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The Antarctic Ice Sheet is an important indicator of climate change and driver of sea-level rise. Here we combine satellite 
observations of its changing volume, flow and gravitational attraction with modelling of its surface mass balance to show 
that it lost 2,720 ± 1,390 billion tonnes of ice between 1992 and 2017, which corresponds to an increase in mean sea level 
of 7.6 ± 3.9 millimetres (errors are one standard deviation). Over this period, ocean-driven melting has caused rates of 
ice loss from West Antarctica to increase from 53 ± 29 billion to 159 ± 26 billion tonnes per year; ice-shelf collapse has 
increased the rate of ice loss from the Antarctic Peninsula from 7 ± 13 billion to 33 ± 16 billion tonnes per year. We find 
large variations in and among model estimates of surface mass balance and glacial isostatic adjustment for East Antarctica, 
with its average rate of mass gain over the period 1992–2017 (5 ± 46 billion tonnes per year) being the least certain.

The ice sheets of Antarctica hold enough water to raise global sea 
level by 58 m1. They channel ice to the oceans through a network 
of glaciers and ice streams2, each with a substantial inland catch-

ment3. Fluctuations in the mass of grounded ice sheets arise owing to 
differences between net snow accumulation at the surface, meltwater 
runoff and ice discharge into the ocean. In recent decades, reductions in 
the thickness4 and extent5 of floating ice shelves have disturbed inland 
ice flow, triggering retreat6,7, acceleration8,9 and drawdown10,11 of many 
marine-terminating ice streams. Various techniques have been developed 
to measure changes in ice-sheet mass, based on satellite observations 
of their speed12, volume13 and gravitational attraction14 combined with 
modelled surface mass balance (SMB)15 and glacial isostatic adjustment 
(GIA; the ongoing movement of land associated with changes in ice load-
ing)16. Since 1989, there have been more than 150 assessments of ice 
loss from Antarctica based on these approaches17. An inter-comparison 
of 12 such estimates18 demonstrated that the three principal satellite 
techniques provide similar results at the continental scale and, when 
combined, lead to an estimated mass loss of 71 ± 53 billion tonnes of 
ice per year (Gt yr−1) averaged over the period 1992–2011 (errors are 
one standard deviation unless stated otherwise). Here, we extend this 
assessment to include twice as many studies, doubling the overlap period 
and extending the record to 2017.

Satellite observations
We collated 24 independently derived estimates of ice-sheet mass bal-
ance (Fig. 1) that were determined within the period 1992–2017 and 
based on the techniques of satellite altimetry (seven estimates), 
gravimetry (15 estimates) or the input–output method (two esti-
mates). Altogether, 24, 24 and 23 individual estimates of mass change 
were computed within defined geographical limits3,19 for the East 
Antarctic Ice Sheet (EAIS), West Antarctic Ice Sheet (WAIS) and 
Antarctic Peninsula Ice Sheet (APIS), respectively. We compared the 
rates of ice-sheet mass change (see Methods) over common intervals 
of time18. We then averaged the rates of ice-sheet mass balance using 
the same class of satellite observations to produce three technique- 
dependent time series of mass change in each geographical region 
(see Methods). Within each class, we computed the uncertainty in  
the annual mass rate as the mean uncertainty of the individual  

contributions. The final, reconciled estimate of ice-sheet mass change 
for each region was computed as the mean of the technique- 
dependent values available at each epoch (Fig. 1). In computing the 
associated uncertainty, we assume that the errors for each technique 
are independent. To estimate the cumulative mass change and its 
uncertainty (Fig. 2), we integrated the reconciled estimates for each 
ice sheet and weighted the annual uncertainty by / n1 , where n is the 
number of years since the start of each time series. We computed 
Antarctic Ice Sheet (AIS) mass trends as the linear sum of the regional 
trends and the uncertainties in the mass trends as the root-sum-square 
of the regional uncertainties (Table 1).

Trends in Antarctic ice-sheet mass
The level of disagreement between individual estimates of ice-sheet mass 
balance increases with the area of each ice-sheet region, with average 
per-epoch standard deviations of 11 Gt yr−1, 21 Gt yr−1 and 37 Gt yr−1 
at the APIS, the WAIS and the EAIS, respectively (Fig. 1, Methods). 
Among the techniques, gravimetric estimates are the most abundant 
and also the most closely aligned, although their spread increases in East 
Antarctica, where GIA remains poorly constrained20 and is least certain 
when spatially integrated21–32, owing to the vast extent of the region. 
Solutions based on satellite altimetry and the input–output method run 
for the entire record, roughly twice the duration of the gravimetry time 
series. Although most (59%) estimates are within one standard deviation 
of the technique-dependent mean, a few (6%) depart by more than three 
standard deviations. At the Antarctic Peninsula, the 25-year average 
rate of ice-sheet mass balance is −20 ± 15 Gt yr−1, with an increase of 
about 15 Gt yr−1 in losses since 2000. The strongest signal and trend has 
occurred in West Antarctica, where rates of mass loss increased from 
53 ± 29 Gt yr−1 to 159 ± 26 Gt yr−1 between the first and final five years 
of our survey; the largest increase occurred during the late 2000s when 
ice discharge from the Amundsen Sea sector accelerated33. Both of these 
regional losses are driven by reductions in the thickness and extent of 
floating ice shelves, which has triggered the retreat, acceleration and 
drawdown of marine-terminating glaciers34. The least certain result is in 
East Antarctica, where the average 25-year mass trend is 5 ± 46 Gt yr−1. 
Overall, the AIS lost 2,720 ± 1,390 Gt of ice between 1992 and 2017, an 
average rate of 109 ± 56 Gt yr−1.

*A list of authors and their affiliations appears at the end of the paper.
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Surface mass balance
Knowledge of the ice-sheet SMB is an essential component of the 
input–output method, which subtracts solid-ice discharge from net 
snow accumulation, and aids interpretation of mass trends derived 
from satellite altimetry and gravimetry. Snowfall is the main driver 
of temporal and spatial variability in AIS surface mass change35,36. 
Although locally important, spatially integrated sublimation and melt-
water runoff are typically one and two orders of magnitude smaller, 
respectively. In the absence of observation-based maps, AIS SMB is 
usually taken from atmospheric models, evaluated with in situ and 
remotely sensed observations15,37–40. To assess Antarctic SMB, we com-
pared two global reanalysis products (JRA55 and ERA-Interim) and 
two regional climate models (RACMO2 and MARv3.6) (see Methods). 
ERA-Interim is usually regarded as the best-performing reanalysis 
product over Antarctica, albeit with a dry bias in the interior and 
overestimated rain fraction39,41,42. Spatially averaged accumulation 
rates peak at the Antarctic Peninsula, and are roughly three and seven 
times lower in West and East Antarctica, respectively (Extended Data 
Figs. 2, 3). Compared to the all-model average SMB of 1,994 Gt yr−1, 
the regional climate models give values 4.7% higher and the reanalyses 
7% lower. These differences can be attributed to the higher resolution 
of the regional models, which resolve the steep coastal precipitation 

gradients in greater detail, and to their improved representation of polar 
processes. The temporal variability of all products is similar and they 
all agree on the absence of an ice-sheet-wide trend in SMB over the 
period 1979–2017, which implies that recent mass loss from the AIS is 
dominated by increased solid-ice discharge into the ocean.

Glacial isostatic adjustment
Gravimetric estimates of mass change are strongly influenced by the 
method used to correct for GIA16. In this study, six different GIA 
models were used21,24,26,30,31,43. We also assessed nine continent-wide 
forward-model simulations and two regional model simulations to 
better understand uncertainties in the GIA signal; we reprocessed the 
gravimetry estimates of mass balance using the W12a26 and IJ05_R231 
GIA models for comparison with earlier work18 (see Methods). The 
net gravitational effect of GIA across Antarctica is positive, and the 
mean and standard deviation of the continent-wide GIA models 
(54 ± 18 Gt yr−1) is very close to that of the W12a (56 ± 27 Gt yr−1) 
and IJ05_R2 (55 ± 13 Gt yr−1) models. The narrow spread probably 
reflects the difficulty of quantifying the timing and extent of past ice-
sheet change and the absence of lateral variations in Earth rheology 
within some models44. Models predict the greatest rates of solid-Earth 
uplift (5–7 mm yr−1 on average) in areas where GIA is a substantial 
component of the regional mass change, such as the Amundsen, Ross 
and Filchner–Ronne sectors of West Antarctica (see Extended Data 
Fig. 4), but also the greatest variability (for example, a standard devi-
ation of more than 10 mm yr−1 in the Amundsen sector). Away from 
areas with large GIA signals there is low variance among the models 
and broad agreement with GPS observations45. Nevertheless, most 
models considered here do not account for ice-sheet change during the 
past few millennia, because it is poorly known. Inaccurate treatment of 
low-degree harmonics associated with the global GIA signal can also 
bias gravimetric mass-balance calculations46. If the GIA signal includes 
a transient component associated with recent ice-sheet change, it will 
bias mass-trend estimates and should be accounted for in future work.

Outlook
Improvements in assessments of ice-sheet mass balance are still possi-
ble. Airborne snow radar47,48 is a powerful tool for evaluating models of 
SMB and firn compaction over large spatial (thousands of kilometres) 
and temporal (centennial) scales, in addition to the ice cores that have 
traditionally been used49. Geological constraints on the ice-sheet his-
tory20 and GPS measurements of contemporary uplift45,50 enable GIA 
models to be scrutinized and calibrated. More of both of these types of 
datasets are needed, especially in East Antarctica. Given their apparent 
diversity, the spread of models of GIA and SMB should be evaluated in 
concert with the satellite gravimetry, altimetry and velocity measure-
ments. A reassessment of the satellite measurements acquired during 
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Fig. 1 | Antarctic Ice Sheet mass balance. a–c, Rate of mass change  
(dM/dt) of the APIS (a), WAIS (b) and EAIS (c), as determined from the 
various satellite-altimetry (purple), input–output-method (blue) and 
gravimetry (green) assessments included in this study. In each case,  
dM/dt is computed from time series of relative mass change using a  
three-year window at annual intervals. An average of estimates across  
each class of measurement technique is also shown for each year (black). 
The estimated 1σ, 2σ and 3σ ranges of the class averages are shaded in 
dark, mid and light grey, respectively; the number of individual  
mass-balance estimates collated at each epoch is shown below.
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Fig. 2 | Cumulative Antarctic Ice Sheet mass change. The cumulative 
ice-sheet mass changes (solid lines) are determined from the integral of 
monthly measurement-class averages (for example, the black lines in Fig. 1) 
for each ice sheet. The estimated 1σ uncertainty of the cumulative change 
is shaded. The dashed lines show the results of a previous assessment18.
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the 1990s would address the imbalance that is present in the current 
record. Alternative techniques (see, for example, ref. 51) for combin-
ing satellite datasets should be explored, and satellite measurements 
with common temporal sampling should be contrasted. The ice-sheet 
mass-balance record should now be separated into the contributions 
due to short-term fluctuations in SMB and to longer-term trends in 
glacier ice. In addition to these improvements, continued satellite 
observations are, of course, essential.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
018-0179-y
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METHODS
Data. No statistical methods were used to predetermine sample size.

We analyse five groups of data: mass-balance estimates determined from sat-
ellite altimetry, gravimetry and the input–output method, and model estimates 
of SMB and GIA. We compute the datasets using common spatial and temporal 
domains to facilitate their aggregation, according to previously reported methods 
(see Supplementary Table 1). In total, 24 mass-balance datasets were included. 
The data include 25 years of satellite-radar-altimeter measurements, 24 years of 
satellite input–output-method measurements and 14 years of satellite-gravimetry 
measurements (Extended Data Fig. 1). Among these data are estimates of ice-sheet 
mass balance for each ice sheet derived from each satellite technique. In compari-
son to the first IMBIE assessment18, new satellite missions, updated methodologies 
and improvements in geophysical corrections have contributed to an increase in 
the quantity, duration and overlap period of data used here. In addition, two new 
experiment groups have assessed 11 GIA and 4 SMB models. The complete list of 
datasets is provided in Supplementary Table 1.
Drainage basins. In this assessment, we analyse mass trends using two sets of 
ice-sheet drainage basins (Extended Data Fig. 2) to ensure consistency with those 
used in the first IMBIE assessment18 and to evaluate an updated definition tailored 
towards assessments using the input–output method. The first drainage-basin set 
was delineated using surface elevation maps derived from ICESat-1 on the basis 
of the provenance of the ice and includes 27 basins3. The second set was updated 
to consider other factors such as the direction of ice flow and includes 18 basins 
in Antarctica2,19. To assess the effect of the different sets on the estimates of ice-
sheet mass balance, we compared mass-balance determinations between the two 
delineations of ice-sheet drainage basins. This evaluation was facilitated by seven 
estimates (altimetry or gravimetry) determined using both sets. At the scale of 
the major ice-sheet divisions, the delineations produce similar total extents. By 
far the largest differences occur in the delineation (or definition) of East and West 
Antarctica, owing to differences in the position of the ice divide that separate 
them. Within these regions, the root-mean-square difference between 26 pairs of 
estimates of ice-sheet mass balance computed using the two drainage-basin sets 
is 8.7 Gt yr−1. This difference is small in comparison to the certainty of individual 
assessments of ice-sheet mass balance.
Computing rates of mass change. The raw satellite mass-balance data are time 
series of either relative mass change ∆M(t) or the rate of mass change dM(t)/dt, 
plus their associated uncertainty, integrated over at least one of the ice-sheet regions 
defined in the standard drainage-basin sets. In the case of ∆M(t), the time series 
represents the change in mass through time relative to some nominal reference 
value. The duration and sampling frequency of the time series was not restricted. 
In practice, few mass time series were of ∆M(t) and dM(t)/dt. Because the 
inter-comparison exercise is based on comparing and aggregating dM(t)/dt, a 
common solution was implemented to derive dM(t)/dt values from datasets of 
∆M(t) only. Each ∆M(t) time series was used to generate a time-varying estimate 
of dM(t)/dt, d[∆M(t)]/dt = dM(t)/dt, and an estimate of the associated uncertainty, 
using a consistent approach. Time-varying estimates of dM(t)/dt were computed 
by applying a sliding fixed-period window to the ∆M(t) time series. At each node, 
defined by the sampling period of the input time series, dM(t)/dt and its standard 
error σdM(t)/dt were estimated by fitting a linear trend to data within the window 
using a weighted least-squares approach, with each point weighted by its respective 
error variance σ∆M t( )

2 . The regression error σdM(t)/dt incorporates measurement 
errors and model structural error due to any variability that deviates from linear 
trends in ice mass, and may be a conservative estimate in locations where such 
deviation is present. Time series of dM(t)/dt computed using this approach were 
truncated by half the moving-average window period. When integrated, the  
dM(t)/dt time series correspond to a low-pass-filtered version of the original ∆M(t) 
time series. This linear regression assumes that uncertainties are uncorrelated; 
however, the smoothing that we apply during the calculation of the trend causes 
data points to be correlated during several epochs beyond the sliding window.
Surface mass balance. Ice-sheet SMB comprises various processes governed by the 
interaction of the superficial snow and firn layers with the atmosphere. A direct 
mass exchange occurs via precipitation and surface sublimation. Snow drift and the 
formation of meltwater and its subsequent refreezing or retention redistribute mass 
spatially or lead to further mass loss via erosion and sublimation or via runoff. Here 
we compare a range of SMB products. Four SMB model solutions were considered 
for Antarctica (Extended Data Table 1): two regional models (RACMO2.340 and 
MARv3.652) and two global reanalysis products (JRA5553 and ERA-Interim54). The 
two regional climate models agree well in terms of their spatially integrated SMB, 
apart from the Peninsula where there is an offset of about 10 Gt per month between 
them (Extended Data Fig. 3). However, the reanalysis products underestimate 
the average SMB compared to the regional climate models by 200–350 Gt yr−1. 
Our SMB assessment illustrates that products of similar class (climate models or 
reanalysis products) agree well, suggesting that groupings of their output may 
be appropriate. However, we found that model resolution is important when  

estimating SMB and its components, because contributions that differed by only 
the spatial resolution yielded differences at the regional scale.
Glacial isostatic adjustment. GIA is the delayed response of the solid Earth to 
changes in time-variable surface loading through the growth and decay of ice 
sheets, and associated changes in sea level. Because GIA contributes to changes 
in the ice-sheet surface elevation and gravity field, it must be accounted for in 
measurements of the change in elevation and gravity for the purpose of isolating 
the contribution solely caused by ice-sheet imbalance. Here we compare differ-
ent solutions derived from continuum-mechanical forward modelling to inform 
the interpretation of the satellite altimetry and gravimetry data that depend on 
the correction and to advise future assessments. Twelve GIA contributions were 
received that cover Antarctica (Extended Data Table 2), ten of which are global 
models22–29,31 and two of which are regional models32. Because a broad array of 
data may be used to constrain GIA forward models, we anticipate spread in the 
predictions.

Here we assess the degree of similarity between the various GIA model solu-
tions. We identified areas of enhanced present-day vertical surface motion and 
(dis-)agreement between contributions by averaging the uplift rates over the contri-
butions and computing the respective standard deviations (Extended Data Fig. 4). 
In some cases, it was necessary to estimate the GIA contribution to gravimetric 
mass trends; this was done using common geographical masks and truncation and 
a standardized treatment of low-degree harmonics. In Antarctica, the Amundsen 
Sea sector and the regions covered by the Ross and Filchner Ronne ice shelves 
stand out as having both high uplift rates (5–7 mm yr−1 on average) and high 
variability in uplift rates (peaking at more than 10 mm yr−1 standard deviation in 
the Amundsen sector) among the models considered. Elsewhere in coastal regions, 
uplift occurs at more moderate rates (about 2 mm yr−1 on average); the interior 
of East Antarctica exhibits slow subsidence. In these regions, the average signal is 
accompanied by relatively low variance among the GIA models (0–1.5 mm yr−1 
standard deviation). None of the models fully captures portions of the uplift that 
are observed to be very large (see, for example, ref. 55); hence, we anticipate a bias 
towards low values for the GIA correction averaged over such regions. In areas of 
low mantle viscosity, however, such as part of the WAIS, the GIA signal related to 
the Last Glacial Maximum may be overpredicted, and it is not clear whether a bias 
exists at the continental scale.

Differences between the model predictions arise for various additional reasons. 
Technical differences in the modelling approach, for example, relating to the con-
sideration of self-gravitation, ocean loading, rotational feedback and compressibil-
ity, are most important at the global scale, but may explain only small differences 
among the regional models. Differing treatment of ice and ocean loading in regions 
that have experienced marine-based grounding-line retreat during the last gla-
cial cycle may explain the differences in model predictions for the ICE_6G_C/
VM5a combination (see Supplementary Table 1). Some small differences should be 
expected when comparing models that use spherical-harmonic and finite-element 
approaches. Looking beyond consideration of the model physics, larger differ-
ences arise owing to the various approaches used to determine the two principal  
unknowns associated with forward modelling of GIA—ice history and Earth  
rheology. There is no generally accepted ‘best approach’ to determining these 
inputs, and useful advances can be made by comparing the results of complemen-
tary approaches. In the models considered here, approaches to determining the ice 
history include dynamical ice-sheet modelling, coupled ice-sheet–GIA modelling, 
tuning to fit geodetic constraints, tuning to fit geological constraints and use of 
direct observations of historical ice-sheet change. When defining the rheological 
properties of the solid Earth, most studies have opted to use a Maxwell rheology 
to define a radially symmetric Earth; however, the use of a power-law rheology or 
a fully three-dimensional Earth model to capture the spatial complexity of mantle 
properties is increasingly popular. An intermediate approach used in many of 
the datasets included here has been to develop a regional GIA model that reflects 
local Earth structure. Such models can be tuned, albeit imperfectly, to provide as 
accurate a representation of GIA in that region as is possible. However, it remains a 
difficult and important challenge to incorporate these regional studies into a global 
framework. Finally, although four of the GIA models that we consider provide 
a measure of uncertainty, and several studies have used an ensemble modelling 
approach23,29, an important future goal for the GIA modelling community is the 
inclusion of robust error estimates for all model predictions.

To compare the GIA models, we used Stokes coefficients that relate to their grav-
itational signal to determine the approximate magnitude of the effect of applying 
each correction to GRACE data (Extended Data Table 2). This is a preliminary 
assessment, because the effect of applying a GIA correction depends also on the 
methods used to process the GRACE data. Moreover, an agreement on the modelling  
of feedbacks has so far not been reached within the GIA community, leading to a 
large spread in the modelled degree-2 coefficients and possibly a strong bias when 
a correction is applied that is inconsistent with the GRACE observations (up to 
about 40 Gt yr−1). In addition, none of the current GIA datasets includes estimates 
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of the GIA-induced geocentre motion (degree-1 coefficients). Therefore, we omit 
degree-1 and -2 coefficients in our assessment of the GIA-induced apparent mass 
change. From models that represent GIA in Antarctic only, we estimate that this 
omission could change the apparent mass-change value by up to 20%; however, 
this potential error is not currently included in the GIA error budget. There is 
relatively good agreement between the ten models that cover all of Antarctica 
(Extended Data Table 2); the estimated GIA contribution ranges from +12 Gt yr−1 
to +81 Gt yr−1; the mean value is 56 Gt yr−1. Although the solution from ref. 44 is 
a notable outlier, it is the only one to account for three-dimensional variations in 
Earth’s rheology. It will be interesting to compare this result with other such models 
that are under development.

Two of the GIA models32,56 are regional: although they cannot be compared with 
the continental-scale models directly, the magnitude of their signals is nonetheless 
included for interest.
Mass-balance intra-comparison. First, we compare estimates of mass change 
within each of the three geodetic-technique experiment groups to assess the 
degree to which results from common techniques concur and to derive individ-
ual, aggregated estimates of mass change from each technique. In each case, we 
compare estimated rates of mass change derived from a common technique over 
a common geographical region and over the full period of the respective datasets. 
Where datasets were computed using both drainage-basin definitions, we present 
the arithmetic mean of the two estimates. This is justified because the choice of 
drainage-basin set has a very small (less than 10 Gt yr−1) effect on estimates of mass 
balance at the ice-sheet scale and even less at the regional scale. Within each exper-
iment group, we perform an unweighted average of all individual data to obtain 
a single estimate of the rate of mass change per ice sheet for each geodetic tech-
nique. In a few cases, it was not possible to determine time-varying rates of mass 
change from individual estimates, because only constant rates of mass change and 
constant cumulative mass changes were supplied. Although the effect of averaging 
these datasets with time-varying solutions is to dampen the temporal variability 
present within the series of finer resolution, they are retained for completeness. 
We estimate the uncertainty of the average mass trends that emerge from each 
experiment group as the average of the errors associated with each individual 
estimate at each epoch.

To aid comparison, we (i) compute time-variable rates of mass change and their 
associated uncertainty over successive 36-month periods stepped in one-month 
intervals from time-varying cumulative mass changes, and (ii) average rates of 
mass change over one-year periods to remove signals associated with seasonal 
cycles. Time-varying rates of mass change are truncated at the start and end of each 
series to reflect the half-width of the time interval over which rates are computed, 
although this period is recovered on integration to cumulative mass changes. The 
extent to which we are able to analyse differences in mass-balance solutions that 
emerge from common satellite approaches is limited by the mismatch in temporal 
resolution of the individual datasets, which makes methodological and sampling 
differences difficult to separate.
Gravimetry mass-balance intra-comparison. Within the gravimetry experiment 
group, we assessed 15 estimates of mass balance derived from the GRACE sat-
ellites, in entirety spanning the period July 2002 to September 2016. Of these 
datasets, four57–60 were derived with direct imposition of the GRACE level-1 
K-band range data. These impositions result in four different, independently 
derived, mascon approaches. Other methods often refer to ‘mascon analysis’, 
but are conducted on post-spherical-harmonic expansions and without impos-
ing the level-1 K-band range data. We distinguish the later methods, referring 
to them as ‘post-spherical-harmonic mascons’. Eleven contributions are derived 
from monthly spherical-harmonic solutions of the global gravity field using dif-
ferent approaches55,56,61–66, which can be loosely classified as (i) region-integra-
tion approaches55,65,66, (ii) post-spherical-harmonic mascon approaches56,61–63, 
(iii) forward-modelling approaches62,64, which essentially involve modelling of 
mass change with iterative comparison to the GRACE-derived signal, and (iv) 
approaches that use Slepian functions67. One final estimate68 made use of satellite 
altimetry data; although this estimate was excluded from our gravity ensemble 
average because it is a hybrid solution, it is presented alongside the gravimetry-only 
results for comparison. No restrictions were imposed on the choice of GIA correc-
tion; among the GRACE solutions we consider six different models21,24,26,30,31,43. 
However, we did assess a wider set of nine continent-wide forward models and two 
regional models to better understand uncertainties in the GIA signal.

In total, there were 15 estimates of mass balance for each of the APIS, WAIS 
and EAIS. All were time-varying, cumulative mass-change solutions—the primary 
GRACE observable—and we computed time-varying rates of mass change from 
these data. Combining all of the individual mass-balance estimates, the effective 
(average) temporal resolution of the aggregated solution is one year. Further details 
of the gravimetry datasets and methods are included in Supplementary Table 1.

In Extended Data Fig. 5 we show a comparison of the rates of mass change 
obtained from all gravimetry mass-balance solutions, calculated over the three 

main ice-sheet regions. At individual epochs, differences between time-varying 
rates of mass change are generally less than 50 Gt yr−1 in each ice-sheet region, and 
typically in the range 10–20 Gt yr−1. Over the full period of the data, individual 
rates of mass balance for the APIS, WAIS and EAIS vary between −80 Gt yr−1 and 
+10 Gt yr−1, −260 Gt yr−1 and −20 Gt yr−1, and −120 Gt yr−1 and +200 Gt yr−1, 
respectively. Considering all of the gravimetry data (Extended Data Table 3), the 
standard deviation of mass trends estimated during the period 2005–2015 is less 
than 24 Gt yr−1 in all three ice-sheet regions, with the largest spread occurring 
in the EAIS. In all three ice-sheet regions, the spread of individual mass balance 
estimates is well represented by the mean, considering the uncertainties of the 
individual and aggregated datasets.
Altimetry mass-balance intra-comparison. We assessed seven radar- and laser- 
altimetry-derived AIS mass-balance datasets, in entirety spanning the period April 
1992 to July 2017. In total, six estimates of mass change were for the APIS, seven 
were for the EAIS and seven were for the WAIS. Of these, four included data from 
radar altimetry and six from laser altimetry. Various techniques were used to derive 
the elevation and mass trends69–75. Only two of the altimetry datasets were time 
series of cumulative mass change, from which we computed time-varying rates of 
mass change. The remaining altimetry datasets were constant rates of mass change, 
which appear in our altimetry average as time-invariant solutions. The period 
over which altimetry rates of mass change were computed ranged from 2 years to 
24 years. In consequence, the aggregated dataset has a temporal resolution that is 
lower than annual. Including all individual mass-balance datasets, the effective 
(average) temporal resolution of the aggregated solution is 3.3 years. Further details 
of the altimetry datasets and methods are included in Supplementary Table 1.

With a few exceptions, rates of mass change determined from radar and laser 
altimetry tend to differ by less than 100 Gt yr−1 at all times in each ice-sheet region 
(Extended Data Fig. 5). The main exceptions are in the EAIS, where one estimate74 
reports mass trends that are roughly 100 Gt yr−1 more positive than all others 
during the ERS and ICESat periods, and in the WAIS, where two estimates71,74 
report rates that are about 70 Gt yr−1 less negative than the others during the 
ICESat period. Among the remaining datasets, the closest agreement occurs at 
the APIS, where mass trends agree to within 30 Gt yr−1 at all times; the poorest 
agreement occurs at the EAIS, where mass trends depart by up to 100 Gt yr−1. The 
largest differences are between datasets that are constant in time during periods 
where rapid changes in mass balance occur in the annually resolved time series, 
suggesting that a proportion of the difference is due to their poor temporal reso-
lution. Mass-balance solutions from the relatively short (six-year) ICESat mission 
also appear to show larger spreads compared to those determined from longer 
(decade-scale) radar-altimetry missions. This larger spread is due in part to differ-
ences in the bias-correction models applied to ICESat data74,76–78 and in part to the 
large influence of firn densification on altimetry measurements over short periods, 
which have been corrected for using different models. Firn-densification models 
are generally not applied to mass-balance solutions determined from radar altime-
try. Further analysis of the corrections for bias between ICESat campaigns and firn 
compaction is required to establish the statistical significance of the differences and 
to reduce their collective uncertainty. Comparing rates of mass change (Extended 
Data Table 3), the average standard deviation of all mass trends at each epoch over 
the common period 2005–2015 is less than 54 Gt yr−1 in all four ice-sheet regions. 
The largest spread between the individual values occurs in the EAIS. Other than 
this sector, the individual estimates lie close to the ensemble average, considering 
the respective uncertainty of the measurements.
Input–output-method intra-comparison. Although the input–output method is 
the most direct measure of changes in mass fluxes, a key difficulty is that, to assess 
mass balance, it must differentiate between two large numbers—one for annual 
SMB and the other for discharge plus grounding-line migrations—and deal appro-
priately with the error budgets of both. A consequence of this complexity is that 
few input–output-method datasets exist at the ice-sheet scale. Here we collate just 
two input–output-method datasets, both based on the same method79—far fewer 
than were considered for altimetry and gravimetry. The first dataset spans the 
period 1992–201018; the second is limited to the period 2002–2016. The same SMB 
model (RACMO2.3) was used in both assessments. Further details of the input–
output-method datasets and methods are included in Supplementary Table 1.

We compare the two datasets during the period 2002–2010 (when the datasets 
overlap; Extended Data Table 3). The smallest differences (up to 30 Gt yr−1) arise 
in the APIS and the WAIS; the largest differences (up to 70 Gt yr−1) occur at 
the EAIS. In all cases, the average difference between estimates of mass balance 
derived from each dataset is comparable to the estimated uncertainty. Including 
both datasets, rates of mass balance over the period 1992–2016 for the APIS, WAIS 
and EAIS range from −125 Gt yr−1 to +25 Gt yr−1, −300 Gt yr−1 to +100 Gt yr−1 
and −200 Gt yr−1 to +200 Gt yr−1, respectively (Extended Data Fig. 5). The origin 
of the differences between the two datasets requires further investigation.
Ice-sheet mass-balance inter-comparison. To assess the degree to which  
the satellite techniques concur, we used the aggregated time series from each  
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geodetic-technique experiment group to compute changes in ice-sheet mass bal-
ance within common geographical regions and over a common interval of time 
(the overlap period). We calculate the aggregated time series as the arithmetic mean 
of all available rates of ice-sheet mass balance derived from the same satellite tech-
nique at each available epoch. We used the individual ice sheets and their integrals 
as common geographical regions. The maximum duration of the overlap period is 
limited to the 14-year interval (2002–2016) when all three satellite techniques were 
optimally operational. However, we also considered the availability of mass-balance 
datasets, which leads us to select the period 2003–2010 as the optimal interval (see 
Fig. 1). When the aggregated mass-balance data from all three experiment groups 
are degraded to a common temporal resolution of 36 months, the time series are 
on average well correlated (0.5 < r2 < 0.9) at the APIS and WAIS. At the EAIS, 
however, the aggregated altimetry mass-balance time series are poorly correlated 
(r2 < 0.1) in time with the aggregated gravimetry and input–output-method data. 
Possible explanations for this include the relatively high short-term variability in 
mass fluctuations in this region, the relatively low trend in mass and the hetero-
geneous temporal resolution of the aggregated altimetry dataset. Over longer  
periods, marked increases in the rate of mass loss from the WAIS are also recorded 
in all three satellite datasets.

Because the comparison period is long in relation to the timescales over  
which SMB fluctuations typically occur, their potential effect on the overall 
inter-comparison is reduced. The closest agreement between individual estimates 
of ice-sheet mass balance occurs at the APIS and the WAIS, where the stand-
ard deviation across all techniques is 15–41 Gt yr−1 (Extended Data Table 4). 
The greatest departure occurs at the EAIS, where the input–output-method and 
gravimetry estimates of mass balance differ by about 80 Gt yr−1 and the standard 
deviation of all three estimates is about 40 Gt yr−1. This high degree of variance is 
expected because of the relatively large size of the region, the small amplitude of 
signals and the poor independent controls on coastal SMB. When compared to 
the inter-technique mean and standard deviation, all estimates of ice-sheet mass 
balance determined from the individual satellite techniques are now in agreement, 
given their respective uncertainties. In contrast to the first IMBIE assessment18, 
this finding also now holds at continental and global scales. We therefore conclude 
that estimates of mass balance determined from independent geodetic techniques 
agree when compared to their respective uncertainties.

Several noteworthy patterns in the distribution of mass-balance estimates deter-
mined during the overlap period (2003–2010) merit further discussion. Estimates 
of mass balance derived from satellite altimetry and gravimetry agree to within 
15 Gt yr−1 on average and with the mean of all three techniques, in all ice-sheet 
regions. By contrast, estimates of mass balance determined from the input–output 
method are 55 Gt yr−1 more negative on average than the mean in all ice-sheet 
regions. However, despite the bias, the input–output-method estimates remain in 
agreement because their estimated uncertainties are relatively large (approximately 
three times larger than those of the other techniques). A more detailed analysis 
of the primary and ancillary datasets is required to establish whether this bias is 
significant or systematic.
Ice-sheet mass-balance integration. We combined estimates of ice-sheet mass 
balance derived from each geodetic-technique experiment group to produce a 
single, reconciled estimate, following the same approach as for the first assessment. 
This estimate was computed as the arithmetic mean of the average rates of mass 
change from each experiment group, within the regions of interest and at the time 
periods for which the experiment-group mass trends were determined. We esti-
mated the uncertainty of the mass-balance data using the following approach. 
Within each experiment group, we estimated the uncertainty of mass trends as the 
average of the errors associated with each individual estimate and the uncertainty 
of reconciled rates of mass change (see, for example, Table 1) as the root-mean-
square of the uncertainties associated with mass trends from each experiment 
group. When summing mass trends of multiple ice sheets, the combined uncer-
tainty was estimated as the root-sum-square of the uncertainties for each region. 
Finally, to estimate the cumulative uncertainty of mass changes over time, we 
weighted the annual uncertainty by / n1 , where n is the number of years  
since the start of each time series, and summed the weighted annual uncertainties 
over time80.

Across the full 25-year survey, the average rate of mass balance of the AIS was 
−109 ± 56 Gt yr−1 (Table 1). To investigate inter-annual variability, we also cal-
culated mass trends during successive five-year intervals. Whereas the APIS and 
WAIS each lost mass throughout the entire survey period, the EAIS experienced 
alternating periods of mass loss and mass gain, probably driven by inter-annual 
fluctuations in SMB. The rate of mass loss from the WAIS has increased over 
time owing to accelerated ice discharge in the Amundsen Sea sector33,47,73,81–83. 
The largest increase—a doubling of the rate of ice loss—occurred between the 
periods 2002–2007 and 2007–2012 (Table 1). Overall, the WAIS accounts for  
the vast majority of ice-mass losses from Antarctica. At the APIS, rates of ice-mass 
loss since the early 2000s are notably higher than during the previous decade,  

consistent with observations of surface lowering71,73 and increased ice flow in 
southerly glacier catchments84. The approximate state of balance of the wider EAIS 
suggests that the reported dynamic thinning of the Totten and Cook glaciers85,86 
has been offset by accumulation gains elsewhere87.
Data availability. The final mass-balance datasets generated in this study are freely 
available at http://www.imbie.org/data-downloads.
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Extended Data Fig. 1 | Datasets of ice-sheet mass balance included in our assessment. Details about the datasets are provided in Supplementary  
Table 1. Some datasets did not encompass all three ice sheets.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



AnAlysisREsEARCh

Extended Data Fig. 2 | Ice-sheet drainage basins. AIS drainage basins 
are determined according to the definitions of ref. 3 (left) and refs 2,19 
(right). Basins that fall within the Antarctic Peninsula, West Antarctica 
and East Antarctica are shown in green, pink and blue, respectively. For 
the definition from ref. 3, the Antarctic Peninsula, West Antarctica and 

East Antarctica basins cover areas of 227,725 km2, 1,748,200 km2 and 
9,909,800 km2, respectively. For the definition from refs 2,19, the Antarctic 
Peninsula, West Antarctica and East Antarctica basins cover areas of 
232,950 km2, 2,039,525 km2 and 9,620,225 km2, respectively.
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Extended Data Fig. 3 | Temporal variations in AIS SMB. We show time 
series of integrated SMB in AIS drainage regions2,19 from the MARv2.6 
(blue) and RACMO2.3p2 (red) models. Solid lines are annual averages of 
the monthly data (dashed lines). mo, month.
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Extended Data Fig. 4 | Modelled GIA beneath the AIS. a, Bedrock uplift rates in Antarctica averaged over the GIA model solutions used in this 
assessment. b, The corresponding standard deviations.
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Extended Data Fig. 5 | Individual rates of ice-sheet mass balance.  
a–i, Mass-balance estimates were determined from satellite altimetry  
(a–c), gravimetry (d–e) and the input–output method (g–i) for the 
Antarctic Peninsula (a, d, g), East Antarctica (b, e, h) and West  

Antarctica (c, f, i). The light-grey shading shows the estimated 1σ 
uncertainty relative to the ensemble average. The standard error of the 
mean solutions, per epoch, is shown in mid-grey.
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Extended Data Table 1 | Spatially averaged AIS SMB

Estimates of the average SMB over the period 1980–2012 were derived from regional climate models (RCM) and global reanalyses (GCM). Data were evaluated using the drainage basins from refs 2,19.
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Extended Data Table 2 | GIA model details

†Regional changes in mass associated with the GIA signal were determined from the model data.
‡Regional changes in mass associated with the GIA signal were calculated as an indicative rate using spherical-harmonic degrees 3 to 90.
aMain publication5,8–16 listed; supporting publications are provided in Supplementary Table 1.
bModel from main publication unless otherwise stated. Comma-separated values refer to properties of a radially varying (1D, one-dimensional) Earth model: the first value is lithosphere thickness 
(km); other values reflect mantle viscosity (×1021 Pa s) for specific layers; see relevant publications for details.
cIce model covers at least the Last Glacial Maximum to present, unless otherwise indicated.
dGIA model details: SH, spherical harmonic (maximum degree indicated in parentheses); FE, finite element; C, compressible; IC, incompressible; RF, rotational feedback; SG, self-gravitation; OL, ocean 
loading; x, feature not included; UQ, uncertainty quantified.
eRSL, relative sea-level data; GPS rates were all corrected for the elastic response to contemporary ice mass change.
fDifferent to ICE-6G_C in Antarctica, owing to the use of BEDMAP21 topography in that region.
gModel relates to GIA in the northern Antarctic Peninsula (nAPIS) only.
hModel relates to GIA in the Amundsen Sea (AS) embayment only.
iEarth model from ref. 24.
jIce model from ref. 88.
kGIA model from ref. 89.
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Extended Data Table 3 | Features of mass-balance datasets included in our assessment

Details shown include the maximum span, temporal sampling, amplitude, estimated error and standard deviation at each epoch.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



AnAlysis REsEARCh

Extended Data Table 4 | Aggregated estimates of ice-sheet mass balance from satellite altimetry, gravimetry and the input–output method

In this comparison, the data were averaged over the period 2003–2010. The arithmetic mean of each individual result is also shown for the given regions, along with the combined imbalance of the 
AIS, calculated as the sum of estimates from the constituent regions.
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