the benchmark, every closed model will evolve to have an 

entropic index close to 1.  But then I will not be able to evaluate the economic activity of one 

model against another.  It is better to use the theoretical maximum as the benchmark for the 

index, when it exists.  Then most models will evolve to operate at some index less than 1, and 

only the most effective models will evolve to operate at an index of 1.   

 

“Effective” is a subjective term which implies a goal.  What I have in mind here is a measure of 

the ability of an economic ABM to self-organize to operate at maximum entropy.  My 

assumption (my unspoken hypothesis) is that those that function at an index close to 1 are more 

“effective” engines at turning an initial endowment of money into valued economic work.  That 

hypothesis may very well be dead wrong.  But it cannot be tested without some comparability 

between economic ABMs.  So, it seems to me that having a concept of a theoretical Smax is a 

good thing to develop.   

 

For the Boltzmann regime, BSmax = A would seem to be the theoretical maximum. 

 

4.4 - BSindex – Boltzmann Regime 

So, I am ready to define the index for the Boltzmann regime, but first I am going to redefine BS 

to include the new dimensionless scaling factor BC = 1/ln(K).   
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So the entropy of a histogram BS is now calculated using this formula (compare with equation [7] 

above): 

 

𝑆𝐵
 =

1

ln(𝐾)
× [ln(𝐴!) − ∑(𝑙𝑛(𝑎𝑖!))

𝐾

𝑖=1

] 

 

 

 

[15] 

 
Substituting equations [12] and [15] into equation [14] I get: 

 

𝑺𝒊𝒏𝒅𝒆𝒙𝑩
 

𝑺𝑩
 

𝑺𝒎𝒂𝒙𝑩
 =

[𝐥𝐧(𝑨!) − ∑ (𝒍𝒏(𝒂𝒊!))𝑲
𝒊=𝟏 ]

𝑨 𝐥𝐧(𝑲)
 

 

 

 

[16] 

 

4.5 - SSmax – Shannon Regime 

This is my Shannon-regime equation for the definition of entropy of a histogram, as it stood at 

the end of discussion in Ref F (I am also going to adjust the scaling factor SC as I work through 

this): 

 

𝑆𝑆
 = 𝐶𝑆

 × [−𝐴 ∑(𝑝𝑖 ln(𝑝𝑖))

𝐾

𝑖=1

] 

 

 

 

[17] 

 
where SC is a dimensionless scaling factor.  This is the equivalent of equation [7] for the 

Boltzmann regime.  

 

pi is defined here as. 

 

𝑝𝑖 ≡
𝑎𝑖

𝐴
 

 

 

 

[18] 

 

Substituting [18] into [17] we get:   

 

𝑆𝑆
 = 𝐶𝑆

 × [−𝐴 ∑ (
𝑎𝑖

𝐴
ln (

𝑎𝑖

𝐴
))

𝐾

𝑖=1

] 

 

 

 

[19] 
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To find SSmax, substituting  from equation [5] for ai, this becomes: 

 

𝑆𝑆
 

𝑚𝑎𝑥 = 𝐶𝑆
 × [−𝐴 ∑ (



𝐴
ln (



𝐴
))

𝐾

𝑖=1

] 

 

 

 

[20] 

 

It will require a few careful steps to resolve this.  First, move the constant  / A outside of the 

sum, and cancel the A with A: 

 

𝑆𝑆
 

𝑚𝑎𝑥 = 𝐶𝑆
 × [−𝐴



𝐴
∑ (ln (



𝐴
))

𝐾

𝑖=1

] = 𝐶𝑆
 × [−∑ (ln (



𝐴
))

𝐾

𝑖=1

] 

 

 

 

[21] 

 

Second, within the ln() function replace  with A / K:  

 

𝑆𝑆
 

𝑚𝑎𝑥 = 𝐶𝑆
 × [−∑ (ln (

1

𝐾
))

𝐾

𝑖=1

] = 𝐶𝑆
 × [∑(ln(𝐾))

𝐾

𝑖=1

] 

 

 

 

[22] 

 

Now, resolve the sum of K constants: 

 

𝑆𝑆
 

𝑚𝑎𝑥 = 𝐶𝑆
 × [𝐾 ln(𝐾)] = 𝐶𝑆

 × 𝐴 ln(𝐾) 

 

 

[23] 

 

Again, as for equation [9] in the Boltzmann regime, I see that SSmax rises proportionally to ln(K), 

so a scaling factor that is the reciprocal of that will cause SSmax to be constant.  Setting SC equal 

to 1/Ln(K), we get. 

 

𝑆𝑆
 

𝑚𝑎𝑥 =
1

ln(𝐾)
× 𝐴 ln(𝐾) = 𝐴 

 

 

[24] 

 

So, I get the same equation for Smax in the Boltzmann regime (equation [12]) and in the Shannon 

regime (equation [24]).  In the Boltzmann regime, there was a non-analytical step in which some 

intuition had to be applied when interpreting a graph.  In the Shannon regime, the results were 

developed analytically. 



Orrery Software 11 NTF - Entropy in a Histogram 

 

 

4.6 - SSindex – Shannon Regime 

So, again, I am ready to define the index for the Shannon regime, but first I am going to redefine 

SS to include the new dimensionless scaling factor SC = 1/ln(K).   

 
So the entropy of a histogram in the Shannon regime SS is now calculated using this formula 

(compare with equation [17] above): 

 

𝑆𝑆
 =

1

ln(𝐾)
× [−𝐴 ∑(𝑝𝑖 ln(𝑝𝑖))

𝐾

𝑖=1

] 

 

 

 

[25] 

 
Define SSindex as: 

 

𝑆𝑖𝑛𝑑𝑒𝑥𝑆
   

𝑆𝑆
 

𝑆𝑚𝑎𝑥𝑆
 =

[−𝐴 ∑ (𝑝𝑖 ln(𝑝𝑖))𝐾
𝑖=1 ]

𝐴 ln(𝐾)
 

 

 

 

[26] 

 

Cancelling the As I get: 

 

𝑆𝑖𝑛𝑑𝑒𝑥𝑆
  =

[− ∑ (𝑝𝑖 ln(𝑝𝑖))𝐾
𝑖=1 ]

ln(𝐾)
 

 

 

 

[27] 

 

If I wish, in resolving the ln/ln division, I can write this as: 

 

𝑺𝒊𝒏𝒅𝒆𝒙𝑺
  = − ∑(𝒑𝒊 𝐥𝐨𝐠𝑲(𝒑𝒊))

𝑲

𝒊=𝟏

 

 

 

 

[28] 

 

I like the above equation, but it can be presented in a different form.  Replacing pi 

with ai/A I get: 

 

𝑆𝑖𝑛𝑑𝑒𝑥𝑆
  = − ∑ (

𝑎𝑖

𝐴
log𝐾 (

𝑎𝑖

𝐴
))

𝐾

𝑖=1

= −
1

𝐴
∑ (𝑎𝑖 log𝐾 (

𝑎𝑖

𝐴
))

𝐾

𝑖=1

 

 

 

 

[29] 
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Breaking out the parts of the ratio within the logarithm, I get: 

 

𝑆𝑖𝑛𝑑𝑒𝑥𝑆
  = −

1

𝐴
∑(𝑎𝑖[log𝐾(𝑎𝑖) − log𝐾(𝐴)])

𝐾

𝑖=1

 

 

 

 

[30] 

 

Separating the sum into its two constituent sums: 

 

𝑆𝑖𝑛𝑑𝑒𝑥𝑆
  = −

1

𝐴
[∑ 𝑎𝑖 log𝐾(𝑎𝑖)

𝐾

𝑖=1

− ∑ log𝐾(𝐴)

𝐾

𝑖=1

] 

 

 

 

[31] 

 

This easily resolves to: 

 

𝑆𝑖𝑛𝑑𝑒𝑥𝑆
  = −

1

𝐴
[∑ 𝑎𝑖 log𝐾(𝑎𝑖)

𝐾

𝑖=1

− 𝐾 log𝐾(𝐴)] 

 

 

 

[32] 

 

𝑆𝑖𝑛𝑑𝑒𝑥𝑆
  =

𝐾 log𝐾(𝐴)

𝐴
−

∑ 𝑎𝑖 log𝐾(𝑎𝑖)𝐾
𝑖=1

𝐴
 

 

 

 

[33] 

 

5 - Summary 

In either regime of calculations, I get a surprisingly compact formula for the 

entropic index.  (See equations [16] and [28].) 

 In both cases, the maximum entropy possible is A, and the index is the entropy 

divided by A.   

 In both cases, the result is independent of the number of bins in the histogram: 

o as long as the number of agents in the model does not change, and  

o as long as the bin widths do not change. 

 The assumption that K is a constant has been relaxed, as it is of no consequence 

if it changes.  However, the assumptions that A and W are constant has not been 

relaxed. 

 However, when extending these formula to models for which K varies from tick 

to tick, it needs more study.  I have not thoroughly tested the above two 

conditions for those circumstances, although I have implemented the entropic 
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index, on a trial basis, in ModEco and in the BDY models.  I just have not 

studied the effects yet, or determined for myself that the same formulae still 

work.  In those cases, I kept the bin widths the same, but added or removed bins 

at the ends of the ranges as needed, an adjusted the entropic indices by using the 

scaling factor C1 = 1/Ln(K1) and C2 = 1/Ln(K2).  But, that was before I realized 

that 1/Ln(K) was a universal scaling factor for both regimes. 

 

When I combine this with the results of the Ref F exploration of Shannon vs 

Boltzmann, and the Ref H exploration of ln(x!) vs GammaLn( (x+1)!) it seems that 

the most general (i.e. widely useful) formula for the entropic index is this, which 

has two equivalent forms: 

 

 

𝑺𝒊𝒏𝒅𝒆𝒙 
 =

[𝑮𝒂𝒎𝒎𝒂𝒍𝒏(𝑨 + 𝟏) − ∑ (𝑮𝒂𝒎𝒎𝒂𝒍𝒏(𝒂𝒊 + 𝟏))𝑲
𝒊=𝟏 ]

𝑨 𝐥𝐧(𝑲)
 

 

 

 

[29] 

 

𝑺𝒊𝒏𝒅𝒆𝒙 
 =

[𝑮𝒂𝒎𝒎𝒂𝒍𝒏(𝑨 + 𝟏) − ∑ (𝑮𝒂𝒎𝒎𝒂𝒍𝒏(𝒂𝒊 + 𝟏))𝑲
𝒊=𝟏 ]

[𝑮𝒂𝒎𝒎𝒂𝒍𝒏(𝑨 + 𝟏) − (𝑲 × (𝑮𝒂𝒎𝒎𝒂𝒍𝒏(+ 𝟏)))]
 

 

 

 

[30] 

 

where K  [0, WealthMAX], and  = A / K. 

 

 


