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Abstract— While farmworkers have been deemed essential in 
the COVID-19 pandemic, inadequate protections have further 
exacerbated existing vulnerabilities to illness in many agricultural 
communities. In light of the numerous outbreaks reported in 
farmworker housing facilities, it is important to understand how 
the presence of relevant risk factors and the degree of control 
measure implementation may influence the progression of 
COVID-19. An agent-based model (ABM) with a susceptible-
exposed-infected-recovered-deceased (SEIR-D) framework was 
developed using NetLogo. BehaviorSpace was used to determine 
the appropriate baseline transmission probability and to test the 
impact of the following parameters on epidemiological dynamics: 
barriers to healthcare, infected detection (testing), mobility (social 
distancing), and high-touch areas (overcrowded housing). The 
baseline probability of transmission was determined to be 0.11 for 
the current model. Barriers to healthcare were found to be 
moderately positively correlated with total mortality (R=0.6339) 
and the basic reproductive number, R0 (R=0.6254). Infected 
detection was moderately negatively correlated with total 
mortality (R=-0.6288) and R0 (R=-0.606). Mobility was weakly 
positively correlated with total mortality (R=0.3066) and R0 
(R=0.2705), although the correlation with R0 was not statistically 
significant. The presence of high-touch areas was strongly 
positively correlated with total mortality (r=0.8725) and R0 
(r=0.8397). The values of the studied parameters appear to be 
associated with the resulting R0 and mortality rate. Preliminary 
indications reveal the importance of future inquiry into the effects 
of such risk factors and control measures for farmworkers and 
others. In the meantime, appropriate protections should be 
enacted to protect the health of farmworker communities during 
the COVID-19 pandemic. 
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I. INTRODUCTION  
The novel coronavirus SARS-CoV-2 is the causative agent 

for human COVID-19. Similar to other respiratory corona-
viruses, SARS-CoV-2 is transmitted mainly through respiratory 
droplets. The incubation period — the time between exposure to 
the virus and onset of symptoms — is thought to extend to 14 
days, with a median of approximately 4-5 days (Lauer et al., 
2020). According to the Centers for Disease Control and 
Prevention (CDC), a wide range of symptoms has been reported 
among those with COVID-19. Some of the most commonly 
reported symptoms include fever or chills, cough, shortness of 
breath, fatigue, muscle aches, headache, new loss of smell or 
taste, sore throat, congestion or runny nose, nausea or vomiting, 

and diarrhea. Within 5-6 days of symptoms onset, viral load — 
a measure of the amount of virus in the bloodstream — reaches 
its peak (Pan et al., 2020). Severe COVID-19 cases progress to 
acute respiratory distress syndrome (ARDS) around 8-9 days 
after symptom onset (Wang et al., 2020). ARDS is characterized 
by difficulty breathing and low blood oxygen levels (Zhang et 
al., 2020), and it can lead directly to respiratory failure. 
Respiratory failure is the cause of death in the majority of fatal 
cases (70%), with cytokine storm and sepsis leading to multi-
organ damage/failure being responsible for most of the 
remaining cases (28%) (Zhang et al., 2020).  

While many infected with SARS-CoV-2 never develop 
symptoms, it is interesting that among those who develop 
symptoms, disease progression is swift. It seems like the key to 
ending the pandemic is through mass immunity, ideally through 
a vaccine. However, vaccine development can take many years. 
For now, public health measures controlling community 
behavior are the main preventive tool to combat the spread of 
COVID-19. While only strict social distancing has been 
indicated to have a significant impact on slowing the rate of 
infection, such strict measures are not always feasible – or even 
implemented when feasible (Holt, 2020).  

In the era of COVID-19, it is important to recognize that 
COVID-19 is not “the great equalizer,” but rather a “magnifying 
glass” illuminating the larger pandemic of ethnic and racial 
disparities in health (Williams & Cooper, 2020). This is 
particularly true for farmworkers, who have been deemed 
essential workers in the COVID-19 pandemic.  Despite the 
critical role farmworkers play in harvesting the national food 
supply, farmworkers are a vulnerable group systematically 
exploited the agribusiness industry. As such, it is unsurprising 
that inadequate measures have led to numerous COVID-19 
outbreaks in farmworker communities across the country 
(National Center for Farmworker Health, 2020). In studying the 
situation of farmworkers in the COVID-19 pandemic, the goal 
is to generate more insight into the impact of social-structural 
factors on health outcomes – both in the context of COVID-19 
and otherwise. 

In the fight against COVID-19, widespread scientific 
collaboration is needed now more than ever to observe, analyze, 
interpret, and understand the consequences of COVID-19 and 
develop effective solutions (Moradian et al., 2020). As such, this 
paper will integrate a variety of scientific disciplines including 
computer science, biology, and social sciences. A strong 
biological understanding of the virus will help explain the 
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susceptibility of certain groups and the dynamics of viral 
transmission. Awareness of relevant societal factors will help 
explain the importance of the parameters chosen for 
computational study, and the results of the model simulation will 
hopefully generate more insight into the progression of COVID-
19 and the effects of relevant risk factors and control measures 
for farmworker communities. 

II. BIOLOGICAL MECHANISMS OF TRANSMISSION AND 
VIRAL PATHOGENESIS 
A. Transmission  

SARS-CoV-2 has been shown to have a high replication 
rate, particularly in the human oral pharynx and upper airway 
where ACE2 receptors are located (Wolfel et al., 2020). The 
rapid replication of the virus in the upper respiratory tract likely 
increases its ability to transfer from person to person. This 
allows for shedding of the virus with even with normal 
speaking. The ability of the virus to replicate and shed in 
completely asymptomatic individuals and in pre-symptomatic 
individuals further enhances the ability of the virus to transmit 
between individuals (Fauci et al., 2020). Environmental 
conditions have been shown to affect the stability of the virus 
in nasal mucus and sputum, with greater stability in low-
temperature and low-humidity conditions (Matson et al., 2020). 
Because of the surface stability of SARS-CoV-2, fomite 
transmission may also play a role in the spread of the disease.  

B. Pathology and Respiratory Implications 
SARS-CoV-2 infiltrates host cells by exploiting the link with 

membrane-bound angiotensin-converting enzyme II (ACE2) 
protein. Coronavirus spike (S) glycoprotein binds to the ACE2, 
allowing for the virus to enter endothelial cells and macrophages 
in the lungs. The high infectivity of SARS-CoV-2 is partially 
explained by new mutations in the ACE2 receptor binding 
domain and an acquired furin cleavage site in the S-spike protein 
(Liu et al., 2020). SARS-CoV-2 uses trans-membrane serine 
protease 2 (TMPRSS2) to prime the S protein for binding to 
ACE2, significantly enhancing viral infectivity (Hoffmann et al., 
2020). Given that TMPRSS2 is androgen-regulated, this process 
may be connected to a higher prevalence of infection and severe 
illness in males (Jin et al., 2020). In addition, ACE2 is located 
on the X chromosome, so there may be alleles that confer 
resistance to COVID-19. Both of these factors may help explain 
the lower death rate in females (1.7%) compared to males (2.8%) 
when other differences in risk factor profiles were adjusted (Tay 
et al., 2020; Epidemiology Working Group for NCIP Epidemic 
Response, 2020).  

After viral entry into host cells, the downregulation of 
membrane ACE2 results in increased levels of angiotensin II in 
lung tissues and increased stimulation of the Type 1 Angiotensin 
II Receptor (ATR1), which controls angiotensin II-induced 
blood vessel permeability and mediates severe acute lung injury. 
This mechanism may explain why SARS-CoV-2 primarily 
causes pneumonia with vascular injury (Lega et al., 2020). This 
attack of SARS-CoV-2 on the lungs is likely even more 
damaging among those with pre-existing chronic respiratory 
conditions. 

Individuals with Chronic Obstructive Pulmonary Disease 
(COPD), including chronic bronchitis, have been shown to have 
an increased risk of severe illness from COVID-19 (CDC, 

2020). Increased expression of ACE2 and TMPRSS2 has been 
demonstrated in the bronchial tissue of COPD patients (Higham 
& Singh, 2020; Sharif-Askari et al., 2020). High expression of 
ACE2 in bronchial epithelial cells has been shown to increase 
the expression of genes involved in viral replication, potentially 
enhancing the ability of SARS-CoV-2 to enter host cells (Li et 
al., 2020). As a result, upregulated ACE2 may enhance 
pathogenesis of COVID-19 in COPD patients. Given the role 
of TMPRSS2 in priming the SARS-CoV-2 S protein for binding 
to ACE2, upregulated TMPRSS2 may have a similar function. 

 
Individuals with asthma may also have an increased risk of 

severe illness. It has been demonstrated that IL-13, a cytokine 
associated with type 2 inflammation, increases TMPRSS2 
expression in bronchial epithelial cells from patients with 
asthma and allergic rhinitis (Kimura et al., 2020). The increased 
expression of TMPRSS2 could increase the susceptibility of 
patients with asthma and allergic rhinitis to COVID-19.  

C. Immunology and Multi-Organ Implications 
SARS-CoV-2 infection and its destruction of lung cells 

trigger a local immune response, recruiting macrophages and 
monocytes that release cytokines and instruct adaptive B and T 
cell immune responses (Tay et al., 2020). A dysfunctional 
immune response in some patients triggers a cytokine storm that 
mediates widespread lung inflammation which, unrestrained, 
can itself cause damage in the lung by excessive secretion of 
proteases — enzymes which break down proteins and peptides 
— on top of the direct damage caused by the virus itself (Tay et 
al., 2020). Direct virus damage and dysfunctional host immune 
response lead to diffuse alveolar damage that limits gas 
exchange efficiency in the lungs. This causes difficulty 
breathing, low blood oxygen levels, and makes the patient more 
vulnerable to secondary infections (Xu et al., 2020).  

The increase of neutrophils and depletion of lymphocytes in 
circulating blood is characteristic of persistent immune 
activation and typically associated with the worsening of the 
disease. The increase of neutrophils is associated with tissue 
damage and cytokine storm, which may worsen the shortage of 
virus-specific lymphocytes (Lega et al., 2020). In addition, the 
lymphocytes from patients with severe disease often present an 
exhausted phenotype, indicating functional impairment (Zheng 
et al., 2020). Cytokine-associated signaling pathways enabled 
through cytokine storm may promote the activation of 
lymphocyte apoptosis in sepsis and subsequently enable multi-
organ damage (Luan et al., 2015). 

The likelihood of developing a dysfunctional immune 
response increases with age and is higher for those with some 
underlying medical conditions such as diabetes and obesity. 
Given that diabetes mellitus is a low-grade chronic 
inflammatory state, COVID-19 patients with diabetes are at a 
higher risk of developing an excessive uncontrolled 
inflammatory response (Sandooja et al., 2020). Even short-term 
hyperglycemia observed in diabetes can briefly suppress the 
innate immune response, potentially having implications for 
critically ill patients (Jafar, Edriss, & Nugent, 2016). 
Dysfunctional hypertrophic adipocytes in obesity produce an 
excessive amount of cytokines that lead to increased recruitment 
of macrophages, in turn enabling these cells to produce high 
amounts of proinflammatory molecules such as IL-1β, IL-6, IL-
8, TNFα, and monocyte chemoattractant protein-1 (MCP-1) 
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(Guilherme et al., 2008; Maurizi et al., 2018; Lumeng et al., 
2007). This can lead to a state of chronic inflammation that 
impairs innate immunity, creating a conducive environment for 
the development of a macrophage activation syndrome (MAS)-
mediated hyperinflammatory response in severe COVID-19 
cases (Giamarellos-Bourboulis et al., 2020).  

III. THE CASE OF FARMWORKER COMMUNITIES 

A.  Farmworkers and Power Dynamics 
Farmworkers are considered to be a vulnerable population, 

consisting of a diverse group of individuals who, due to 
socioeconomic inequities, are inevitably at a greater risk of poor 
physical, psychological, and social health. In the context of 
farmworker communities, health disparities are inherently 
avoidable, resulting from unjust power dynamics that deprive 
individuals of basic human rights: the right to work in just and 
favorable conditions, the right to social protection and an 
adequate standard of living, the right to the highest attainable 
standards of physical and mental well-being, and the right to 
equal protection against discrimination, among others (United 
Nations). The vulnerability of farmworker communities is 
rooted in a history of exploitation by the agribusiness industry, 
enabled by minimal legal protections for farmworkers under 
United States law, and further exacerbated by systemic social 
injustices such as xenophobic and racial discrimination. Still 
relevant today, Cesar Chávez argued this point in a letter to the 
alliance of California grape growers in 1969: 

The color of our skins, the languages of our cultural and native 
origins, the lack of formal education, the exclusion from the 
democratic process, the numbers of our slain in recent wars—all 
these burdens generation after generation have sought to 
demoralize us, to break our human spirit. But God knows we are 
not beasts of burden, we are not agricultural implements or rented 
slaves, we are men. And mark this well . . . we are men locked in 
a death struggle against man’s inhumanity to man in the industry 
that you represent. . . . We hate the agribusiness system that seeks 
to keep us enslaved and we shall overcome and change it . . . by a 
determined nonviolent struggle carried on by those masses of 
farmworkers who intend to be free and human. (Chavez, 1969). 
 
The vulnerability of farmworkers contributes to barriers to 

effective healthcare. Poorer living conditions can have 
implications for physical health, leading to health disparities 
among farmworker communities. Such health disparities could 
have implications for the progression of disease among those 
infected with COVID-19. 

B. Biological Connections and Health Disparities 
As previously mentioned, sex, age, and underlying medical 

conditions have all been indicated to play a role in the 
development of severe disease and death from COVID-19. Age-
related concerns may not be as much of an issue given that 
farmworkers are relatively young: farmworkers have an average 
age of 38, and only about 14% of workers are over the age 55 
according to the National Agricultural Workers Survey 
(Hernandez & Gabbard, 2018). However, given that males were 
determined to comprise approximately 68% of the hired crop 
labor force, the higher death rate among males may be important 
to note for farmworker communities (Hernandez & Gabbard, 
2018). Still, it is perhaps most important to explore the relevant 
underlying medical conditions to understand how health 

disparities may impact the situation of COVID-19 among 
farmworkers. 

Due to the variety of respiratory hazards in farming ranging 
from chemical pesticides to organic dust, farmworkers are 
known to have high morbidity and mortality from certain 
respiratory illnesses (Linaker & Smedley, 2002). Specifically, 
crop and livestock farmworkers have been found to have 
significantly elevated mortality for a number of respiratory 
conditions including asthma, bronchitis, tuberculosis, 
pneumonia, and influenza (CDC, 2007). A potentially 
disproportionate prevalence of type 2 diabetes among 
farmworkers, a known risk factor for severe illness from 
COVID-19, is also important to note. Nearly 83% of all 
farmworkers are Hispanic, and Hispanics have a 66% greater 
risk of developing type 2 diabetes compared to non-Hispanic 
whites (Hernandez & Gabbard, 2018; Fortmann et al., 2019).   
This is due to poor socioeconomic conditions, which lead to 
significantly higher rates of reported food insecurity – where 
access to nutritious foods is limited – among migrant and 
seasonal farmworkers compared to the general population 
(Kiehne & Mendoza, 2015).  

 
It is critical to recognize that the health disparities among 

farmworkers are not rooted in genetic differences, but rather 
social-structural conditions. However, such conditions lead to 
very real biological consequences that can put individuals at a 
higher risk of developing severe disease and dying from 
COVID-19. Exposure to respiratory hazards and inadequate 
protections against such hazards drive disparities in respiratory 
health. Many farmworker communities are located in rural 
areas considered food deserts, where access to nutritious foods 
is limited. Lower income from systematic exploitation by the 
agribusiness industry, physical isolation in employer housing, 
and inadequate transportation make it such that many 
farmworkers cannot afford nutritious foods even when 
available. Importantly, the risk for type 2 diabetes is twice as 
high for those with food insecurity (Hill et al., 2013). In light of 
this, it is critical to examine the social-structural factors 
affecting farmworker communities in order to better understand 
how farmworkers are affected by the COVID-19 pandemic. 

C. Key Social-Structural Factors  
Given the respiratory droplet route of transmission, close 

contact is a major risk factor for exposure to SARS-CoV-2 and 
contraction of the disease. However, avoiding close contact may 
be especially difficult in farmworker communities given the 
nature of agricultural work. This is especially true for those who 
rely on shared housing and transportation. The National 
Agricultural Workers Survey found that an estimated 16% of 
workers live in employer-provided housing, and 33% of 
farmworkers reported living in “crowded” dwellings with 
greater than one person per room. Of those commuting to work, 
33% of workers did not provide their own transportation — 13% 
rode with others, 15% rode with a “raitero” (a person who 
charges a fee for providing a ride to work), and roughly 6% rode 
on a labor bus, truck, or van. Shared transportation, like shared 
housing, may also increase the risk of exposure to COVID-19. 

Additionally, major associations of crop producers have 
issued relatively weak guidance for controlling the spread of 
COVID-19. For example, Western Growers, the leading 
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association of fruit and vegetable producers in California and 
Arizona, stated that personnel with potential exposure to SARS-
CoV-2 may continue to work as long as the contact remains 
asymptomatic (Western Growers, 2020). For workers living in 
employer-provided housing, Western Growers recommended 
that workers testing positive for COVID-19 be placed in an 
isolated dwelling to the extent feasible, but this neither 
guarantees compliance nor the effectiveness of such measures. 
For those in employer-provided housing, proper sanitation is 
often a challenge, and social distancing is difficult to properly 
implement.  

In addition to overcrowding, insufficient sanitation, and 
inadequate implementation of control measures, sufficient 
testing of workers is another challenge. No comprehensive, 
systematic testing is currently being conducted for farmworkers, 
making it difficult to track contacts (National Center for 
Farmworker Health, 2020).  Due to the fact that farmworkers are 
often socially vulnerable, many farmworkers also fear testing for 
COVID-19 because a positive test may result in a permanent job 
loss.  

It is also important to recognize certain barriers to healthcare 
commonly faced by farmworkers, as well as concerns regarding 
healthcare quality. Agricultural communities tend to be located 
in more rural areas, where residents on average must travel about 
twice as far to the nearest hospital (Lam, Broderick, & Toor, 
2018). For those without their own means of transportation, 
seeking proper care may be delayed until a person has become 
critically ill. Delaying treatment could have significant effects 
on the health outcomes of such individuals. In addition, only 
47% of farmworkers reported having health insurance according 
to the National Agricultural Workers Survey. Many 
farmworkers are also undocumented, with only 51% of all 
farmworkers having work authorization. Lack of health 
insurance and fear of legal challenges, combined with little to no 
paid sick leave, heavily disincentivizes farmworkers from 
seeking care. Even among those who do seek care, issues of 
healthcare quality emerge. For 77% of farmworkers, Spanish 
was reported to be the language in which they were most 
comfortable conversing. As such, the insufficient availability of 
interpreters in healthcare settings may pose a challenge to 
effective treatment. This is especially true for rural settings 
where resources are more limited.  

Ultimately, it was determined that the risk factors of 
healthcare barriers and overcrowded housing, along with the 
control measures of testing and social distancing, were relevant 
measures to study the progression of COVID-19 in farmworker 
communities. 

IV. METHODOLOGY  
For a more detailed explanation of the methodology, see the 
appendix. 

A. Equation-Based Models: SIR, SEIR, and SEIR-D 
Typical epidemiological models take the form of 

Susceptible-Infected-Recovered (SIR), based on the Kermack 
and McKenrick model of differential equations. In the SIR 
model, The population is divided into three distinct 
compartments: susceptible (S) healthy individuals who are 
vulnerable to infection, infected (I) individuals who have the 

disease and can transmit it, and recovered (R) individuals who 
previously had the disease and are now assumed to be 
completely immune or otherwise removed from further 
spreading the disease (such as individuals who died from the 
disease).  

A common extension of the SIR model is the SEIR model, 
which includes exposed (E) individuals who have been exposed 
to the disease-causing agent but are not yet infectious because 
the latent period of the virus has not concluded. The SEIR-D 
model explicitly separates deceased (D) individuals from 
recovered individuals to make it easier to study disease-related 
mortality. In addition to these, a multitude of other extensions 
and modifications to the traditional SIR model have been 
employed to more accurately model certain circumstances. 

The basic reproductive number (R0) is a fundamental 
calculation for SIR-type models, representing the average 
number of secondary infections produced by a single infectious 
person in a population where everyone is susceptible. R0 is used 
to measure the potential of transmission of a communicable 
disease (Delamater et al., 2019).  Equation (1) shows a typical 
calculation of R0, where 𝜏  is the probability of transmission 
given contact between a susceptible and infected individual, 𝑐̅ 
is the average rate of contact, and d is the duration of 
infectiousness (Jones, 2007). A value of R0 greater than 1 
indicates that an epidemic may occur, and a value of R0 less than 
1 indicates that the disease will decline and eventually die out. 

 R0  = 𝜏 ∙ 𝑐̅ 	 ∙ 𝑑  (1) 

While compartmental models have proven to be quite useful 
in epidemiology, there are certain limitations. These models 
cannot account for variability in the population structure: all 
members of the community are assumed to be equally 
susceptible to disease. Notably, these models also cannot 
account for the individual behaviors and interactions of those in 
a population (Bonabeau, 2002). This is particularly important 
for calculating R0 in that the contact rate 𝑐̅ may be difficult to 
accurately model without accounting for individual inter-
actions. 

B. Agent-Based Modeling 
Agent-based models (ABMs) include a population of 

agents, an environment, and a set of rules guiding the behavior 
of the agents. ABMs are useful for “what-if” analyses, allowing 
epidemiological researchers to assess the behavior of a system 
under various conditions and evaluate which control measures 
to adopt to effectively combat the spread of disease (Perez & 
Dragicevic, 2009). As a result, an agent-based model using an 
SEIR-D framework was developed to more accurately model 
the progression of COVID-19 (Fig. 1). While the probability of 
transmission was a parameter included in the model, the contact 
rate was able to be more accurately modeled by virtue of the 
ABM simulation.  

C. NetLogo Model and Simulation 
The agent-based model was developed using NetLogo, an 

open-source, multi-agent programmable modeling environment 
(Wilensky, 1999). The model is based on the epiDEM Basic and 
Covid-19 and Health System Capacity models (Yang & 
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Wilensky, 2011; Medeiros-Sousa, 2020). While the model can 
be used to generally simulate the epidemic dynamics of an 
infectious disease in a closed population, the simulation was 
specifically designed for COVID-19. The interface can be seen 
in the appendix (Fig. A). 

The individual agents, humans, wander around the world in 
random motion, though the distance moved by the agents 
(mobility) is controlled by the user. Unless otherwise directed, 
humans move within the interaction zone (Fig. 2). A susceptible 
human who is any of the eight surrounding neighbors of an 
infected person or is in the same location as an infected human 
will have a chance of exposure determined by the following 
parameters set by the user: the transmission probability, the days 
to control measure implementation, the proportion of humans 
following measures, and the level of protection conferred by 
following such measures. If enabled, a susceptible human on a 
designated high-touch area has a chance of exposure based on 
whether disinfection is enabled and whether the human is 
following control measures (Appendix, Table A).  

Humans exposed by a given probability become infectious 
after the latent period, which was set to an average of three days. 
Once a human is infectious, the human can infect other 
susceptible humans. If isolation is enabled, a percentage of 
infected humans determined by the user will be moved to 
quarantine (Fig. 2). A percentage of infected humans set by the 
user will also become symptomatic, considering that first 
symptoms may appear two days after the latent period has 
concluded. Symptomatic humans have a given probability of 
developing severe illness based on whether they pertain to the 
risk group, where the proportion of humans in the population in 
the risk group was initially set by the user (Appendix, Table A). 

Humans with severe disease can be moved to the hospital if 
the number of humans in the hospital region is less than the 
hospital capacity, which is set by the user (Fig. 2). In the case 
that barriers to healthcare are not equal to 0 (no barriers), the 
complement of the value of barriers to healthcare is effectively 
a multiplicative factor that reduces the number of humans that 
are moved to the hospital.  

Among infected humans, asymptomatic humans and 
symptomatic humans without severe disease will always recover 
after the recovery time, which is set by the user. Among humans 
with severe disease, the time to recovery is twice as long for 
humans who are not hospitalized and 1.5 times as long for 
humans who are hospitalized. The logic behind this was that 
humans with access to care could recover faster; however, these 
values could be modified for future use if needed. After the 
recovery time has passed, humans with severe disease have a 
given probability of recovery or death based on whether the 
human was hospitalized and whether the human belongs to the 
risk group (Appendix, Table A). Humans who have recovered 
are assumed to be immune. 

D. Verification/Validation  
     Preliminary runs in NetLogo were conducted before 
developing the desired experiments. Firstly, the monitors 
reporting the number of susceptible, exposed, infected, 
recovered, and deceased humans were observed to ensure that 
the values were reasonable. The sum of the numbers reported 
by these monitors was checked to make sure it equaled the size 
of the initial population. A general trend of increasing R0 and 
mortality was observed with increasing transmission 
probability as expected. When there were complete barriers to 

 
 
Fig. 1.  Progression of Disease and Relevant Biological and Societal Factors. The agent-based model follows a Susceptible-Exposed-Infected-Recovered-Deceased 
framework. The black arrows represent the definitive progression of disease within the simulation. The blue dashed arrows represent options within the simulation 
to isolate infected humans in quarantine and to hospitalize humans with severe disease. The table of biological and societal factors lists relevant factors at each step 
of disease progression as follows: (1) A susceptible human in contact with an infected human or on a high-touch area has a probability of exposure. (2) After the 
latent period has concluded, an exposed human is infected. (3) If the human becomes symptomatic, the human has a probability of developing severe disease. (4) 
Asymptomatic humans and symptomatic humans without severe disease will always recover from infection. Humans with severe disease have a probability of dying 
or recovering.  
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healthcare, no humans were seen to enter the hospital area of 
the world. When humans were allowed to enter the hospital, the 
number of humans in the hospital area was observed to equal 
the value set by the hospital capacity when the “AT 
CAPACITY” label appeared. When the proportion of humans 
following measures was set to 1 and mobility was set to 0, no 
humans were observed to move even after the days to control 
measures passed. When the proportion of humans following 
measures was set to 0 and mobility was set to 0, all humans 
were still moving freely after the number of days to control 
measures passed. When the option to isolate infected humans 
was enabled but the infected detection was set to 0%, no 
humans entered the quarantine area of the world. The 
preliminary runs in NetLogo indicated that the model runs as 
specified and that the data output is reasonable based on the 
adjusted parameters. As such, it was determined that the model 

could be used to implement experiments on selected 
parameters.                                                                                                         

E. Baseline Establishment and Implementation 
BehaviorSpace was used to find a baseline value for 

transmission probability to be used in combination with other 
established baseline values (Appendix, Table B). After 
preliminary runs in NetLogo, an approximate range of 0.1 to 
0.15 was found to result in the desired range of values for R0 and 
the various mortality rates. A sweep for transmission probability 
using these values was performed in BehaviorSpace. In addition 
to R0 and the mortality rates, the number of susceptible, infected, 
and recovered humans were recorded. SIR graphs were 
generated for each transmission rate to visualize the progression 
of the disease (Appendix, Fig. B - Fig. G). Based on the 
appearance of the graph, a mean final R0 of 1.325, and a total 
mortality rate of 4.96% (which is within the range of current 
COVID-19 estimates), a transmission probability of 0.11 was 
selected to be the baseline value. Using the baseline values, 
sweeps were performed in BehaviorSpace for the following 
parameters: barriers to healthcare, infected detection (to mimic 
testing), mobility (to mimic social distancing), and high-touch 
areas (to mimic overcrowded housing), as these were 
determined to be particularly relevant parameters to farmworker 
communities. 

V. RESULTS  
The following measurements were recorded from the 

BehaviorSpace experiments (Table 1): R0, total mortality 
(percentage of deaths out of the initial population), infected 
mortality (percentage of deaths out of cumulative infections), 
and symptomatic mortality (percentage of deaths out of 
cumulative symptomatic cases). The Pearson Correlation 
Coefficient was calculated for barriers to healthcare, infected 
detection, and mobility because these were continuous 
variables. Point-Biserial Correlation was used for high-touch 
areas given that the true/false nature of the variable made it 
dichotomous. Statistical significance was calculated for the 
values as well (Table 1). Barriers to healthcare were found to 
be moderately positively correlated with total mortality 
(R=0.6339) and R0 (R=0.6254). Infected detection was 
moderately negatively correlated with total mortality (R=-
0.6288) and R0 (R=-0.606). Mobility was weakly positively 
correlated with total mortality (R=0.3066) and R0 (R=0.2705), 
although the correlation with R0 was not statistically significant. 

 
 
Fig. 2. The NetLogo World. The colors and shapes of the agents represent the 
health status of the humans (blue = susceptible, yellow = exposed, red = 
infected, green = recovered, and black dot = deceased). The world is divided 
into three environments: the interaction zone at the bottom, the hospital at the 
upper left, and quarantine at the upper right. The white patches within the 
interaction zone represent high-touch areas. When the number of humans in the 
hospital region equals the hospital capacity set by the user, the label “AT 
CAPACITY” appears.  
 

TABLE I. EXPERIMENTAL RESULTS OF SWEEPS ON PARAMETER VALUES 

 
a. All values for barriers to healthcare were statistically significant at p<0.01. b. The values for the correlation between mobility and the mortality measures were 
statistically significant at p<0.05. *The correlation between mobility and R0 was not statistically significant at p<0.05. c. All values for infected detection were 
statistically significant at p<0.01. d. All values for high-touch areas were statistically significant at p<0.01. 
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The presence of high-touch areas was strongly positively 
correlated with total mortality (r=0.8725) and R0 (r=0.8397). 

VI. DISCUSSION 
The potential implications for the results of the experiments 

are numerous, but any interpretation must be mindful of the 
possibility that the pre-selected parameter values may have 
influenced the results. That said, it is interesting to note how 
mobility seemed to have a weaker correlation with mortality and 
R0. This may be due to the fact that mobility was controlled by 
two different parameters: the number of days to control 
measures and the proportion of humans following measures. In 
the sweep, the days to control measures were set to 14 and the 
proportion following measures was set to 0.5. In other words, 
the humans in the simulation moved unrestricted until 14 days 
(ticks) had passed, at which point only half of the humans 
changed their movement behavior to reflect the value of 
mobility. When movement was restricted but still allowed for 
humans following the control measures (mobility = 0.5), an 
insignificant difference was observed in the resulting measures. 
When humans following control measures were instructed to 
remain stationary (mobility = 0), there did appear to be a 
noticeable difference in the resulting measures. This falls in line 
with previous studies, which have found that only strict social 
distancing has been indicated to have a significant impact on 
slowing the rate of infection (Holt, 2020). For farmworker 
communities, the inability to adequately social distance due to 
the nature of farm work may prove to be important in the spread 
of COVID-19.  

With respect to high-touch areas, the strong correlation 
between high-touch areas and R0/mortality makes sense given 
that humans have an increased probability of exposure to the 
virus in overcrowded areas. When opportunities to social  
distance are limited, individuals are more likely to come in close 
enough contact with infected individuals who may transmit the 
virus through respiratory droplets. With more infections, there is 
subsequently a greater probability of deaths in the population. 
For farmworkers, housing provided by employers also often 
lacks proper sanitation and clean water, which could further 
increase the spread of the virus in close quarters and lead to more 
deaths (Scherzer et al., 2010).  

With respect to testing, the significant correlation with R0 
and mortality can be explained by the ability to effectively 
remove infected individuals from spaces where they would 
otherwise interact with susceptible people. If infected 
individuals are not identified and isolated, they can transmit the 
virus to others, some of whom may have underlying medical 
conditions that would increase their probability of severe illness 
and death. For farmworkers, the lack of systematic testing by 
employers and the lack of paid sick leave may inhibit adequate 
testing.  

With respect to barriers to healthcare, the restricted ability 
of humans with severe illness to go to the hospital in real life 
would increase the probability of death among those humans. 
As such, the significant positive correlation between barriers to 
healthcare and mortality makes sense. If treatment is sought 
only when a person is in critical condition, the biological 
progression of the disease may have already passed a certain 

threshold whereby treatment at that stage is less effective than 
it would have been if treatment began earlier. In addition, if 
individuals are not isolated, they could still be transmitting the 
virus to others in the population. For farmworkers, barriers to 
healthcare can be tremendous, ranging from lack of 
transportation to the inability to afford the cost of treatment. 

VII. CONCLUSION 
      It is important to note that this model is a simplification of 
the situation of COVID-19, involving assumptions such as 
immunity among recovered humans. Care must be taken when 
attempting to apply the statistical findings of the simulation 
outside of the context of the model, particularly the data on R0 
because R0 is an often misinterpreted and misrepresented 
measure (Delameter et al., 2019). Despite the limitations of the 
study, it can be seen that the challenges faced by farmworkers 
could potentially put farmworker communities at higher risk in 
the COVID-19 pandemic. As essential workers, farmworkers 
are already at a higher risk of exposure to the virus compared to 
those who are able to work from home. Further, given the 
vulnerability of farmworker communities and lack of adequate 
protections, farmworkers may especially at risk. Future studies 
may consider employing GIS to model the conditions of a 
particular farmworker community, as well as testing how the 
relative proportion of individuals with certain underlying 
medical conditions impacts the overall mortality.  
 

Until then, it is imperative that protections and appropriate 
control measures be implemented to protect the safety of 
farmworkers in the COVID-19 pandemic. Further, it is vital that 
measures are taken to improve the living conditions of 
farmworkers beyond the context of COVID-19 given their 
unjust treatment by the agribusiness industry. While the efforts 
of farmworkers as essential workers should not go unnoticed, 
their humanity must also be recognized beyond their 
contribution to the national food supply. Hopefully, the larger 
pandemic of health disparities revealed by the COVID-19 
pandemic can drive further efforts to improve the conditions of 
farmworker communities across the country. 
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IX. APPENDIX: OVERVIEW, DESIGN CONCEPTS, 
DETAILS (ODD) PROTOCOL  
A. Model Description 

The computer software NetLogo is used to implement a 
data-driven ABM for human infectious diseases spread by 
respiratory droplets, such as COVID-19. The following 
sections provide a more detailed description of the model 
according to the ODD format, which is the standard for 
ABMs. 

B. Purpose  
The purpose of the model is to create an ABM of an 

infectious disease spread in a closed population. While this 
model focuses on SARS-CoV-2, the virus that causes 
COVID-19, it can be applied to other infections spread 
through respiratory droplets. The model parameters have 
particular relevance to farmworker communities, but this 
model may also be used to better understand the epidemiology 
of COVID-19 in general and in other populations with health 
disparities. The model interface can be seen in Fig. A. 

C. Entities, State Variables, and Scales 
• Agents/Individuals: The model has one type of 

agent. The agents represent humans being modeled. 
The state variables for each agent include 
susceptible, infected, recovered, deceased, 
protected (following measures), and risk group 
status. Susceptible humans are those who are 
vulnerable to infection. Infected humans are those 
who have the disease and can transmit it to other 
humans. Recovered humans are those who 
previously had the disease and are now considered 
immune. Deceased humans are those who died 
from the disease. Humans who are considered 
protected are those following control measures. 
Humans belonging to the risk group have a higher 
risk of severe disease and mortality. 

• Spatial Units: Each grid cell or patch in NetLogo 
represents approximately 450 square feet of land. 

• Environment: The model environment is divided 
into three environments: Interaction-zone (gray 
area), Hospital (pink area) and Quarantine (cyan 
area). There is an option to include high-touch 
areas (white) within the interaction-zone. Time is 
an environmental variable within the model. Each 
time step in the model represents 24 hours (1 day). 
 

D. Process Overview and Scheduling  
The model proceeds in discrete time steps that represent 

days. The model runs until no agents are exposed or infected 
(i.e. all agents are either susceptible, recovered, or deceased). 
Each time step following submodels are run: move-humans, 
touch-surface, become-infectious, infect-others, develop-
symptoms, check-for-hospital, go-to-hospital, recover-or-die, 
and calculate-r0. Submodels are described in the "Submodels" 
section. 

 

 

 

E. Design Concepts Process Overview and Scheduling  
• Basic Principles: The infection part of the model is 

based on an SEIR-D (susceptible, exposed, infected, 
recovered, and deceased), a widely used model in 
infectious disease modelling. When a susceptible 
agent comes into contact with an infected agent, 
there is a probability that the susceptible agent will 
become exposed to the disease. The value for the 
basic reproductive number (R0), the expected 
number of individuals infected by one infectious 
individual in a completely susceptible population, is 
calculated. The model takes a simplistic approach to 
agent movement, with random motion that can be 
controlled by adjusting mobility. Unless designated 
to enter quarantine or the hospital, agents will move 
within the interaction zone. 

•  Emergence: The emerging result from the model is 
the progress of infection. Based on the types of 
agents that are initially infectious and other agents 
who come in contact with these agents, patterns can 
emerge for how an outbreak will spread. For 
example, if a human is protecting itself from 
exposure by following control measures, the 
probability of a human becoming infected will be 
lower, leading to a smaller outbreak. Designation of 
infected humans to quarantine when sick can also 
impact how the outbreak occurs. 

• Adaptation: The current version of the model does 
not involve adaptation. Agents reproduce observed 
behaviors based on a set of rules given to them. For 
example, if an agent becomes sick, entry into 
quarantine or the hospital will depend on selected 
parameters. Agents do not adapt their behavior by 
deciding to quarantine or go to the hospital.  

• Sensing: As they move through the environment, 
infected agents will sense if other agents close to 
them are susceptible. 

• Interaction: The model assumes direct interaction 
or close proximity between agents. If a susceptible 
agent is in any of the eight surrounding neighbors of 
the infected agent or if the two agents occupy the 
same space (on the same NetLogo patch), it is 
assumed that they have had some type of interaction 
which may lead to the infection of the susceptible 
agent. 

• Stochasticity: Stochasticity is seen in the spread of 
the infectious disease through the population. When 
an infectious agent comes into contact with a 
susceptible agent, there is a probability that 
determines whether the susceptible agent will 
become exposed. Once exposed, the length of time 
the agent will remain exposed before becoming 
infected is determined by Poisson probability 
distribution. Similarly, the length of time an agent 
stays infectious is determined by Poisson probability 
distribution. 

• Observation: For every run of the model, data is 
collected on the number of agents who are 
susceptible, exposed, infected, recovered, and 
deceased at each time step. The output is collected at 
every time step to see how the infection changes over 
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time. Data is collected on the cumulative number of 
symptomatic infections, the number of humans 
following control measures, the number of humans 
belonging to the risk group, and the number of high-
touch contact infections. Data on R0, total mortality 
(% of initial population), infected mortality (% of 
cumulative infections), and symptomatic mortality 
(% of cumulative symptomatic infections) is also 
collected. The symptomatic data are only collected 
the time step that an agent becomes infected. 

F. Initialization  
The world was setup by designating a large interaction 

zone in the lower portion of the world, a hospital in the upper 
left portion of the world, and a designated quarantine region 
in the upper right portion of the world (Fig. A). If high-touch-
areas are included, these white patches can be considered 
shared housing. Agents are added to the world based on the 
initial size of the population. Agents are randomly distributed 
throughout the interaction zone. A given number of agents are 
assigned to susceptible, infected, or recovered status based on 
selected parameters. Agents are also assigned to become 
symptomatic, follow control measures (where the agent's 
chance of exposure is decreased) and to pertain to the risk 
group (where the agent's chance of severe disease and death is 
increased) based on the respective proportions designated for 
each parameter. 

G. Submodels 
• Move-humans: In the model, agents move 

randomly. The distance traveled by the agents is 
determined by the mobility parameter. 

• Touch-surface: When an agent is on a patch that is 
designated as a high-touch-area, the individual has 
an increased probability of exposure depending on 
the choice to disinfect. 

• Become-infectious: An agent who has been exposed 
the virus will become infectious after the latency 
period. 

• Infect-others: When an infected agent comes into 
contact with a susceptible agent, the infected agent 

will determine if they will infect the susceptible 
agent based on the transmission rate and whether the 
susceptible agent is protected from exposure by 
following control measures. If the infected agent 
infects the susceptible agent, the susceptible agent 
will change their health status from susceptible to 
exposed. 

• Develop-symptoms: A given proportion of infected 
agents will become symptomatic two days after the 
end of the virus latent period. Asymptomatic agents 
will recover after the recovery time. 

• Check-for-hospital: The simulation will check if 
infected-symptomatic people need a hospital. For the 
agents of the risk group, a 20% chance of needing a 
hospital was considered. For agents who are not of 
risk group, a 5% chance of needing a hospital was 
considered. 

• Go-to-hospital: Based on whether the hospital is 
crowded and barriers to healthcare, an agent with 
severe disease may be hospitalized.  

• Recover-or-die: An agent will use a Poisson 
probability distribution to determine the number of 
time steps it will stay infected before it recovers. 
Similarly, based on severity of the disease, 
hospitalization, and risk group status, an agent will 
use a Poisson probability distribution (taking into 
account healthcare quality as relevant) to determine 
the chance of recovery. Once an agent has recovered 
they cannot become infected again. 

• Calculate-r0:; The basic reproductive number (R0) 
is calculated based on the Kermack McKendrick 
mathematical derivation that R0 = beta*S(0)/ gamma 
= N*ln(S(0) / S(t)) / (N - S(t)), where N is the total 
population, S(0) is the initial number of susceptibles, 
and S(t) is the total number of susceptibles at time t. 
At the end of the simulation, the R0 reflects the 
estimate of the basic reproduction number, the 
number of secondary infections generated by an 
infected human throughout their infectious period

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig A. NetLogo Interface. Parameters that the user can adjust are on the top left. The setup buttons are on the bottom left, with options to run the model  
with a new-seed or reproduce a run with a seed input from the user. The middle portion of the interface contains graphs. The right portion of the interface  
contains the world. The majority of the monitors are located at the bottom of the interface.  
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FIG. B-G TRANSMISSION PROBABILITY SWEEP SIR GRAPHS 
 

NOTE: The blue curve represents the number of susceptible humans in the population over time, the red curve represents the number of infected humans in the 
population over time, and the blue curve represents the number of recovered humans in the population over time.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. B. Transmission Probability = 0.1 Fig. C. Transmission Probability = 0.11 

Fig. D. Transmission Probability = 0.12 Fig. E. Transmission Probability = 0.13 

Fig. F. Transmission Probability = 0.14 Fig. G. Transmission Probability = 0.15 
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TABLE A. PROBABILITIES SET WITHIN MODEL CODE 
 
 

Probabilities Condition 1 Condition 2 Value in Model Code 

Exposure 
from high-
contact area 

disinfect? true 
protect? true 1% 

protect? false 5% 

disinfect? false 
protect? true 5% 

protect? false 20% 

Need for 
hospital 

risk-population? 
true 

N/A 

20% 

risk-population? 
false 5% 

Average 
survival for 
severe disease 

hospitalized? 
true . 

risk-population? 
true 93% a. 

risk-population? 
false 99% a. 

hospitalized? 
false 

risk-population? 
true 20% 

risk-population? 
false 60% 

a. Assuming full healthcare quality (healthcare quality = 1). 

 
 

TABLE B. BASELINE VALUES USED FOR PARAMETER SWEEPS 
 

Parameter Baseline Values 

 random-seed -500, -400, -300, -200, -100, 100, 200, 300, 400, 500 

 initial-population 1000 

initial-infected 10 

initial-recovered 0 
risk-group-
proportion 0.5 

symptomatic 60% 
transmission-

probability 0.11 

recovery-time 14 days 
barriers-to-
healthcare 0 

healthcare-quality 1 

hospital-capacity 2 beds 
days-to-control-

measures 14 days 

protection-level 0.5 
following-
measures-
proportion 

0.5 

mobility 1 

infected-detection 5 

isolate-infected? true 

high-touch-areas? false 

disinfect? false 

 


